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1.  Introduction 

     In statistical surveys, when subpopulations within an overall population vary, it is advantageous to sample each subpopulation 

(stratum) independently. Stratification is the process of dividing members of the population into homogeneous subgroups before 

sampling. The strata should be mutually exclusive: every element in the population must be assigned to only one stratum. The 

strata should also be collectively exhaustive: no population element can be excluded. Then simple random sampling or systematic 

sampling is applied within each stratum. This often improves the representativeness of the sample by reducing sampling error.  

The method of systematic sampling was first studied by Madow and Madow [1] and is widely used in survey of finite 

populations. Systematic sampling is a method of selecting sample members from a larger population according to a random 

starting point and a fixed, periodic interval. Typically, every “nth” member is selected from the total population for inclusion in 

the sample population. Systematic sampling is still thought of as being random, as long as the periodic interval is determined 

beforehand and the starting point is random. 

Systematic sampling has got the nice feature of selecting the whole sample with just one random start. Apart from its 

simplicity, which is of considerable importance, this procedure in many situations provides estimators more efficient than simple 

random sampling and/or stratified random sampling for certain types of population [Cochran [2]; Gautschi [3]; Hajeck [4]]. 

The most challenging limitation of the ratio and product estimators is that of having efficiency not exceeding that of the 

regression estimator. Consequently, most authors have carried out researches towards the modification of the existing ratio and 

product estimators to provide better alternative estimators. Among these authors include; Singh and Vishwakarma [5, 6], Singh et 

al.[7], Sharma and Tailor [8], Onyeka [9], Tailor [10], Choudhury and Singh [11], Khare and Sinha [12] and Singh and Audu [13].  

Clement and Enang [14] observed that most of these alternative estimators depend on some optimality conditions that are 

hardly satisfy in practice and suggested the use of calibration estimation to address these problems. Deville and Sarndal [15] first 

presented calibration estimators in survey sampling and calibration estimation has been studied by many survey statisticians. A 

few key references include [Arnab and Singh [16], Estavao and Sarndal [17], Kott [18], Singh [19, 20], Sarndal [21], Kim and 

Park [22], Clement et al. [23], Clement and Enang [24, 25] and Clement [26]].  

In stratified random sampling, calibration approach is used to obtain optimum strata weights for improving the precision of 

survey estimates of population parameters. Kim, Sungur and Heo [27] , Koyuncu and Kadilar [28] defined some calibration 

estimators in stratified random sampling for population characteristics and Clement et al [29] defined calibration estimators for 

domain totals in stratified random sampling.  

This paper introduces the theory of calibration estimator to ratio estimation in stratified systematic sampling scheme and 

proposes calibration ratio-type estimator for estimating population mean  ̅ of the study variable   using auxiliary variable  . 

 

2. Calibration Estimation in Stratified Systematic Sampling 

    Consider a finite population   of   elements 
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   (          )                                                                                                                                                             (1) 

Suppose the finite population of equation (1) consists of   strata with    units in the  th stratum from which a simple random 

sample of size    is taken without replacement. The total population size be   ∑   
 
   

 and the sample size   ∑   
 
   

, 

respectively. Associated with the  th element of the  th stratum are      and      with       being the covariate; where      is 
the   value of the  th element in stratum  , and      is the   value of the  th element in stratum  ,           and   
          where   and   are the study variable and auxiliary variable respectively. For the  th stratum, let       ⁄  be the 

stratum weights and        ⁄  , the sample fraction. 

Let the  th stratum means of the study variable   and auxiliary variable   ( ̅  ∑          ̅  ∑      ⁄
  
   

⁄
  
   ) be the 

unbiased estimator of the population mean ( ̅  ∑          ̅  ∑      ⁄
  
   

⁄
  
   ) of   and   respectively, based on    

observations.  

Let   ̅    be the mean of a systematic sample in stratum     then the estimate of the population mean  ̅ in stratified systematic 

sampling scheme is given by (Cochran [2]) as: 

 ̅     ∑    ̅   
 
   

                                                                                                                                                               (2) 

 

2.1The proposed calibration ratio-type estimator 

      Solanki et al. [30] proposed a ratio-type estimator in simple random sampling without replacement (SRSWOR) as given by: 
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Following the Solanki et al. [30] ratio-type estimator, if  (   ) is modified such that    and 
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respectively in equation  ( )[see Etuk et al. [31]], 

then an alternative ratio estimator of mean  ̅ in stratified systematic sampling is proposed as: 
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The class of ratio estimators as proposed in equation (4) is a modification of the Solanki et al. [30] ratio-type estimator of equation  

( ) for suitably chosen scalars              such that    and     satisfies the condition                          
       Adapting the family of estimators of equation (4) to calibration estimation in stratified systematic sampling gives  
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                                                                        (5) 

with the new weights   
  called the calibration weights. The calibration weights   

  are chosen such that a chi-square-type loss 

functions of the form: 

   ∑
(  
    )

 

    

 
   

                                                                                                                                                                  (6) 

is minimized subject to a calibration constraints of the form: 

∑   
  ̅   

 
        ̅                                                                                                                                                                 (7) 

Minimizing the loss function (6) subject to the calibration constraints (7) leads to the calibration weights for stratified systematic 

sampling given by 
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Substituting (8) into (5) gives  
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Setting the tuning parameter     ̅   
   in equation (8) and substituting the results in equation (9) gives the proposed 

calibration ratio-type estimator under the stratified systematic sampling as: 
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2.2. Bias and variance estimator for the proposed estimator 

       Let   ̅     ̅  (    )                   ̅     ̅  (    )                                                                                  (11) 
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where 
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Expressing (5) in terms of the  's in (11) gives 
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Now, it is assumed that |  |    so that expanding (    )
  , 
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   as a series in power 

of   , multiplying out and retaining terms of the  's to the second degree, gives 
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Taking expectation of both sides of (14) and using the results in (12), gives the bias of  ̅      
 to the first order of approximation 

(i.e. to terms of order  (  
  ) ) as: 
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If     
 

 
  

, then the     ( ̅      
 ) is equal to zero. Therefore, the estimator   ̅      

   with     
 

 
  

 is almost unbiased. 

Squaring both sides of (14) and retaining terms to the second degree, gives 
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Taking expectation of both sides of (16) and using the results in (12), gives the variance of  ̅      
   to the first order of 

approximation as: 
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Setting the tuning parameter     ̅   
   in equation (8) and substituting for    

  in equation (17) gives 
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2.3 Optimal conditions for the proposed calibration ratio estimator 

      To investigate the optimal condition for the proposed calibration ratio-type estimator  

let,     
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Substituting the value of        in (19) for    in (5) gives the calibration asymptotically optimum estimator (    ) for 

population mean ( ̅) in stratified systematic sampling as: 
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Similarly, substituting the value of        in (19) for    in (17) gives the variance of calibration asymptotically optimum estimator 

(    )      ( ̅      
 ) (or minimum variance of  ̅      

 ) as: 
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Setting the tuning parameter     ̅   
   in equation (8) and substituting for    

  in equation (21) gives 
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Following from the above, the following theorem is established: 
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3. Adaptation of existing estimators to calibration estimation 

    This section adapts some existing estimators relevant to the study to calibration estimation under the stratified systematic 

sampling. 

 

3.1 Calibration Stratified Random Sampling Estimator    

      The classical stratified random sampling estimator is given by: 

 ̅   ∑   ̅ 

 

   

 

Adapting this estimator to Calibration estimation gives 
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where   
  are the calibration weights as earlier defined 

Expressing (23) in terms of the e’s in (11) gives 
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Squaring and taking expectation of both sides of (24) and using the results of (25) gives the variance of  ̅  
  to the first order of 

approximation as  
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Setting the tuning parameter     ̅   
   in equation (8) and substituting for    
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3.2 Calibration Stratified Systematic Sampling Estimator 

      If  ̅    is the mean of a systematic sample in stratum     then the estimate of the population mean  ̅ in stratified systematic 

sampling scheme is given by Cochran [2] as: 

 ̅     ∑    ̅   
 
   

                                                                                                                                                               (28) 

Adapting this estimator to Calibration estimation gives 
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where   
  are the calibration weights as earlier defined 

Expressing (29) in terms of the e’s in (11) gives 
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Squaring and taking expectation of both sides of (30) and using the results of (12) gives the variance of  ̅    
  to the first order of 

approximation as  
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Setting the tuning parameter     ̅   
   in equation (8) and substituting for    

  in equation (31) gives 
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3.3 Calibration Swain Ratio Estimator 

       Swain [32] introduced the classical ratio estimator in systematic sampling as given by: 
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Adapting this estimator to Calibration estimation gives 
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where   
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Expressing (35) in terms of the e’s in (11) gives 
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Squaring and taking expectation of both sides of (36) and using the results of (12) gives the variance of  ̅      
  to the first order of 

approximation as  
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Setting the tuning parameter     ̅   
   in equation (8) and substituting for    

  in equation (37) gives 
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4.  Empirical Study 

     To judge the relative performances of the proposed calibration ratio estimator over members of its class, data statistics given in 

table 1 was considered.  

 

Table 1: Data Statistics 

Parameter Stratum 1 Stratum 2 Stratum 3 Total 
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6.813 

417.33 

15.9712 

74775.467 

1007.0547 

0.9215 

0.1667 

0.0576 

0.8378 

0.7036 

8 

3 

10.12 

503.375 

132.66 

259113.70 

5709.1629 

0.9738 

0.2083 

0.1024 

0.9042 

0.7634 

11 

4 

7.967 

340.00 

38.438 

65885.60 

1404.71 

0.8827 

0.1591 

0.1936 

0.7875 

0.7875 
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Two measuring criteria; variance and percent relative efficiency (   ) were used to compare the performance of each estimator. 
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The percent relative efficiency (   ) of an estimator   with respect to the usual unbiased estimator in stratified random sampling 

( ̅  ) is defined by 

   (   ̅  )  
   ( ̅  )

   ( )
          

                                                                                                                                       (39) 

The percent relative efficiency of the usual unbiased estimator in stratified sampling ( ̅  ), Calibration stratified random sampling 

estimator ( ̅  
 ), calibration stratified systematic sampling ( ̅    

 ), calibration Swain ratio estimator ( ̅      
 ), and the proposed 

calibration ratio-type estimator in stratified systematic sampling  ( ̅      
 ) with respect to  ̅  were computed and presented in 

table 2. 

Table 2: Performance of estimators from analytical study 

Estimator Variance PRE(     ) 

 ̅   

 ̅  
  

 ̅    
  

 ̅      
  

proposed 

8274.8790 

7,889.2696 

27,266.3554 

3,768.7418 

2,675.3892 

100 

104.8878 

30.3483 

219.5661 

309.2963 

 

4.2 Discussion of Results 

      Numerical results from Table (2) show that the proposed estimator ( ̅      
 ) has 209 percent gains in efficiency while the 

Calibration stratified random sampling estimator ( ̅  
 ) has 5 percent gains in efficiency; this shows that the proposed 

estimator ( ̅      
 ) is 204 percent more efficient than the Calibration stratified random sampling estimator ( ̅  

 ). Similarly, the 

proposed estimator ( ̅      
 ) is 89 percent more efficient than the calibration Swain ratio estimator in stratified systematic 

sampling ( ̅      
 ). Again, in using the proposed estimator ( ̅      

 ), one will have 279 percent efficiency gains over the 

calibration stratified systematic sampling ( ̅    
 ). 

 

5. Conclusion 

    This paper introduces the theory of calibration estimator to ratio estimation, proposes calibration ratio-type estimator in 

stratified systematic sampling. It derives the estimator of variance for the proposed estimator and analyses its properties. Analysis 

showed that the estimator of variance of the proposed calibration ratio-type estimator in stratified systematic sampling is more 

efficient than the estimators of variance of the unbiased estimator in stratified sampling ( ̅  ), Calibration stratified random 

sampling estimator ( ̅  
 ), calibration stratified systematic sampling ( ̅    

 ), and calibration Swain ratio estimator in stratified 

systematic sampling ( ̅      
 ). It is observed that the new calibration ratio estimator is very attractive and should be preferred in 

practice as it provides consistent and more precise parameter estimates. 
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