Mohamad Amin Goodarzei et al./ Elixir Agua, 106 (2017) 46831-46834

Available online at www.elixirpublishers.com (Elixir International Journal)



Aquaculture

Elixir Aqua. 106 (2017) 46831-46834



# Comparison of Soil Sedimentation Amount in Lands Covered by Pasture, Rainfed and Abandoned Rainfed in Various Severities of Rainfall and Different Slopes Using an Artificial Rainfall Simulator Device

Mohammad Amin Goodarzei<sup>1</sup>, Ali Akbar Jamali<sup>2</sup> and Mohammad Hasan Zade Nafooti<sup>2</sup> <sup>1</sup>Graduate Master Watershed Islamic Azad University Maybod, Iran. <sup>2</sup>Islamic Azad University, Department of Watershed, Maybod, Iran.

## **ARTICLE INFO**

ABSTRACT

Article history: Received: 14 April 2017; Received in revised form: 16 May 2017: Accepted: 29 May 2017;

# Keywords

Erosion, Watercourse, Rainfall Simulator, Land Use.

# 1. Introduction

Soil is one of the most important natural resources and production factors. Soil erosion is one of the damaging and harmful phenomena in nature, which can lead to the elimination of the natural resources as well as degradation and increasing the possibility of floods and reducing the amount of vegetation [23]. Therefore, to reduce the amount of soil loss can try to estimate the amount of erosion and sediment in the watersheds by using various solutions and carry out solutions including the creation of structures reform as well as vegetation and ultimately preventing degradation of lands and changing their use [4]. On the other hand, soil erosion is one of the most important environmental challenges [3]. The soil properties are one of the important and studied variables on the process of watercourse and soil erosion [3]. There are different methods to calculate the amounts of watercourse and soil erosion that rainfall simulators are one of the most common used methods. In theory, this device not only saves time and money, but the amounts of watercourse and erosion, as well as more effective processes can be evaluated quantitatively and frequency through this device. However it should be noted that the use of rainfall simulators has some limitations, so that rainfall simulators can never completely prepare the natural conditions and facing some limitations in terms of creating cloudburst conditions and rainfall in small surface of plot [4]. According to the studies, we can find out that in general, several factors are involving in the occurrence and exacerbation of watercourse and soil erosion that considering conditions of each region the effects of one or more factors are more than the others. In the meantime, the role of land use change is important due to the effect of this change on vegetation and soil properties and as a result the amounts of watercourse and soil erosion [10].

# In this study three land uses with constant soil type and lithology have been considered and also, rainfall intensities have been created by using rainfall simulator device and in two intensities of 46 mm/hour and 88 mm/hour, and as well as considering the slopes of 5 percent and 15 percent, according to the three repeats in 36 stages of sampling. Also, from adjacent parts of the rainfall simulator device and from 0-20 cm depth of soil, the soil samples were taken for analysis in a soil laboratory. The results showed that the land use changes indicate dramatic impacts on soil sedimentation amount in various intensities of rainfall and different slopes; so that the highest amount of sedimentation is carried out in the abandoned rainfed use and intensity of rainfall of 88 mm/hour and slope of 15%.

© 2017 Elixir All rights reserved.

# 2. Materials and Methods

# 2-1. the study area

Bab Karafs watershed is located in the geographical coordinates of 42.9' 57' 57° and 12' 2' 58° eastern longitude, and 31.7' 40' 28° to 15.2" 45' 28° north longitude with an area of 3634.6 hectares. This watershed is located in about 12 km from Sarduiyeh District in Jiroft County. The maximum height of this area is 3270 meters and the minimum height is 2990 meters. Bab Karafs, Khardan, Ghanat Bid, Nahr Kamal etc are the most important villages of the area. Figure (1) shows the location of Bab Karafs watershed in Iran and Kerman Province.

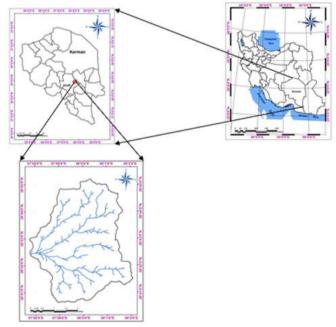



Figure 1. Location of the study area.

46831

# 2-2. characteristics of the rainfall simulator device

In this study, an artificial rainfall simulator device with rainfall level of 0.09 square meters (dimensions of  $30 \times 30$  cm) was used.

## 2-3. methods of soil sampling and laboratory analysis

In this study two rainfall intensities of 46 mm/hour and 88 mm/hour were used and areas with a slope of 5 percent and 15 percent were also tested.

Then, the amount of sediment passed through Whatman filter paper No. 40 in the three repeats and the amount of sediment was separated from whole of the watercourse in the soil laboratory. Then, the sediments were placed in Oven for 24 hours at 105  $^{\circ}$  C. In this study, the data were statistically analyzed by SAS software and mean comparison using Duncan test at 5% level.

# 3. Results

Results of the measured variables in the soil including watercourse volume, the amount of sediment, clay percentage, silt, sand, organic matter, lime, erodibility factor *EC*, *pH*, *SAR*, *ESP*, (*K*) are presented in Tables (1), (2), (3), (4), (5) and figures (4) and (5). The significance level for figures (Charts) is based on analysis of variance results.

| pН                     | EC                     | Sand percentage         | Silt percentage         | Clay percentage        | Sediment grams/liter(  | Watercourse)liter(        | Land use          |
|------------------------|------------------------|-------------------------|-------------------------|------------------------|------------------------|---------------------------|-------------------|
| <b>c</b> 52 <b>.</b> 7 | <b>a</b> 88 <b>.</b> 1 | <b>a</b> 25 <b>.</b> 70 | <b>c</b> 83 <b>.</b> 28 | <b>c</b> 91 <b>.</b> 3 | <b>c</b> 18 <b>.</b> 1 | <b>c</b> 50.682           | rainfed           |
| <b>b</b> 75 <b>.</b> 7 | <b>b</b> 88 <b>.</b> 0 | <b>c</b> 08 <b>.</b> 38 | <b>a</b> 91 <b>.</b> 52 | <b>a</b> 00 <b>.</b> 9 | <b>a</b> 69 <b>.</b> 4 | <b>a</b> 83 <b>.</b> 1255 | abandoned rainfed |
| <b>a</b> 85 <b>.</b> 7 | <b>b</b> 68 <b>.</b> 0 | <b>b</b> 41 <b>.</b> 51 | <b>b</b> 33 <b>.</b> 42 | <b>b</b> 25.6          | <b>b</b> 38 <b>.</b> 2 | <b>b</b> 08 <b>.</b> 932  | pasturage         |

#### Table 2. Results of mean comparison of rainfall intensity effect on the measured variables.

| pН    | EC    | Sand percentage | Silt percentage | Clay percentage | Sediment) grams/liter( | Watercourse) liter( | Rainfall intensity |
|-------|-------|-----------------|-----------------|-----------------|------------------------|---------------------|--------------------|
| a73.7 | a12.1 | a94.51          | a66.41          | a38.6           | b22.2                  | b56.89              | 46mm               |
| a68.7 | a17.1 | a55.54          | a05.39          | a38.6           | a28.3                  | a06.1021            | 88mm               |

#### Table 3. Results of mean comparison of slope effect on the measured variables.

| pН             | EC             | Sand percentage | Silt percentage | Clay percentage | Sediment) grams/liter( | Watercourse) liter( | Slope |
|----------------|----------------|-----------------|-----------------|-----------------|------------------------|---------------------|-------|
| a <b>69</b> .7 | a <b>21</b> .1 | a61.54          | b <b>11.39</b>  | a <b>27.6</b>   | b <b>48.2</b>          | b <b>17.876</b>     | 5%    |
| a <b>73</b> .7 | a <b>08</b> .1 | b <b>88.51</b>  | a <b>61.41</b>  | a <b>50.6</b>   | a02.3                  | a44.1037            | 15%   |

## Table 4. Sediment correlation matrix in the use, slope and different rainfall intensities.

|       | <b>Rainfall intensity</b> |      | Slope   |           | Use               |         |                 |          |
|-------|---------------------------|------|---------|-----------|-------------------|---------|-----------------|----------|
| 88mm  | 46mm                      | 15%  | 5%      | pasturage | abandoned rainfed | rainfed | Variable        | sediment |
| 89*.0 | 93**.0                    | 710  | 680     | 52.0      | 580               | 0140    | Clay percentage |          |
| 89*.0 | 95**.0                    | 94.0 | 860     | 390       | 290               | 070     | Silt percentage |          |
| 89*0  | 97**0                     | 970  | 90.0    | 34.0      | 33.0              | 07.0    | Sand percentage |          |
| 550   | 780                       | 38.0 | 29.0    | 46.0      | 57.0              | 500     | EC              |          |
| 45.0  | 67.0                      | 55.0 | 970     | 57.0      | 390               | 220     | рН              |          |
| 1     | 1 6 7 0 / ** ' ' ' '      | 1    | 1 6 1 0 | 4         |                   |         |                 |          |

\*significance level of 5%, \*\* significance level of 1%

# Table 5. Correlation between different variables affected by the slope, land use and rainfall intensity.

|                | Watercourse | Sediment | Clay   | Silt   | Sand   | EC     | pН    | ESP    | SAR    | Lime  | organic matter | erodibility |
|----------------|-------------|----------|--------|--------|--------|--------|-------|--------|--------|-------|----------------|-------------|
| Watercourse    | 1           |          |        |        |        |        |       |        |        |       |                |             |
| Sediment       | 95**.0      | 1        |        |        |        |        |       |        |        |       |                |             |
| Clay           | 85**.0      | 81**.0   | 1      |        |        |        |       |        |        |       |                |             |
| Silt           | 82**.0      | 76**.0   | 89**.0 | 1      |        |        |       |        |        |       |                |             |
| Sand           | 84**0       | 78**0    | 92**0  | 99**0  | 1      |        |       |        |        |       |                |             |
| EC             | 63*0        | 540      | 71**0  | 81**0  | 81**.0 | 1      |       |        |        |       |                |             |
| pН             | 52.0        | 41.0     | 62*.0  | 74**.0 | 73**0  | 95**0  | 1     |        |        |       |                |             |
| ESP            | 040         | 06.0     | 100    | 260    | 24.0   | 71**.0 | 76**0 | 1      |        |       |                |             |
| SAR            | 050         | 07.0     | 130    | 250    | 23.0   | 69*.0  | 75**0 | 98**.0 | 1      |       |                |             |
| Lime           | 03.0        | 13.0     | 01.0   | 160    | 13.0   | 64*.0  | 70*0  | 98**.0 | 97**.0 | 1     |                |             |
| organic matter | 40          | 470      | 350    | 270    | 29.0   | 270    | 40.0  | 83**0  | 81**0  | 87**0 | 1              |             |
| erodibility    | 97**.0      | 90**.0   | 89**.0 | 83**.0 | 85**0  | 60*0   | 50.0  | 020    | 030    | 07.0  | 0430           | 1           |

\*significance level of 5%, \*\* significance level of 1%

# 46832

## Mohamad Amin Goodarzei et al./ Elixir Aqua. 106 (2017) 46831-46834

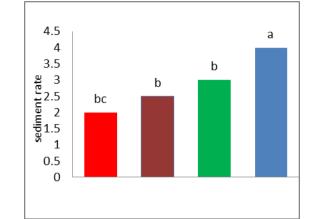



Figure 2. The mutual effect of rainfall intensity in the slope on the amount of sediment, the significance level of

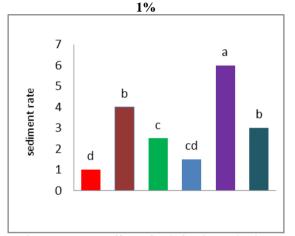



Figure 3. The mutual effect of rainfall intensity in the use on the amount of sediment, the significance level of 1% 4. Discussion

## 4-1. Erosion and sediment

According to the results presented in Table (1) the land use has significant effects on clay percentage, silt, sand, EC, pH, ESP, SAR, lime, organic matter and soil erodibility factor that all these properties will affect the amounts of erosion and sediment [5,19,11]. According to the results in Table (1) the amount of measured sediment in the abandoned rainfed land use significantly different from the other two land use. One of the main factors in increasing of sediment in this land use is related to more clay percentage and silt in the land use compared to other land use [2.18]. According to the correlation matrix (Table 4) the highest correlation of sediment is related to soil erosion in rainfed and pasture land use. The amount of sediment also showed a negative correlation with the amount of sand [14,1,7] which the amount of sediment decreases by increasing the percentage of sand [15]. And the amount of sand, also shows a negative and significant correlation with the sediment at 1% level (Table 5) [6], so that the erosion rate decreases by increasing the amount of sand [8], the soil erodibility factor, also indicates a positive and significant correlation with the erosion rate [16,10,9].

## Reference

[1] Hager, W. H., (1987). "Lateral outflow over side weirs." J. Hydraul. Eng., 113(4), 491–504.

[2] Alan&I, A.w., Amin, M&M, Alodul Hdlim, G., shafri,H.m., Thamer,A.M., waleed, A.R.M., Aimrun,W., Ezrin,M.H.,(2009)."The effect of development and land use change on rainfall- runoff and runoff-Sediment relationships

under humid Tropical Condition: case study of berman watershed Malaysia."European Journal of scientific Research, 31:88-105.

[3] Ricardo,G.,Izquierdo,A.E.,(2009)."Agricultureadjustment, land-use transition and protected areas in Northwestern Argentina." Journal of Environmental Management, 90:858-86

[4] Pei, J., shi, J., Ai, W., Jing Z.,(2007)."The effect of land use/cover change on surface runoff in Shenzhen region, china." Catena, 69:31-35.

[5] Bronstert, A.,Niehoff, D.,Burger, G.,(2002)."Effects of climate and land- use change on storm runoff qeneration: present knowledge and modeling capabilities." Hydrological processes 16: 509-529.

[6] Kwanchai, P., Koontanakulvong, M., (2009). "the effect of landuse change onrunoff in the nan basin." catena, 69, 31-35.

[7] Zhang,Z., Cao,W.,uo,Q.,Wi,S.,(2010)."Effects of landuse change on surface runoff and sidiment yield at different watershed scales on the Loess Plateau." international Journal of Sediment Research, Volume 25, Lssue 3, Pages 283-293.

[8] T.G,G.,Y.A,M., G.D, B.,( 2012)." Trend Analysis of Runoff and Sediment Fluxes in the upper Blue Nile Basin: A Combined Analysis of Statistical Tests, Physically-based Models and Landuse Maps." Journal of Hydrology, In Press, Accepted Manuscript, Avail

[9] Hoaxing,B., Jie,W., LeiY., Zhihan,C., Zhewei, C., (2009) "Effects of precipitation and landuse on runoff during the past 50 Years in a typical watershed in Loess Plateau, China." International Journal of Sediment Research, Volume 24, Issue 3, Pages 352-364.

[10] J.A,L.,Tarazon,R., Batalla, Dericat,J.,(2010)."Rainfall, runoff and sediment transport relations in mesoscale mountainous catchment"The River Lsabena(Ebro basin), Volume 82, Issue 1, Pages 23-34.

[11] Thanapakpawin, P., Richey, B., Thomas, D., Rodda, S., Campbell, B., Logsdon, D., (2007)." Effects of landuse change on the hydrologic regime of the Mae Chaem river basin, NW Thailand". Journal of Hydrology, Volume 334, Issues 1-2, Pages 215-230.

[12] Tao, P., Shi-jie, W., (2012)." Effects of land use, land cover and rainfall regimes on the surface runoff and soil loss on karst slopes in southwest China". Volume 90, Pages 53-62.
[13] Adekalu K.O., Okunade D.A., and Osunbitan J.A. (2006). Compaction and mulching effects on soil loss and runoff from two southwestern Nigeria agricultural. Geoderma, 137:226-230.

[14] Emadi M., Baghernejad M., and H.M, memarian. (2009). Effect of land-use change on soil fertility characteristics within water-stable aggregates of two cultivated soils in northern Iran. Land Use Policy, 26: 452-457.

[15] Izquierdo AE., and H, Ricardo Grau. (2009). "Agriculture adjustment, land-use transition and protected areas in Northwestern Argentina". Journal of Environmental Management, 90: 858-865.

[16] Jordan A., Martinez-Zavala L., and Bellinfante N. (2008). "Heterogeneity in soil hydrological response from different land cover types in southern Spain". Catena, 74: 137-143pp.

[17] Martz L.W. (1992)." The Variation of Soil Erodibility with Slope Position in a Cultivated Canadian Priairie Landscape". Earth Surface Processes and Landfrom, 17:543-556.

# 49834

[18] Molina A., Govers G., Vanacker V., Poesen J., Zeelmaekers E., and Cisneros F.( 2007)." Runoff generation in a degraded Andean ecosystem: Interaction of vegetation cover and land use". Catena 71:357-370.

[19] Santos F.L., Reis J.L., Martins O.C., Castanheria N.L., and Serralherio R.P.( 2003)." Comparative assessment of infiltration, runoff and ersion of sprinkler irrigation soil". Biosystems Engineering, 86(3): 355-364.