

Vibrational Properties of an Anti-HIV Drug Abacavir: Experiment and Theory
 Yugal Kishor Tiwari and R A Singh
 Department of Physics, Dr. H. S. Gour University Sagar, (M.P.)

ARTICLE INFO

Article history:

Received: 18 March 2017;
Received in revised form:
12 May 2017;
Accepted: 23 May 2017;

Keywords

Anti-HIV Drug,
DFT,
Raman and
FT-IR Spectroscopy
Binding Energy

Abstract

Abacavir (ABC) \{(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl] cyclopent-2-en-1-yl\} methanol, is an antiretroviral medication which is used to prevent and treat HIV/AIDS. It belongs from nucleoside analog reverse transcriptase inhibitor (NRTI) a sub class of RTIs, which interrupt the virus to make copy of it. In this paper we reported the results of a systematic experimental IR and Raman study of Avacavir. Additionally the equilibrium geometry, harmonic vibrational frequency Raman and IR intensities were calculated using density function theory. Finally complete vibrational assignment of Abacavir is given for the observed Raman and Infrared spectra. The experimental and theoretical results are found to be in excellent agreement with each other. We believe that the results obtained herein will prove to be an excellent starting point for studying the detailed potential surface of the molecule which is needed to understand the drug receptor interactions.

© 2017 Elixir All rights reserved.

Introduction

Acquired immunodeficiency syndrome AIDS, is a disease in which body's immune system breaks down and is unable to fight off infection caused by human immune deficiency virus (HIV). HIV infects the human cells and uses the energy and nutrients provided by those cells to grow and reproduce. The highly active anti Retroviral therapy (HAART) (1) has largely reduced the morbidity and the mortality of HIV infected patients, but a serious metabolic syndrome combining insulin resistance, dyslipidemia, central adiposity and peripheral lipoatropy has arisen in treated individuals. This highly active anti retroviral therapy includes protease inhibitors (PIs) and nucleoside reverse transcriptase inhibitors (NRTIs). RT is a multifunctional enzyme that catalyses RNA dependent DNA and DNA dependent DNA polymerases. These functions are required in the reproduction or replication of HIV, making RT central to the virus life cycle, thus providing a primary target for anti HIV drugs which are widely used in the treatment of AIDS(2-3).

Abacavir $\quad\{(1 S, 4 R)-4-[2$-amino-6-(cyclopropylamino)9 H -purin-9-yl]cyclopent-2-en-1-yl\}methanol is a synthetic nucleoside analog that is being increasingly used in the treatment of HIV infection (4-5). Abacavir after oral administration rapidly gets absorbed reducing the amount of HIV in blood which results in an increase in the number of CD4 cells or T-cells in the blood. Abacavir has activity in vitro against both HIV-1 and HIV-2 (6-7) cross resistance within the NRTI class of drugs Abacavir has important clinical consequence for the patient who are highly treatment experienced or for those patient in whom primary HIV infection is associated with the transmission of a resistant virus (8).

The application of Abacavir in health care requires its full characterization.

The survey of scientific literature reveals that to best of our knowledge neither the complete IR, Raman spectra nor the quantum chemical calculations for the molecular structure of Abacavir have been reported so far. In the present paper we report the experimental and theoretical IR and Raman spectra of Abacavir. It is important to note that a complete vibrational assignment of Abacavir is given in this study.

1. Experimental details

Abacavir is taken from Sigma Aldrich chemical company (US). Purity of the sample was greater than 99%. The sample was prepared from mixture of KBr in the ratio 99:1. Infrared spectra were recorded on a Shimadzu 8400 S-FT-IR spectrometer with a spectral resolution of $4 \mathrm{~cm}^{-1}$ in the region $400-4000 \mathrm{~cm}^{-1}$ at 300k. The FT-Raman spectra were recorded on a RENISHAW INVIA Raman Microscope attach with $\mathrm{He}-\mathrm{Ne}$ laser of wavelength 633 nm in the region 400 $4000 \mathrm{~cm}^{-1}$ using 10 mw power. The sample holder was consists of hemispherical bore of an aluminum.

2. Computational Model

A complete information about the structural characteristics and vibrational mode of Abacavir molecule is obtained by DFT (9) using Gaussian 03 (10).We apply DFT method with Becke's three parameter exchange function combined with gradient corrected correlated function (11-19) and split valance polarized 6-31 G basis set $(20,21)$. Note that a fragment of Abacavir [Fig.1] was considered for calculations.

Fig 1. Abacavir Molecule.

In order to test the reliability of our modeling techniques we compare bond length and bond angle with the experimental values. Comparisons of experimental and theoretical values of bond length and bond angles are given in table 1 and table 2 respectively which were obtained from equilibrium configuration shown in fig2. The calculated B3LYP results are also compared with B3PW91 results showing an excellent agreement.

3. Result and Discussion

3.1 Structural Properties

We find that the calculated bond lengths and bond angles are slightly larger than the experimental values; this is because the calculations consider the isolated molecules in the gaseous state whereas the experimental results were obtained using crystalline Abacavir.

Table1. Calculated and Experimental Bond Length.

Bond Length	This work (B3LYP/6-31G)	Experiment*
(C1H2) ${ }_{\text {R1 }}$	1.10	1.09
(C1H37) ${ }_{\mathrm{R} 1}$	1.10	1.09
$(\mathrm{C1O} 38)_{\mathrm{R} 1}$	1.45	1.44
$(\mathrm{O} 38 \mathrm{H} 39)_{\mathrm{R} 1}$	0.97	0.96
(C1C3) ${ }_{\mathrm{R} 1}$	1.52	1.51
(C3C19) ${ }_{\text {R1 }}$	1.51	1.50
$(\mathrm{C} 19 \mathrm{H} 20)_{\mathrm{R} 1}$	1.08	1.06
$(\mathrm{C} 3 \mathrm{H} 4)_{\mathrm{R} 1}$	1.10	1.08
(C3C33) ${ }_{\mathrm{R} 1}$	1.55	1.52
(C33H34) ${ }_{\mathrm{R} 1}$	1.09	1.10
(C33H35) ${ }_{\mathrm{R} 1}$	1.09	1.05
(C33C5) ${ }_{\mathrm{R} 1}$	1.56	1.52
(C5C21) ${ }_{\mathrm{R} 1}$	1.51	1.51
$(\mathrm{C} 24 \mathrm{H} 36)_{\mathrm{R} 1}$	1.08	1.06
(C21C19) ${ }_{\mathrm{R} 1}$	1.33	1.33
$(\mathrm{C} 19 \mathrm{H} 20)_{\mathrm{R} 1}$	1.08	1.08
(C5N7) ${ }_{\mathrm{R} 1}$	1.46	1.45
$(\mathrm{N} 7 \mathrm{C} 8)_{\mathrm{R} 2}$	1.39	1.39
(C8H9) ${ }_{\mathrm{R} 2}$	1.07	1.06
(C8N10) ${ }_{\text {R } 2}$	1.32	1.32
$(\mathrm{N} 10 \mathrm{C} 11)_{\mathrm{R} 2}$	1.39	1.39
$(\mathrm{C} 11 \mathrm{C18})_{\mathrm{R} 3}$	1.40	1.40
(C18N7) ${ }_{\text {R }}$	1.38	1.38
(C18N17) ${ }_{\text {R3 }}$	1.34	1.34
(N17C16) ${ }_{\text {R3 }}$	1.35	1.34
$(\mathrm{C} 16 \mathrm{~N} 30)_{\mathrm{R} 3}$	1.36	1.36
(N30H31) ${ }_{\text {R }}$	1.00	1.00
(N30H32) ${ }_{\text {R }}$	1.00	1.00
(C16N15) ${ }_{\text {R3 }}$	1.36	1.36
(N15C12) ${ }_{\text {R3 }}$	1.35	1.35
(C11C12) ${ }_{\text {R }}$	1.41	1.41
(C12N13) ${ }_{\text {R3 }}$	1.36	1.35
(N 13 H 14$)_{\mathrm{R} 3}$	1.01	1.01
(N13H22) ${ }_{\text {R4 }}$	1.43	1.43
(C22H25) ${ }_{\text {R } 4}$	1.08	1.08
$(\mathrm{C} 22 \mathrm{C} 24)_{\mathrm{R} 4}$	1.51	1.51
(C24H29) ${ }_{\text {R4 }}$	1.08	1.08
$(\mathrm{C} 24 \mathrm{H} 28)_{\mathrm{R} 4}$	1.08	1.08
(C24C23) ${ }_{\text {R4 }}$	1.52	1.51
$(\mathrm{C} 23 \mathrm{H} 26)_{\mathrm{R} 4}$	1.08	1.08
(C23H27) ${ }_{\text {R } 4}$	1.08	1.08

Fig 2. Optimized Geometry of Abacavir by DFT/ B3LYP 6-31G.
Table 2. Calculated and Experimental Bond Angles.

Bond Angle	B3LYP/6-31G	Experimental ${ }^{*}$
$(\mathrm{H} 2 \mathrm{C} 1 \mathrm{H} 37)_{\mathrm{R} 1}$	108.23	108.15
(H39O38C1) ${ }_{\mathrm{R} 1}$	110.66	110.62
$(\mathrm{H} 3 \mathrm{C} 1 \mathrm{O} 38)_{\mathrm{R} 1}$	110.70	110.69
$(\mathrm{C} 1 \mathrm{C} 3 \mathrm{H} 4)_{\mathrm{R} 1}$	106.70	106.71
(C1C3C33) ${ }_{\mathrm{R} 1}$	113.11	113.10
(C37C1C3) ${ }_{\mathrm{R} 1}$	109.74	109.73
$(\mathrm{C} 3 \mathrm{C} 19 \mathrm{H} 20)_{\mathrm{R} 1}$	121.26	121.31
$(\mathrm{C} 3 \mathrm{C} 33 \mathrm{H} 35)_{\mathrm{R} 1}$	110.07	110.00
$(\mathrm{C} 3 \mathrm{C} 33 \mathrm{H} 34)_{\mathrm{R} 1}$	112.94	112.89
(H35C33C5) ${ }_{\text {R1 }}$	108.43	108.29
(H20C19C21) ${ }_{\mathrm{R} 1}$	126.16	126.15
$(\mathrm{C} 3 \mathrm{C} 19 \mathrm{C} 21)_{\mathrm{R} 1}$	112.53	112.44
$(\mathrm{C} 19 \mathrm{C} 21 \mathrm{H} 36)_{\mathrm{R} 1}$	126.32	126.31
$(\mathrm{C} 21 \mathrm{C} 5 \mathrm{C} 33)_{\mathrm{R} 1}$	103.35	103.32
$(\mathrm{C} 21 \mathrm{C} 5 \mathrm{H} 6)_{\mathrm{R} 1}$	111.36	111.30
$(\mathrm{H6C5N7})_{\mathrm{R} 1}$	104.45	104.44
(C5N7C8) ${ }_{\text {R1 }}$	128.15	128.09
(H9C8N7) ${ }_{\text {R }}$	121.68	121.62
$(\mathrm{N} 7 \mathrm{C} 8 \mathrm{~N} 10)_{\mathrm{R} 2}$	112.79	112.79
(C8N7C18) ${ }_{\text {R2 }}$	106.28	106.18
(N7C18C11) ${ }_{\text {R } 2}$	105.61	105.46
$(\mathrm{C} 18 \mathrm{C} 11 \mathrm{~N} 10)_{\mathrm{R} 2}$	110.80	110.80
(C11N10C8) ${ }_{\text {R2 }}$	104.51	104.46
$(\mathrm{N} 10 \mathrm{C} 11 \mathrm{C} 12)_{\mathrm{R} 3}$	132.50	132.46
$(\mathrm{C} 11 \mathrm{C} 18 \mathrm{~N} 17)_{\mathrm{R} 3}$	126.29	126.26
$(\mathrm{C} 18 \mathrm{~N} 17 \mathrm{C} 16)_{\mathrm{R} 3}$	112.15	112.07
(N17C16N15) ${ }_{\text {R }}$	127.16	127.16
$(\mathrm{C} 16 \mathrm{~N} 15 \mathrm{C} 12)_{\mathrm{R} 3}$	118.71	118.70
$(\mathrm{N} 15 \mathrm{C} 12 \mathrm{C} 11)_{\mathrm{R} 3}$	118.97	118.95
$(\mathrm{N} 17 \mathrm{C} 16 \mathrm{~N} 30)_{\mathrm{R} 3}$	117.07	117.04
(N15C12N13) ${ }_{\mathrm{R} 3}$	119.82	119.75
$(\mathrm{C} 12 \mathrm{~N} 13 \mathrm{H} 14)_{\mathrm{R} 3}$	116.47	116.47
$(\mathrm{C} 12 \mathrm{~N} 13 \mathrm{C} 22)_{\mathrm{R} 4}$	123.91	123.84
(N13N22H25) ${ }_{\text {R4 }}$	114.36	114.34
(H14N13C22) ${ }_{\mathrm{R} 4}$	119.36	119.36
(H25C22C24) ${ }_{\text {R4 }}$	116.49	116.48
$(\mathrm{C} 22 \mathrm{C} 24 \mathrm{H} 28)_{\mathrm{R} 4}$	117.88	117.84
$(\mathrm{C} 24 \mathrm{C} 23 \mathrm{H} 26)_{\mathrm{R} 4}$	117.57	117.50
$(\mathrm{C} 22 \mathrm{C} 24 \mathrm{H} 29)_{\mathrm{R} 4}$	117.03	116.93
$(\mathrm{H} 28 \mathrm{C} 24 \mathrm{C} 23)_{\mathrm{R} 4}$	119.02	119.02
$(\mathrm{C} 24 \mathrm{C} 23 \mathrm{H} 27)_{\mathrm{R} 4}$	119.22	119.21
$(\mathrm{C} 22 \mathrm{C} 24 \mathrm{C} 23)_{\mathrm{R} 4}$	59.80	59.78
$(\mathrm{C} 24 \mathrm{C} 22 \mathrm{C} 23)_{\mathrm{R} 4}$	60.19	60.12
$(\mathrm{C} 22 \mathrm{C} 23 \mathrm{C} 24)_{\mathrm{R} 4}$	60.00	60.01

Reference 22
The calculated binding energy of molecule is
B.E. $=(\text { T.E. })_{\text {molecule }}-\left[_{1}(\text { T.E. })_{\mathrm{H}}+\mathrm{n}_{2}(\text { T.E. })_{\mathrm{N}}+\mathrm{n}_{3}(\right.$ T.E. $) ~ \mathrm{o}+$ n_{4} (T.E.) c]
where $n_{1}, n_{2}, n_{3}, n_{4}$ are the numbers of hydrogen, nitrogen, oxygen and carbon atoms respectively. The calculated value of binding energy is -8.2 eV . B.E. per atom = B.E. / Number of atom, i.e., -0.21 eV . Furthermore, the calculated dipole moment and HOMO-LUMO gap is 1.69 Debye and -5.0 eV respectively.

3.1. Vibrational analysis

The total number of atoms in Abacavir molecule is 39 giving total 111 (3N-6) normal modes. Since the molecule belongs to C 1 point group symmetry, all the normal modes of vibration of the molecule are IR and Raman active. Note that DFT calculation gives the Raman scattering amplitude which cannot be taken directly as the Raman intensity. The Raman scattering cross-section, which are proportional to Raman intensity may be calculated from the Raman scattering amplitude and predicted wave number for each normal mode using the relationship $(24,25)$.
$\frac{\partial \sigma_{j}}{\partial \Omega}=\left(\frac{2^{4} \pi^{4}}{45}\right)\left(\frac{\left(v_{0}-v_{j}\right)}{1-\exp \left[\frac{-h c v_{j}}{k T}\right]}\right)\left(\frac{h}{8 \pi^{2} c v_{j}}\right) s_{j}$
where S_{j} and \mathbf{v}_{j} are the scattering activities and the predicted wave numbers respectively of the $\mathrm{j}^{\text {th }}$ normal mode, \mathbf{v}_{0} is the wave number of the Raman excitation line and h, c, and k are universal constants.

The Raman intensities obtained from this relation are in excellent agreement with the experimentally observed values which are shown in Fig 3. The calculated IR Raman intensities were used to predict the vibrational mode with Lorentzian line shape (full width at half maximum $=8 \mathrm{~cm}^{-1}$) to produce simulated spectra. The vibration assignments for the different mode have been made on the basis of relative intensities, energies and line shape. All vibrational bands have been assigned satisfactorily after proper analysis. All the assigned wave numbers of different modes are shown in table.4. The R1, R2, R3 and R4 referred in the table below are R1 (Five membered ring) R2 (five membered ring with nitrogen) R3 (six membered ring) and R4 (three membered ring).

Table 3. Theoretical and experimental vibrational wave number $\left(\mathrm{cm}^{-1}\right)$ of Abacavir.

Unscaled	scaled	IR	Raman	Assignment
3794	3592	3740	3649	$\left(\mathrm{C} 30 \mathrm{H}_{2}\right)_{\mathrm{R} 1}$ Asymmetric stretching
3649	3463	3610	3640	$(\mathrm{OH})_{\mathrm{R} 1}$ stretching
3626	3443	-	-	(N13H14) $)_{\text {R3 }}$ stretching
3310	3160	-	3370	$(\mathrm{C} 8 \mathrm{H} 9)_{\mathrm{R} 2}$ stretching
3262	3116	3305	3310	$\left(\mathrm{C} 24 \mathrm{H}_{2}\right)_{\mathrm{R} 4}$ stretching $+\left(\mathrm{C} 23 \mathrm{H}_{2}\right)_{\mathrm{R} 4}$ Asymmetric stretching
3255	3110	-	-	$(\mathrm{C} 19 \mathrm{H})_{\mathrm{R} 1}$ stretching $+(\mathrm{C} 21 \mathrm{H})_{\mathrm{R} 4}$ stretching
3241	3097	3262	3255	$\left(\mathrm{CH}_{2}\right)_{\mathrm{R} 4}$ Asymmetric stretching
3223	3081	3245	3240	$(\mathrm{CH})_{\mathrm{R} 1}$ stretching
3171	3034	3176	3179	$\left(\mathrm{CH}_{2}\right)_{\mathrm{R4}}$ symmetric stretching + All CH stretching
3164	3028	-	-	$\left(\mathrm{CH}_{2}\right)_{\mathrm{R} 4}$ symmetric stretching + All CH stretching
3157	3022	3150	3142	$\left(\mathrm{CH}_{2}\right)_{\mathrm{R4} 4}$ symmetric stretching + All CH stretching
3130	2997	3084	3095	$\left(\mathrm{C} 33 \mathrm{H}_{2}\right)_{\mathrm{R} 1}$ Symmetric stretching + (C5H6) ${ }_{\mathrm{R} 1}$ stretching
3068	2941	-	3065	$\left(\mathrm{C} 33 \mathrm{H}_{2}\right)_{\mathrm{R} 1}$ Symmetric stretching + (C5H6) ${ }_{\mathrm{Rl} 1}$ stretching
3061	2934	3040	3049	$\left(\mathrm{C} 33 \mathrm{H}_{2}\right)_{\mathrm{R} 1}$ Symmetric stretching +(C5H6) $\mathrm{R}^{1} 1$ stretching $+\left({\left.\mathrm{C} 1 \mathrm{H}_{2}\right)_{\mathrm{R} 1}}^{\text {Asymmetric stretching }}\right.$
3046	2921	-	-	$\left({\left.\mathrm{C} 1 \mathrm{H}_{2}\right)_{\mathrm{R} 1}}^{\text {Asymmetric stretching }+(\mathrm{C} 3 \mathrm{H} 4)_{\mathrm{R} 1} \text { stretching }+(\mathrm{C} 5 \mathrm{H} 6)_{\mathrm{R} 1} \text { stretching }}\right.$
3024	2901	3021	3029	$(\mathrm{C} 3 \mathrm{H} 4)_{\mathrm{R} 1}$ stretching $+\left(\mathrm{ClH}_{2}\right)_{\mathrm{R} 1}$ Asymmetric stretching $+\left({\left.\mathrm{C} 33 \mathrm{H}_{2}\right)_{\mathrm{R} 1} 1}^{\text {Asymmetric stretching }}\right.$
2997	2876	-	2991	$\left(\mathrm{C1H}_{2}\right)_{\mathrm{R} 1}$ symmetric stretching
1693	1661	1675	1692	$(\mathrm{C} 19 \mathrm{C} 21)_{\mathrm{R} 1}$ stretching $+(\mathrm{C} 19 \mathrm{H} 20)_{\mathrm{R} 1}$ bending $+(\mathrm{C} 21 \mathrm{H} 36)_{\mathrm{R} 1}$ bending +R 1 deforming
1678	1646	1652	1642	$(\mathrm{N} 30 \mathrm{H} 2)_{\mathrm{R} 3}$ scissoring $+(\mathrm{N} 13 \mathrm{H} 14)_{\mathrm{R} 3}$ bending $+(\mathrm{N} 13 \mathrm{C} 12)_{\mathrm{R} 3}$ stretching +R 3 deforming $+(\mathrm{N} 30 \mathrm{C} 16)_{\mathrm{R} 3}$ stretching
1655	1624	1634	1630	$(\mathrm{C} 11 \mathrm{C} 12)_{\mathrm{R} 3}$ stretching $+(\mathrm{N} 13 \mathrm{H} 14)_{\mathrm{R} 3}$ bending $+\left(\mathrm{N} 30 \mathrm{H}_{2}\right)_{\mathrm{R} 3}$ scissoring $+(\mathrm{N} 7 \mathrm{C} 18)_{\mathrm{R} 3}$ stretching
1629	1599	1589	1590	$(\mathrm{N} 17 \mathrm{C} 18)_{\mathrm{R} 3}$ stretching $+(\mathrm{C} 11 \mathrm{C} 18)_{\mathrm{R} 3}$ stretching $+(\mathrm{N} 15 \mathrm{C} 12)_{\mathrm{R} 3}$ stretching + (N13C12$)_{\mathrm{R} 3}$ stretching + $\left({\mathrm{N} 30 \mathrm{H}_{2}}^{)_{\mathrm{R} 3}}\right.$ scissoring $+(\mathrm{N} 13 \mathrm{H} 14)_{\mathrm{R} 3}$ bending +R 1 and R 2 deforming
1560	1533	1527	-	$\begin{aligned} & \left({\left.\mathrm{C} 1 \mathrm{H}_{2}\right)_{\mathrm{R} 1} \text { scissoring }+\left({\left.\mathrm{C} 33 \mathrm{H}_{2}\right)_{\mathrm{R} 4}} \text { Scissoring }+(\mathrm{C} 3 \mathrm{H} 4)_{\mathrm{R} 1} \text { bending }+\left(\mathrm{N}_{3} \mathrm{H}_{2}\right)_{\mathrm{R} 3} \text { scissoring }+\right.}^{(\mathrm{N} 13 \mathrm{H} 14)_{\mathrm{R} 3} \text { bending }}\right. \end{aligned}$
1558	1531	1538	1540	$(\mathrm{N} 13 \mathrm{C} 12)_{\mathrm{R} 3}$ stretching $+(\mathrm{N} 13 \mathrm{C} 22)_{\mathrm{R} 3}$ stretching $+(\mathrm{N} 13 \mathrm{H} 14)_{\mathrm{R} 3}$ bending $+\left(\mathrm{N}_{3} \mathrm{HH}_{2}\right)_{\mathrm{R} 3}$ scissoring + $(\mathrm{N} 30 \mathrm{C} 16)_{\mathrm{R} 3}$ stretching $+(\mathrm{C} 18 \mathrm{~N} 7)_{\mathrm{R} 3}$ stretching $+(\mathrm{N} 13 \mathrm{H} 14)_{\mathrm{R} 3}$ bending $+(\mathrm{C} 8 \mathrm{H} 9)_{\mathrm{R} 1}$ bending + $\left(\mathrm{C}_{1} \mathrm{H}_{2}\right)_{\mathrm{R} 1}$ Scissoring $+\mathrm{R} 1, \mathrm{R} 2$ deforming
1536	1510	-	-	$\left(\mathrm{C} 33 \mathrm{H}_{2}\right)_{\mathrm{R} 1}$ scissoring + (C1H2) ${ }_{\mathrm{R} 1}$ Scissoring
1532	1507	1509	1500	$\left(\mathrm{C} 23 \mathrm{H}_{2}\right)_{\mathrm{R} 4}$ scissoring $+\left(\mathrm{C} 24 \mathrm{H}_{2}\right)_{\mathrm{R} 4}$ Scissoring $+(\mathrm{CN})_{\mathrm{R} 2}$ stretching $+(\mathrm{C} 11 \mathrm{C} 18)_{\mathrm{R} 3}$ stretching
1525	1500	-	1496	$(\mathrm{N} 13 \mathrm{H} 14)_{\mathrm{R} 3}$ bending $+\left(\mathrm{N} 30 \mathrm{H}_{2}\right)_{\mathrm{R} 3}$ scissoring $+(\mathrm{N} 30 \mathrm{C} 16)_{\mathrm{R} 3}$ stretching $+\left(\mathrm{C} 24 \mathrm{H}_{2}\right)_{\mathrm{R} 4}$ Scissoring
1512	1487	1476	1485	$\left(\mathrm{C} 23 \mathrm{H}_{2}\right)_{\mathrm{R} 4}$ Scissoring $+\left(\mathrm{C}_{2} 4 \mathrm{H}_{2}\right)_{\mathrm{R} 4}$ Scissoring $+(\mathrm{C} 22 \mathrm{H} 25)_{\mathrm{R} 4}$ bending $+(\mathrm{N} 13 \mathrm{H} 14)_{\mathrm{R} 3}$ bending $+\left(\mathrm{N} 30 \mathrm{H}_{2}\right)_{\mathrm{R} 3}$ rocking $+(\mathrm{C} 18 \mathrm{~N} 17)_{\mathrm{R} 3}$ stretching $+(\mathrm{C} 5 \mathrm{H} 6)_{\mathrm{R} 1}$ bending
1506	1482	-	1476	$\left(\mathrm{C} 22 \mathrm{H}_{2}\right)_{\mathrm{R} 4}$ Scissoring $+\left(\mathrm{C} 23 \mathrm{H}_{2}\right)_{\mathrm{R} 4}$ Scissoring $+(\mathrm{N} 13 \mathrm{H} 14)_{\mathrm{R} 4}$ bending + R3 deforming
1482	1459	1450	1454	$(\mathrm{C} 8 \mathrm{H} 9)_{\mathrm{R} 2}$ bending $+(\mathrm{C} 8 \mathrm{~N} 18)_{\mathrm{R} 2}$ stretching $+(\mathrm{N} 30 \mathrm{H} 31)_{\mathrm{R} 3}$ bending $+(\mathrm{C} 16 \mathrm{~N} 15)_{\mathrm{R} 3}$ stretching + $(\mathrm{N} 13 \mathrm{H} 14)_{\mathrm{R} 3}$ bending $+\left(\mathrm{C}_{2} 4 \mathrm{H}_{2}\right)_{\mathrm{R} 4}$ Scissoring
1456	1434	1429	1437	$(\mathrm{OH})_{\mathrm{R} 1}$ bending $+(\mathrm{C} 1 \mathrm{H} 2)_{\mathrm{R} 1}$ wagging
1439	1417	-	1422	$\begin{aligned} & (\mathrm{C} 5 \mathrm{H} 6)_{\mathrm{R} 1} \text { bending }+\left({\left.\mathrm{C} 33 \mathrm{H}_{2}\right)_{\mathrm{R} 1} \text { wagging }+(\mathrm{C} 1 \mathrm{H} 2)_{\mathrm{R} 1} \text { wagging }+(\mathrm{N} 30 \mathrm{H} 2)_{\mathrm{R} 3} \text { rocking }+(\mathrm{N} 7 \mathrm{C} 8)_{\mathrm{R} 1}}_{\text {stretching }}\right. \end{aligned}$
1423	1402	1390	1395	$(\mathrm{C} 22 \mathrm{H} 25)_{\mathrm{R} 4}$ bending $+\left(\mathrm{C} 23 \mathrm{H}_{2}\right)_{\mathrm{R} 4}$ wagging $+(\mathrm{C} 5 \mathrm{H} 6)_{\mathrm{R} 1}$ bending +R 2 and R 3 deforming

Yugal Kishor Tiwari and R A singh / Elixir Computational Physics 106 (2017) 46791-46797

1412	1391	-	-	$(\mathrm{C} 22 \mathrm{H} 25)_{\mathrm{R} 4}$ bending $+(\mathrm{N} 13 \mathrm{H} 14)_{\mathrm{R} 3}$ bending $+(\mathrm{C} 11 \mathrm{C} 12)_{\mathrm{R} 3}$ stretching $+(\mathrm{C} 8 \mathrm{~N} 7)_{\mathrm{R} 2}$ stretching
1407	1386	1376	-	$\left(\mathrm{C} 23 \mathrm{H}_{2}\right)_{\mathrm{R} 4}$ wagging $+\left({\mathrm{C} 1 \mathrm{H}_{2}}^{)_{\mathrm{R} 1}}\right.$ twisting $+(\mathrm{C} 3 \mathrm{H} 4)_{\mathrm{R} 1}$ bending $+(\mathrm{C} 21 \mathrm{H} 36)_{\mathrm{R} 1}$ bending $+(\mathrm{C} 19 \mathrm{H} 20)_{\mathrm{R} 1}$ bending $+(\mathrm{C} 5 \mathrm{H} 6)_{\mathrm{R} 1}$ bending
1375	1356	1370	1375	$\left(\mathrm{N} 30 \mathrm{H}_{2}\right)_{\mathrm{R} 3}$ rocking $+(\mathrm{C} 12 \mathrm{~N} 15)_{\mathrm{R} 3}$ stretching $+(\mathrm{C} 8 \mathrm{H} 9)_{\mathrm{R} 2}$ bending
1373	1354	-	1360	$(\mathrm{C} 19 \mathrm{H} 20)_{\mathrm{R} 1} \mathrm{CH}$ bending $+\left(\mathrm{C} 1 \mathrm{H}_{2}\right)_{\mathrm{R} 1}$ twisting $+(\mathrm{C} 12 \mathrm{~N} 15 \$ \mathrm{C} 18 \mathrm{~N} 17)_{\mathrm{R} 3}$ stretching $+\left(\mathrm{N} 30 \mathrm{H}_{2}\right)_{\mathrm{R} 3}$ rocking
1339	1321	1338	1340	$\left(\mathrm{C} 33 \mathrm{H}_{2}\right)_{\mathrm{R} 1}$ wagging + all CH bending $+(\mathrm{OH})_{\mathrm{R} 1}$ bending $+(\mathrm{C}-\mathrm{C})_{\mathrm{R} 1}$ stretching
1337	1319	-	1320	$\left(\mathrm{C} 33 \mathrm{H}_{2}\right)_{\mathrm{R} 1}$ twisting $+\left(\mathrm{C} 1 \mathrm{H}_{2}\right)_{\mathrm{R} 1}$ twisting $+(\mathrm{CH})_{\mathrm{R} 1}$ bending
1329	1311	1309	-	$\left(\mathrm{C} 33 \mathrm{H}_{2}\right)_{\mathrm{R} 1}$ wagging $+(\mathrm{OH})_{\mathrm{R} 1}$ bending $+(\mathrm{CH})_{\mathrm{R} 1}$ bending $+(\mathrm{N} 13 \mathrm{H} 14)_{\mathrm{R} 3}$ bending $+(\mathrm{N} 7 \mathrm{C} 8)_{\mathrm{R} 2}$ stretching + all $\mathrm{C}=\mathrm{C}$ stretching
1318	1307	-	1305	$(\mathrm{OH})_{\mathrm{R} 1}$ bending $+(\mathrm{C} 1 \mathrm{H} 37)_{\mathrm{R} 1}$ bending $+\left(\mathrm{CH}_{2}\right)_{\mathrm{R} 1}$ wagging $+(\mathrm{CH})_{\mathrm{R} 1}$ bending $+(\mathrm{C} 5 \mathrm{~N} 7)_{\mathrm{R} 1}$ stretching + $(\mathrm{C} 8 \mathrm{H} 9)_{\mathrm{R} 1}$ bending + all $\mathrm{C}-\mathrm{N}$ stretching $+(\mathrm{N} 17 \mathrm{C} 18)_{\mathrm{R} 3}$ stretching $+\mathrm{R} 3(\mathrm{~N} 17 \mathrm{C} 16)_{\mathrm{R} 3}$ stretching + $\left({\mathrm{N} 30 H_{2}}^{)_{\mathrm{R} 3}}\right.$ rocking $+(\mathrm{N} 13 \mathrm{H} 14)_{\mathrm{R} 3}$ bending
1294	1277	1290	1292	$\begin{aligned} & (\mathrm{OH})_{\mathrm{R} 1} \text { bending }+(\mathrm{C} 1 \mathrm{H} 37)_{\mathrm{R} 1} \text { bending }+\left(\mathrm{C} 33 \mathrm{H}_{2}\right)_{\mathrm{R} 1} \text { wagging }+(\mathrm{CH})_{\mathrm{R} 1} \text { bending }+(\mathrm{C} 5 \mathrm{~N} 7)_{\mathrm{R} 1} \text { stretching }+ \\ & (\mathrm{C} 8 \mathrm{H} 9)_{\mathrm{R} 2} \text { bending }+ \text { all } \mathrm{C}=\mathrm{N} \text { stretching }+(\mathrm{N} 15 \mathrm{C} 12)_{\mathrm{R} 3} \text { stretching }+\mathrm{R} 3(\mathrm{~N} 30 \mathrm{C} 16)_{\mathrm{R} 3} \text { stretching }+ \\ & \left(\mathrm{N} 30 \mathrm{H}_{2}\right)_{\mathrm{R} 3} \text { rocking }+(\mathrm{N} 13 \mathrm{H} 14)_{\mathrm{R} 3} \text { bending }+(\mathrm{CH})_{\mathrm{R} 4} \text { bending } \end{aligned}$
1261	1246	1257	1255	$(\mathrm{OH})_{\mathrm{R} 1}$ bending $+(\mathrm{C} 1 \mathrm{H} 37)_{\mathrm{R} 1}$ bending $+(\mathrm{C}-\mathrm{C})_{\mathrm{R} 1}$ stretching $+\left({\mathrm{C} 33 \mathrm{H}_{2}}^{)_{\mathrm{R} 1}}\right.$ wagging $+(\mathrm{C} 5 \mathrm{H} 6)_{\mathrm{R} 1}$ bending + $(\mathrm{C} 5 \mathrm{~N} 7)_{\mathrm{R} 1}$ stretching +R 2 CN stretching +R 3 deforming $+\left(\mathrm{N} 30 \mathrm{H}_{2}\right)_{\mathrm{R} 3}$ rocking $+(\mathrm{CH})_{\mathrm{R} 4}$ bending
1255	1240	-	1247	$(\mathrm{OH})_{\mathrm{R} 1}$ bending $+(\mathrm{C} 1 \mathrm{H} 37)_{\mathrm{R} 1}$ bending $+(\mathrm{C} 33 \mathrm{H} 24)_{\mathrm{R} 1}$ bending $+(\mathrm{CH})_{\mathrm{R} 1}$ bending $+(\mathrm{C} 5 \mathrm{~N} 7)_{\mathrm{R} 1}$ stretching + $(\mathrm{CN})_{\mathrm{R} 2}$ stretching $+(\mathrm{C}=\mathrm{N})_{\mathrm{R} 2}$ stretching $+\left(\mathrm{N} 30 \mathrm{H}_{2}\right)_{\mathrm{R} 3}$ rocking $+(\mathrm{C}-\mathrm{C})_{\mathrm{R} 4}$ stretching $+(\mathrm{C} 22 \mathrm{H} 25)_{\mathrm{R} 4}$ bending
1242	1227	-	1237	$(\mathrm{OH})_{\mathrm{R} 1}$ bending $+\left(\mathrm{C} 1 \mathrm{H}_{2}\right)_{\mathrm{R} 1}$ twisting $+(\mathrm{C} 3 \mathrm{H} 4)_{\mathrm{R} 1}$ bending $+\left(\mathrm{C} 33 \mathrm{H}_{2}\right)_{\mathrm{R} 1}$ twisting $+(\mathrm{CH})_{\mathrm{R} 1}$ bending
1233	1218	-	-	$\left(\mathrm{C} 1 \mathrm{H}_{2}\right)_{\mathrm{R} 1}$ twisting $+(\mathrm{C} 5 \mathrm{~N} 7)_{\mathrm{R} 1}$ stretching $+(\mathrm{C} 8 \mathrm{H} 9)_{\mathrm{R} 2}$ bending + R3 deforming $+(\mathrm{N} 13 \mathrm{H} 14)_{\mathrm{R} 3}$ bending
1221	1207	-	1205	$\begin{aligned} & \left(\mathrm{C} 33 \mathrm{H}_{2}\right)_{\mathrm{R} 1} \text { twisting }+(\mathrm{NH})_{\mathrm{R} 1} \text { bending }+(\mathrm{N} 7 \mathrm{C} 8)_{\mathrm{R} 1} \text { stretching }+(\mathrm{N} 7 \mathrm{C} 18)_{\mathrm{R} 1} \text { stretching }+\left(\mathrm{C} 22 \mathrm{H}_{2}\right)_{\mathrm{R} 4} \text { rocking } \\ & +\left(\mathrm{C} 23 \mathrm{H}_{2}\right)_{\mathrm{R} 4} \text { rocking + R4 deforming } \end{aligned}$
1217	1203	-	1201	$\left(\mathrm{C} 24 \mathrm{H}_{2}\right)_{\mathrm{R} 4}$ rocking $+\left(\mathrm{C} 23 \mathrm{H}_{2}\right)_{\mathrm{R} 4}$ twisting $+(\mathrm{C} 22 \mathrm{H} 25)_{\mathrm{R} 4}$ bending $+(\mathrm{CH})_{\mathrm{R} 1}$ bending
1206	1192	-	1189	$\left(\mathrm{C} 33 \mathrm{H}_{2}\right)_{\mathrm{R} 1}$ twisting $+(\mathrm{OH})_{\mathrm{R} 1}$ bending $+(\mathrm{CH})_{\mathrm{R} 1}$ bending $+\left(\mathrm{C} 23 \mathrm{H}_{2}\right)_{\mathrm{R} 4}$ twisting $+(\mathrm{CN})_{\mathrm{R} 2}$ stretching + $(\mathrm{C}=\mathrm{N})_{\mathrm{R} 3}$ stretching $+\left(\mathrm{N} 30 \mathrm{H}_{2}\right)_{\mathrm{R} 3}$ rocking
1188	1175	1185	1179	$\left(\mathrm{C}_{3} 3 \mathrm{H}_{2}\right)_{\mathrm{R} 1}$ twisting + all CH bending $+\left(\mathrm{C}_{2} 3 \mathrm{H}_{2}\right)_{\mathrm{R} 4}$ twisting $+\left(\mathrm{C}_{2} 4 \mathrm{H}_{2}\right)_{\mathrm{R} 4}$ twisting $+(\mathrm{CN})_{\mathrm{R} 2}$ stretching + all NH_{2} rocking
1167	1154	-	-	$(\mathrm{C} 19 \mathrm{H} 20)_{\mathrm{R} 1}$ bending $+(\mathrm{C} 21 \mathrm{H} 36)_{\mathrm{R} 1}$ bending $+(\mathrm{C} 3 \mathrm{C} 33)_{\mathrm{R} 1}$ stretching + all CH bending $+(\mathrm{C} 8 \mathrm{H} 9)_{\mathrm{R} 2}$ bending
1157	1145	1134	1135	$(\mathrm{CH})_{\mathrm{R} 4}$ bending $+\left({\left.\mathrm{N} 30 \mathrm{H}_{2}\right)_{\mathrm{R} 3} \text { rocking }}^{\text {r }}\right.$
1127	1116	1130	-	$(\mathrm{OH})_{\mathrm{R} 1}$ bending $+(\mathrm{C} 1 \mathrm{H} 2)_{\mathrm{R} 1}$ rocking + all CH bending $+\mathrm{R} 1(\mathrm{C}-\mathrm{C})_{\mathrm{R} 1}$ stretching
1119	1108	1119	1121	$(\mathrm{OH})_{\mathrm{R} 1}$ bending $+(\mathrm{C} 1 \mathrm{H} 2)_{\mathrm{R} 1}$ rocking + all CH bending $+\left(\mathrm{N} 30 \mathrm{H}_{2}\right)_{\mathrm{R} 3}$ rocking
1116	1105	1099	1088	
1098	1087	-	1081	$(\mathrm{OH})_{\mathrm{R} 1}$ bending $+(\mathrm{C} 1 \mathrm{H} 2)_{\mathrm{R} 1}$ rocking + all CH bending $+\left(\mathrm{N}_{3} 0 \mathrm{H}_{2}\right)_{\mathrm{R} 3}$ rocking $+(\mathrm{C}=\mathrm{N})_{\mathrm{R} 3}$ stretching + $\left(\mathrm{CH}_{2}\right)_{\mathrm{R} 4}$ wagging
1095	1085	-	-	$(\mathrm{OH})_{\mathrm{R} 1}$ bending $+\left(\mathrm{N} 30 \mathrm{H}_{2}\right)_{\mathrm{R} 3}$ rocking $+\left(\mathrm{CH}_{2}\right)_{\mathrm{R} 4}$ wagging
1076	1066	-	1076	$\left(\mathrm{N} 30 \mathrm{H}_{2}\right)_{\mathrm{R} 3}$ rocking $+(\mathrm{C} 16 \mathrm{~N} 17)_{\mathrm{R} 3}$ stretching $+\left(\mathrm{C} 24 \mathrm{H}_{2}\right)_{\mathrm{R} 4}$ twisting $+(\mathrm{C} 24 \mathrm{H} 29)_{\mathrm{R} 4}$ bending $+(\mathrm{N} 13 \mathrm{H} 14)_{\mathrm{R} 3}$ bending $+\left({\mathrm{N} 30 \mathrm{H}_{2}}^{2}\right)_{\mathrm{R} 3}$ rocking
1063	1053	1056	1057	$(\mathrm{OH})_{\mathrm{R} 1}$ bending $+(\mathrm{C} 33 \mathrm{H} 2)_{\mathrm{R} 1}$ rocking $+(\mathrm{C} 5 \mathrm{H} 6)_{\mathrm{R} 1}$ bending $+(\mathrm{C} 21 \mathrm{H} 36)_{\mathrm{R} 1}$ bending $+(\mathrm{C} 1 \mathrm{H} 2)_{\mathrm{R} 1}$ rocking + $(\mathrm{C} 3 \mathrm{C} 19)_{\mathrm{R} 1}$ Stretching $+(\mathrm{N} 7 \mathrm{C} 8)_{\mathrm{R} 2}$ stretching $+\left(\mathrm{NH}_{2}\right)_{\mathrm{R} 3}$ rocking
1049	1040	1039	1040	$(\mathrm{OH})_{\mathrm{R} 1}$ bending $+\left({\mathrm{C} 33 \mathrm{H}_{2}}^{2}\right)_{\mathrm{R} 1}$ rocking $+(\mathrm{CH})_{\mathrm{R} 1}$ bending $+(\mathrm{C} 5 \mathrm{~N} 7)_{\mathrm{R} 1}$ stretching $+(\mathrm{NC})_{\mathrm{R} 2}$ stretching + $\left(\mathrm{C} 24 \mathrm{H}_{2}\right)_{\mathrm{R} 4}$ twisting $+(\mathrm{C} 22 \mathrm{~N} 13)_{\mathrm{R} 4}$ Stretching
1037	1028	-	-1036	$(\mathrm{OH})_{\mathrm{R} 1}$ bending + $(\mathrm{C}-\mathrm{O})_{\mathrm{R} 1}$ stretching $+(\mathrm{C} 1 \mathrm{C} 3)_{\mathrm{R} 1}$ bending
1013	1005	-	-	$(\mathrm{CH})_{\mathrm{R} 1}$ bending
996	988	992	990	$\begin{aligned} & (\mathrm{C}-\mathrm{O})_{\mathrm{R} 1} \text { stretching }+(\mathrm{C} 1 \mathrm{H} 2)_{\mathrm{R} 1} \text { rocking }+(\mathrm{C} 5 \mathrm{C} 21)_{\mathrm{R} 1} \text { stretching }+(\mathrm{C} 5 \mathrm{H} 6)_{\mathrm{R} 1} \text { bending }+(\mathrm{C} 24 \mathrm{H} 29)_{\mathrm{R} 4} \\ & \text { bending } \end{aligned}$
987	979	982	984	$\begin{aligned} & \left(\mathrm{C} 24 \mathrm{H}_{2}\right)_{\mathrm{R} 4} \text { rocking }+(\mathrm{C} 22 \mathrm{C} 23)_{\mathrm{R} 4} \text { stretching }+(\mathrm{N} 13 \mathrm{C} 22)_{\mathrm{R} 4} \text { stretching }+(\mathrm{N} 17 \mathrm{C} 16)_{\mathrm{R} 1} \text { bending }+ \\ & (\mathrm{N} 15 \mathrm{C} 16)_{\mathrm{R} 1} \text { bending }+\left(\mathrm{C} 33 \mathrm{H}_{2}\right)_{\mathrm{R} 1} \text { rocking }+(\mathrm{C} 11 \mathrm{~N} 10)_{\mathrm{R} 2} \text { bending }+(\mathrm{C} 8 \mathrm{H} 9)_{\mathrm{R} 2} \text { bending }+(\mathrm{C}-\mathrm{C})_{\mathrm{R} 1} \\ & \text { stretching }+ \text { all } \mathrm{CH} \text { bending } \end{aligned}$
968	961	-	978	$\left(\mathrm{C} 23 \mathrm{H}_{2}\right)_{\mathrm{R} 4}$ twisting $+\left(\mathrm{C} 24 \mathrm{H}_{2}\right)_{\mathrm{R} 4}$ twisting $+(\mathrm{N} 13 \mathrm{H} 14)_{\mathrm{R} 4}$ bending + (N13C12$)_{\mathrm{R} 4}$ stretching
965	958	970	967	$(\mathrm{C}-\mathrm{C})_{\mathrm{R} 1}$ stretching $+(\mathrm{CH})_{\mathrm{R} 1}$ bending $+\left(\mathrm{C} 23 \mathrm{H}_{2}\right)_{\mathrm{R} 4}$ twisting $+(\mathrm{C} 1 \mathrm{H} 2)_{\mathrm{R} 1}$ rocking
918	912	-	-	$(\mathrm{N} 7 \mathrm{C} 5)_{\mathrm{R} 2}$ stretching $+(\mathrm{CH})_{\mathrm{R} 1}$ bending $+(\mathrm{C} 33 \mathrm{C} 5)_{\mathrm{R} 1}$ stretching $+\left(\mathrm{C} 23 \mathrm{H}_{2}\right)_{\mathrm{R} 4}$ rocking $+(\mathrm{CN})_{\mathrm{R} 2}$ bending
860	855	855	858	$(\mathrm{C}-\mathrm{C})_{\mathrm{R} 1}$ stretching $+(\mathrm{C} 1 \mathrm{H} 2)_{\mathrm{R} 1}$ rocking + all CH bending $+\left(\mathrm{C} 23 \mathrm{H}_{2}\right)_{\mathrm{R} 4}$ twisting
856	851	-	850	$\left(\mathrm{C} 23 \mathrm{H}_{2}\right)_{\mathrm{R} 4}$ twisting + all CH bending + all C-C stretching
853	848	847	848	$\left(\mathrm{C} 24 \mathrm{H}_{2}\right)_{\mathrm{R} 4}$ rocking $+\left(\mathrm{C} 23 \mathrm{H}_{2}\right)_{\mathrm{R} 4}$ rocking + all CH bending $+\left(\mathrm{C} 22 \mathrm{H}_{2}\right)_{\mathrm{R} 4}$ stretching
842	837	839	839	$\left(\mathrm{C}_{2} 4 \mathrm{H}_{2}\right)_{\mathrm{R} 4}$ rocking $+\left(\mathrm{C}_{2} 3 \mathrm{H}_{2}\right)_{\mathrm{R} 4}$ rocking $+(\mathrm{C} 22 \mathrm{H} 25)_{\mathrm{R} 4}$ bending $+(\mathrm{C} 16 \mathrm{~N} 17 \mathrm{C} 18)_{\mathrm{R} 4}$ bending $+\left(\mathrm{N}_{3} \mathrm{HH}_{2}\right)_{\mathrm{R} 3}$ rocking $(\mathrm{CH})_{\mathrm{R} 1}$ bending $+\left(\mathrm{C} 33 \mathrm{H}_{2}\right)_{\mathrm{R} 3}$ rocking
835	830	-	835	C8H9 bending
809	805	802	805	$(\mathrm{CH})_{\mathrm{R} 1}$ bending $+(\mathrm{CH})_{\mathrm{R} 2}$ bending $+(\mathrm{C} 8 \mathrm{H} 9)_{\mathrm{R} 1}$ Bending +R 2 and R 3 CN out of plane bending $+(\mathrm{CH})_{\mathrm{R} 1}$ out of plane bending
798	794	-	-	$(\mathrm{CH})_{\mathrm{R} 1}$ out of plane bending $+(\mathrm{CH})_{\mathrm{R} 1}$ stretching $+(\mathrm{OH})_{\mathrm{R} 1}$ bending
789	785	790	789	$\left(\mathrm{C} 23 \mathrm{H}_{2}\right)_{\mathrm{R} 4}$ twisting $+\left(\mathrm{C} 24 \mathrm{H}_{2}\right)_{\mathrm{R} 4}$ twisting
756	753	-	779	R 2 and R 1 deforming $+(\mathrm{CN})_{\mathrm{R} 2}$ bending $+(\mathrm{CN})_{\mathrm{R} 3}$ bending $+\left(\mathrm{C} \mathrm{N} 3 \mathrm{H}_{2}\right)_{\mathrm{R} 1}$ rocking
748	745	770	769	
747	744	-	760	$(\mathrm{CN})_{\mathrm{R} 3}$ out of plane $+(\mathrm{CH})_{\mathrm{R} 1}$ stretching
696	694	-	-	$(\mathrm{CN})_{\mathrm{R} 3}$ out of plane $+(\mathrm{CH})_{\mathrm{R} 4}$ bending + all CH bending
669	667	666	668	$(\mathrm{CN})_{\mathrm{R} 2}$ out of plane $+(\mathrm{CH})_{\mathrm{R} 2}$ out of plane $+(\mathrm{CH})_{\mathrm{R} 1}$ bending
663	661	664	665	$(\mathrm{CH})_{\mathrm{R} 3}$ rocking $+(\mathrm{NH})_{\mathrm{R} 1}$ rocking

627	626	632	630	$(\mathrm{CN})_{\mathrm{R} 3}$ bending $+(\mathrm{CH})_{\mathrm{R} 1}$ bending
610	609	619	615	$(\mathrm{CH})_{\mathrm{R} 1}$ bending $+(\mathrm{CN})_{\mathrm{R} 3}$ bending $+\left(\mathrm{N} 30 \mathrm{H}_{2}\right)_{\mathrm{R} 3}$ rocking
570	569	569	572	(N13H14) ${ }_{\mathrm{R} 2}$ bending
536	535	540	542	(N 30 H 2$)_{\mathrm{R} 3}$ twisting
516	515	523	525	$(\mathrm{CH})_{\mathrm{R} 2}$ bending $+(\mathrm{NC})_{\mathrm{R} 2}$ stretching $+(\mathrm{C}=\mathrm{C})_{\mathrm{R} 3}$ stretching $+(\mathrm{CH})_{\mathrm{R} 4}$ Bending $+(\mathrm{NC})_{\mathrm{R} 2}$ bending
498	498	502	504	$(\mathrm{CH})_{\mathrm{R} 1}$ bending + R2 and R3 deforming
471	471	-	490	$(\mathrm{N} 30 \mathrm{H} 2)_{\mathrm{R} 3}$ wagging $+(\mathrm{C}-\mathrm{C})_{\mathrm{R} 4}$ bending $+(\mathrm{CH})_{\mathrm{R} 1}$ bending
460	460	469	472	$(\mathrm{N} 30 \mathrm{H} 2)_{\mathrm{R} 3}$ wagging $+(\mathrm{C}-\mathrm{C})_{\mathrm{R} 4}$ bending $+(\mathrm{CH})_{\mathrm{R} 1}$ bending
457	457	467	465	$(\mathrm{N} 30 \mathrm{H} 2)_{\mathrm{R} 3}$ wagging $+(\mathrm{C}-\mathrm{C})_{\mathrm{R} 4}$ bending $+(\mathrm{CH})_{\mathrm{R} 4}$ bending
410	410		416	$(\mathrm{N} 30 \mathrm{H} 2)_{\mathrm{R} 3}$ rocking $+(\mathrm{C}-\mathrm{C})_{\mathrm{R} 1}$ bending $+(\mathrm{C} 5 \mathrm{~N} 7)_{\mathrm{R} 1}$ bending $+(\mathrm{CN})_{\mathrm{R} 3}$ bending
383	383	-	-	$(\mathrm{N} 30 \mathrm{H} 2)_{\mathrm{R} 3}$ rocking + all CH bending
340	341	-	345	$(\mathrm{CH})_{\mathrm{R} 1}$ bending $+(\mathrm{CN})_{\mathrm{R} 3}$ out of plane $+(\mathrm{OH})_{\mathrm{R} 1}$ bending
318	319	-	-	$(\mathrm{C} 16=\mathrm{NH} 2)_{\mathrm{R} 3}$ rocking $+(\mathrm{CH})_{\mathrm{R} 4}$ bending
304	305	-	310	$(\mathrm{CN})_{\mathrm{R} 2}$ out of plane bending $+(\mathrm{CH})_{\mathrm{R} 1}$ bending $+(\mathrm{CH})_{\mathrm{R} 4}$ bending
276	277	-	285	$(\mathrm{OH})_{\mathrm{R} 1}$ bending
262	263	-	279	$(\mathrm{CN})_{\mathrm{R} 2}$ out of plane bending $+(\mathrm{CN})_{\mathrm{R} 3}$ out of plane bending $+(\mathrm{OH})_{\mathrm{R} 1}$ bending
238	239	-	246	$(\mathrm{CN})_{\mathrm{R} 2}$ out of plane bending $+(\mathrm{CN})_{\mathrm{R} 3}$ out of plane bending $+(\mathrm{N} 13 \mathrm{H} 14)_{\mathrm{R} 2}$ bending
220	221	-	231	$(\mathrm{CH})_{\mathrm{R} 1}$ bending $+(\mathrm{OH})_{\mathrm{R} 1}$ bending
207	208	-	220	$(\mathrm{CH})_{\mathrm{R} 1}$ bending $+(\mathrm{CN})_{\mathrm{R} 2}$ out of plane bending $+(\mathrm{CH})_{\mathrm{R} 4}$ bending
187	188	-	210	$(\mathrm{CH})_{\mathrm{R} 1}$ bending $+(\mathrm{CN})_{\mathrm{R} 2}$ out of plane bending $+(\mathrm{CH})_{\mathrm{R} 4}$ bending
147	147	-	198	$\left(\mathrm{N} 30 \mathrm{H}_{2}\right)_{\mathrm{R} 3}$ out of plane bending $+(\mathrm{CN})_{\mathrm{R} 2}$ out of plane bending
126	126	-	135	All CH and NH rocking
115	115	-	-	$(\mathrm{C} 1 \mathrm{H} 2)_{\mathrm{R} 1}$ rocking + OH bending
89	89	-	90	All CH bending + R4 rocking
78	78	-	-	R2 and R3 rocking
45	45	-	-	$(\mathrm{CH})_{\mathrm{R} 3}$ bending $+(\mathrm{CH})_{\mathrm{R} 1}$ bending
35	35	-	-	$(\mathrm{C} 22 \mathrm{C} 24)_{\mathrm{R} 4}$ bending
24	24	-	-	(C1C3) ${ }_{\mathrm{R} 1}$ Bending
18	18	-	-	R3 bending + R4 bending + R1 rocking

Comparison of frequencies calculated by DFT/B3LYP with experimental values reveal an over estimation of the values of vibrational mode due to neglect of anharmonicity in system. Since the vibrational wave number obtained from the DFT calculations are higher than the experimental frequencies, they were scaled down by wave number linear scaling procedure (WLS) $\left[\mathbf{v}_{\mathrm{obs}} / \mathbf{v}_{\mathrm{cal}}=\left(1.0087-0.0000163 \times \mathbf{v}_{\text {cal }}\right)\right.$ cm^{-1} also used as suggested by Yoshida et. Al. (26). The WLS method predicts the vibrational wave number with high accuracy and it is applicable to large number of molecule (compounds) except those where the effect of dispersion force is significant. The vibrational wave numbers calculated with approximate functions are often in good agreement with observed wave number when the calculated wave numbers are uniformly scaled with only one scaling factor. Experimental and theoretical Raman and FT-IR spectra are shown in Fig. 3 and Fig. 4. It is clear that theoretical and experimental FT-IR frequencies are in very good agreement with each other.

Fig 3. Calculated and experimental Raman spectra of Abacavir.

Fig 4. Calculated and experimental FT-IR spectra of Abacavir.

3.2.1 Ring1 (Five membered ring) Vibrations

 StretchingThe CH stretching vibrations give rise to multiple bands in the region $3000 \mathrm{~cm}^{-1}$ to $3300 \mathrm{~cm}^{-1}$. In IR spectra CH stretching is found at $3305 \mathrm{~cm}^{-1}, 3245 \mathrm{~cm}^{-1}, 3084 \mathrm{~cm}^{-1}$ and $3021 \mathrm{~cm}^{-1}$, in Raman spectra the CH stretching is found at $3240 \mathrm{~cm}^{-1}, 3142 \mathrm{~cm}^{-1}, 3095 \mathrm{~cm}^{-1}$ and $3029 \mathrm{~cm}^{-1}$ while it's theoretically observed values are $3110 \mathrm{~cm}^{-1}, 3081 \mathrm{~cm}^{-1}$, and $2997 \mathrm{~cm}^{-1}$. The CC stretching in ring-1 is found at $1130 \mathrm{~cm}^{-1}$ in Raman spectra, at $1130 \mathrm{~cm}^{-1}$ in IR spectra and its theoretically calculated values are $1154 \mathrm{~cm}^{-1}$ and $1116 \mathrm{~cm}^{-1}$. CN stretching in Raman spectra is found at $1040 \mathrm{~cm}^{-1}$, in IR it is observed at $1039 \mathrm{~cm}^{-1}$ while its calculated value is 1040 cm^{-1} which are in excellent agreement with each other. The CO stretching is observed at $990 \mathrm{~cm}^{-1}$ in Raman spectra, at $992 \mathrm{~cm}^{-1}$ in IR spectra and its calculated value is found to be $996 \mathrm{~cm}^{-1}$. The OH stretching is observed at $3640 \mathrm{~cm}^{-1}$ in Raman spectra, at $3610 \mathrm{~cm}^{-1}$ in IR spectra while its calculated value is found to be $3463 \mathrm{~cm}^{-1}$.

Bending

CH bending is observed at $1692 \mathrm{~cm}^{-1}, 1540 \mathrm{~cm}^{-1}, 1485$ $\mathrm{cm}^{-1}, 1422 \mathrm{~cm}^{-1}, 1395 \mathrm{~cm}^{-1}, 1360 \mathrm{~cm}^{-1}$ and $1320 \mathrm{~cm}^{-1}$ in Raman spectra, it is obtained at $1675 \mathrm{~cm}^{-1}, 1538 \mathrm{~cm}^{-1}, 1476$ $\mathrm{cm}^{-1}, 1390 \mathrm{~cm}^{-1}, 1376 \mathrm{~cm}^{-1}, 1338 \mathrm{~cm}^{-1}$ in IR spectra and its theoretically calculated values are $1661 \mathrm{~cm}^{-1}, 1531 \mathrm{~cm}^{-1}$, $1487 \mathrm{~cm}^{-1}, 1417 \mathrm{~cm}^{-1}, 1386 \mathrm{~cm}^{-1}, 1354 \mathrm{~cm}^{-1}$ and $1319 \mathrm{~cm}^{-1}$. The OH bending vibrations in ring- 1 are obtained in IR spectrum at $1429 \mathrm{~cm}^{-1}, 1290 \mathrm{~cm}^{-1}, 1257 \mathrm{~cm}^{-1}$, and $1119 \mathrm{~cm}^{-1}$ while they are observed at $1437 \mathrm{~cm}^{-1}, 1292 \mathrm{~cm}^{-1}, 1255 \mathrm{~cm}^{-1}$ and $1121 \mathrm{~cm}^{-1}$ and theoretical calculated values of the same are $1434 \mathrm{~cm}^{-1}, 1277 \mathrm{~cm}^{-1}, 1246 \mathrm{~cm}^{-1}$ and $1145 \mathrm{~cm}^{-1}$.

Scissoring

CH_{2} scissoring is obtained at the frequency $1527 \mathrm{~cm}^{-1}$ and $1538 \mathrm{~cm}^{-1}$ in IR spectra where as its theoretically calculated value is $1531 \mathrm{~cm}^{-1}$ and $1533 \mathrm{~cm}^{-1}$.

Rocking

CH rocking is observed at $1130 \mathrm{~cm}^{-1}, 1119 \mathrm{~cm}^{-1}, 1099$ $\mathrm{cm}^{-1}, 1056 \mathrm{~cm}^{-1}, 1039 \mathrm{~cm}^{-1}$ in IR spectra the value for the same in Raman spectrum is found at $1121 \mathrm{~cm}^{-1}, 1088 \mathrm{~cm}^{-1}$, $1057 \mathrm{~cm}^{-1}, 1040 \mathrm{~cm}^{-1}$ while theoretically calculated value for the same is $1116 \mathrm{~cm}^{-1}, 1108 \mathrm{~cm}^{-1}, 1105 \mathrm{~cm}^{-1}, 1053 \mathrm{~cm}^{-1}, 1040$ cm^{-1}.

Twisting

Calculated value for CH_{2} twisting is $1356 \mathrm{~cm}^{-1}$ and 1175 cm^{-1}, and the value of the same in Raman spectrum is observed are $1375 \mathrm{~cm}^{-1}$ and $1356 \mathrm{~cm}^{-1}$ while observed value in IR spectrum for CH_{2} twisting is $1376 \mathrm{~cm}^{-1}$ and $1185 \mathrm{~cm}^{-1}$.

Wagging

CH_{2} wagging in IR spectrum is found at the frequency $1338 \mathrm{~cm}^{-1}, 1309 \mathrm{~cm}^{-1}, 1290 \mathrm{~cm}^{-1}$ which leads to multiple bands in this region and the value of CH_{2} wagging frequency in Raman spectra is observed at $1340 \mathrm{~cm}^{-1}, 1305 \mathrm{~cm}^{-1}$ and $1292 \mathrm{~cm}^{-1}$ while their theoretically calculated values are 1321 $\mathrm{cm}^{-1}, 1311 \mathrm{~cm}^{-1}, 1307 \mathrm{~cm}^{-1}, 1277 \mathrm{~cm}^{-1}$.
3.2.2 Ring2 (five membered ring with nitrogen) Vibrations

Stretching

The wave number of the stretching mode is calculated to be $3160 \mathrm{~cm}^{-1} 1311 \mathrm{~cm}^{-1}$ and $1307 \mathrm{~cm}^{-1}$ and assigned at 1338 $\mathrm{cm}^{-1}, 1309 \mathrm{~cm}^{-1}$ in IR and at $1340 \mathrm{~cm}^{-1}$ and $1305 \mathrm{~cm}^{-1}$ in the Raman spectrum.

Bending

CH bending in the ring is calculated to be $1459 \mathrm{~cm}^{-1}$, $1356 \mathrm{~cm}^{-1}$ and $979 \mathrm{~cm}^{-1}$ and corresponds to the observed peak at in $1454 \mathrm{~cm}^{-1}, 1375 \mathrm{~cm}^{-1}$ and $984 \mathrm{~cm}^{-1}$ in the Raman spectrum and at $1450 \mathrm{~cm}^{-1}, 1370 \mathrm{~cm}^{-1}$ and $982 \mathrm{~cm}^{-1}$ in IR spectrum. Out of plane bending is calculated at $667 \mathrm{~cm}^{-1}$ corresponding peaks are obtained at $666 / 668 \mathrm{~cm}^{-1}$ in IR and the Raman spectrum respectively.

3.2.3 Ring3 (six membered ring) Vibrations

Stretching

CN stretching in the ring is calculated to be $1531 \mathrm{~cm}^{-1}$, $1500 \mathrm{~cm}^{-1}, 1356 \mathrm{~cm}^{-1}$ and corresponding peaks are observed at $1538 \mathrm{~cm}^{-1}, 1370 \mathrm{~cm}^{-1}$ in IR spectrum and at $1540 \mathrm{~cm}^{-1}$, $1496 \mathrm{~cm}^{-1}$ and $1356 \mathrm{~cm}^{-1}$ in the Raman Spectrum.

Bending

The NH bending in the ring is calculated to be at 1533 $\mathrm{cm}^{-1}, 1500 \mathrm{~cm}^{-1}$ and $1487 \mathrm{~cm}^{-1}$ which corresponding to the peaks at $1527 \mathrm{~cm}^{-1}$ and $1476 \mathrm{~cm}^{-1}$ in IR spectrum and at 1540 cm^{-1} and $1485 \mathrm{~cm}^{-1}$ in the Raman spectrum.

Scissoring

In the Ring NH_{2} Scissoring is calculated to be $1533 \mathrm{~cm}^{-1}$ and $1500 \mathrm{~cm}^{-1}$ and the corresponding vibrations are observed
at $1527 \mathrm{~cm}^{-1}$ and $1538 \mathrm{~cm}^{-1}$ in IR spectrum and at $1540 \mathrm{~cm}^{-1}$ and $1496 \mathrm{~cm}^{-1}$ in the Raman spectrum.

Rocking

The wave number for NH_{2} rocking is calculated to be $1487 \mathrm{~cm}^{-1}, 1356 \mathrm{~cm}^{-1}$ and $1246 \mathrm{~cm}^{-1}$ which corresponds to the peaks at $1476 \mathrm{~cm}^{-1}, 1375 \mathrm{~cm}^{-1}$ and $1257 \mathrm{~cm}^{-1}$ in IR spectrum and at $1485 \mathrm{~cm}^{-1}, 1375 \mathrm{~cm}^{-1}$ and $1255 \mathrm{~cm}^{-1}$ in the Raman spectrum.

3.2.4 Ring4 (three membered ring) Vibrations Stretching

CH stretching in the ring is calculated to be $3179 \mathrm{~cm}^{-1}$, $3142 \mathrm{~cm}^{-1}$ and $1395 \mathrm{~cm}^{-1}$ and corresponding peaks are observed at $3176 \mathrm{~cm}^{-1}, 3150 \mathrm{~cm}^{-1}$ and $1390 \mathrm{~cm}^{-1}$ in IR spectrum and at $3034 \mathrm{~cm}^{-1}$ and $1402 \mathrm{~cm}^{-1}$ in the Raman Spectrum.

Bending

The NH bending in the ring is calculated to be at 1277 $\mathrm{cm}^{-1}, 1246 \mathrm{~cm}^{-1}$ and $988 \mathrm{~cm}^{-1}$ which corresponding to the peaks at $1292 \mathrm{~cm}^{-1}, 1255 \mathrm{~cm}^{-1}$ and $990 \mathrm{~cm}^{-1}$ in the Raman spectrum and at $1290 \mathrm{~cm}^{-1}, 1257 \mathrm{~cm}^{-1}$ and $992 \mathrm{~cm}^{-1}$ in the Raman spectrum.

Scissoring

In the Ring CH_{2} Scissoring is calculated to be $1500 \mathrm{~cm}^{-1}$ and $1459 \mathrm{~cm}^{-1}$ and the corresponding vibrations are observed at $1509 \mathrm{~cm}^{-1}$ and $1450 \mathrm{~cm}^{-1}$ in IR spectrum and at $1500 \mathrm{~cm}^{-1}$ and $1459 \mathrm{~cm}^{-1}$ in the Raman spectrum.

Rocking

The wave number for CH_{2} rocking is calculated to be 979 $\mathrm{cm}^{-1}, 848 \mathrm{~cm}^{-1}$ and $837 \mathrm{~cm}^{-1}$ which corresponds to the peaks at $982 \mathrm{~cm}^{-1}, 847 \mathrm{~cm}^{-1}$ and $839 \mathrm{~cm}^{-1}$ in IR spectrum and at 984 $\mathrm{cm}^{-1}, 848 \mathrm{~cm}^{-1}$ and $837 \mathrm{~cm}^{-1}$ in the Raman spectrum.

Twisting

Theoretically calculated value for CH_{2} twisting is 1179 cm^{-1} and $1040 \mathrm{~cm}^{-1}$, and the corresponding peaks in the Raman spectrum is observed at $1179 \mathrm{~cm}^{-1}$ and $1040 \mathrm{~cm}^{-1}$ and in IR it is observed at $1185 \mathrm{~cm}^{-1}$ and $1039 \mathrm{~cm}^{-1}$.

Wagging

CH_{2} wagging in IR spectrum is found at $1390 \mathrm{~cm}^{-1}$ and $1099 \mathrm{~cm}^{-1}$ and at $1395 \mathrm{~cm}^{-1}$ and $1088 \mathrm{~cm}^{-1}$ in Raman spectrum where as the theoretically calculated values for CH_{2} wagging is $1402 \mathrm{~cm}^{-1}$ and $1105 \mathrm{~cm}^{-1}$.

4. Summary

Vibrational spectroscopy measurement and density functional theory calculation have been applied to investigate Abacavir (27-28). The equilibrium geometry and vibrational wave numbers for all the mode of the molecule were determined and analyzed with DFT/B3LYP applying 6-31G basis set, giving allowance for the lone pair through the diffused functions. The comparison between theoretically and experimentally observed wave number from IR and Raman spectra reveals that the experimental and theoretical results are in excellent agreement.

A detailed normal coordinate analysis of all the normal modes clearly illustrates the composition of each normal mode in terms of internal coordinate. In the present study, the complete vibrational assignment along with all structural thermo dynamical and electronic parameters of Abacavir is presented and we believe that the results obtained herein will prove to be an excellent starting point for studying the detailed potential surface of the molecule which is needed to understand the drug receptor interactions.

References

1. E.De Clercq, AIDS Res. Hum. Retroviruses 8 (1992) 119-134.
2.J. Ren, R.M. Esnouf, A.L. Hopkins, J. Warren, J. Balzarini,
D.I. Stuart, D.K. Stammers, Biochemistry 37 (1998) 1439414403.
3.S. Mishra, P. Tandon, A.P. Ayala, spectrochimica Acta Part A 88[2012] 116-123.
4.Katlama C, ValantinMA, Matheron S, CoutellierA,Calvez V, D Descamps D, Longuet C, Bonmarchand M, Tubiana R, De Sa M, Lancar R,Agut H, Brun-Vezinet F, and Costagliola D. Efficacy and tolerability of stavudine plusAbacavir in treatment-naive and treatment experienced patients with HIV-1infection. AnnIntern Med. 1998;129:525-531.
5.Merrill DP, Moonis M, Chou TC, Hirsch MS. Abacavir or stavudine in two- and three-drug combinations against human immunodeficiency virus type 1replication in vitro. J Infect Dis. 1996; 173:355-364.
6.J.Balzarini, A.Holy, J.Jindrich etal.,"Differential antiherpes virus and antiretrovirus effects of the (S) and (R) enantiomers of acyclic nucleoside phosphonates: potent and selective in vitro and in vivo antiretrovirus activities of (R)-9-(2-phosphonomethoxypropyl)-2,6-diaminopurine,"Antimicrobi al Agents and Chemotherapy, vol. 37, no. 2, pp. 332-338, 1993.
6.B.L. Robbins, R.V. Srinivas, C.Kim, N.Bischoffberger, and A.Fridland, "Anti-human immunodeficiency virus activity and cellular metabolism of a potential prodrug of the acyclic nucleosidephosphonate9-R-(2-phosphonomethoxypropyl) adenine(PMPA), bis(isopropyloxymethylcarbonyl)PMPA," Antimicrobial Agents and Chemotherapy, vol. 42, no. 3, pp. 612-617, 1998.
7.V. Miller and B. A. Larder, "Mutational patterns in the HIV genome and cross-resistance following nucleoside and nucleotide analogue drug exposure," Antiviral therapy, vol. 6, supplement 3, pp. 25-44, 2001.
8.P.Kohenberg, W.Kohn, Phys. Review. B 864 [1964] 136.
9.M.J.Frisch, et al., Computer Program Gaussian 03W, Gaussian Inc., Pittsburgh, PA, USA, 2003.
10.A.D.Becke,"Density-functionalexchange-energy approxi mation with correct asymptotic behavior," Physical Review A, vol.38, no. 6, pp. 3098-3100, 1988
11.C.Lee, W.Yang, and R.G.Parr, "Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density," Physical Review B, vol. 37, no. 2, pp. 785-789,1988.
12.M.J.Frisch, etal., Computer Program Gaussian 03W, Gaussian Inc., Pittsburgh, PA, USA, 2003.
13.K.Burke, J.P.Perdew, and Y.Wang, "Derivation of a generalized gradient approximation: the PW91 density functional," in Electronic Density Functional theory; Recent Progress and New Directions, J.F. Dobson, G.Vignale, and M.P.Das, Eds., Plenum Press, 1998.
14.J.P.Perdew, "Unified theory of exchange and correlation beyond the local density approximation," in Electronic Structure of Solids '91, P. Ziesche and H. Eschrig, Eds., pp. 11-20, Academic Verlag, Berlin, Germany, 1991.
15.J.P.Perdew, J.A.Chevary, S.H.Vosko etal., "Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation," Physical Review B, vol 46, no 11, pp. 66716687, 1992.
16.J.P.Perdew, J.A.Chevary, S.H.Vosko et al., "Erratum: atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation," Physical Review B, vol 48, no 7, p. 4978, 1993. 17.J.P.Perdew, K.Burke, and Y.Wang, "Generalized gradient approximation for the exchange-correlation hole of a manyelectron system," Physical Review B, vol.54, no 23, pp. 16533-16539, 1996.
18.J.P.Perdew and Y.Wang, "Accurate and simple analytic representation of the electron-gas correlation energy," Physical Review B, vol. 45, no. 23, pp. 13244-13249, 1992.
19.W.J.Hehre, L.Radom, P.V.R. Schleyer, and A.J.Pople, Ab Initio Molecular Orbital theory, John Wiley \& Sons, New York, NY, USA, 1989.
20.Z. Dega-Szafran, A.Katrusiak, and M.Szafran, "Molecular structure of the complex of N-ethylmorpholine betaine with 2,4-dinitrophenol," Journal of Molecular Structure, vol. 741, no. 1-3, pp. 1-9, 2005.
21.Himadrisen, Surva Kumar J, inventors. Long acting composition containing zidovudine and abacavir. US patent publication US20050175694A1. August 11, 2005.
22.C. K. Chu, J.W. Beach, L.S. Jeong, B.G. Choi, F.Comer, A.J. Alves and R. F. Schinazi, J. Org. Chem. 1991,56,6503
23.K.Ravikumar, B.Sridhar, Mol. Cryst. Liq. Cryst. 515 (2009)
24.P.L.Polavarapu, J. Phys. Chem. 94 (1990) 8106.
25.G.A.Guirgis, P.Klaboe, S.Shen, D.L. owell, A.Gruodis, V.Aleka, C.J.Nielsen, J.Tao, C.Zheng, J.R.Durig, J.Raman Spectrosc, 34 (2003) 322.
26.H.Yoshida, K.Takeda, J.Okamura, A.Ehara, H.Matsurra, J. Phys. Chem. A. 106 (2002) 3580-3586.
27.S.Mishra, D.Chaturvedi, P.Tandon, V.P.Gupta, A.P. Ayala, S.B.Honorato, H.W.Siesler, J. Phys. Chem. A 113 (2009) 273-281.
28.A.Srivastava, S.Mishra, P.Tandon, S.Patel, A.P.Ayala, A.K.Bansal, H.W.Siesler, J. Molecular structure, 964, (2010) 88-96.
2. Yugal Kishor Tiwari and R.A.Singh, Elixir Vib. Spec. 100 (2016) 43644-44648.
