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1.     Introduction 

Calibration estimation is a method that uses auxiliary variables to adjust the original design weights to improve the precision 

of survey estimates of population parameters. Deville and Sarndal [1] first presented calibration estimators in survey sampling and 

calibration estimation has been studied by many survey statisticians. A few key references are Wu and Sitter [2], Montanari and 

Ranalli [3], Farrel and Singh [4], Arnab and Singh [5], Estavao and Sarndal [6], Kott [7], Singh [8, 9], Sarndal [10], Kim and Park 

[11], Clement et al [12], Clement [13, 14] and Clement and Enang [15, 16]. 

In stratified random sampling, calibration approach is used to obtain optimum strata weights for improving the precision of 

survey estimates of population parameters. Kim, Sungur and Heo [17] , Koyuncu and Kadilar [18,19] defined some calibration 

estimators in stratified random sampling for population characteristics and Clement et al [20] defined calibration estimators for 

domain totals in stratified random sampling. Clement and Enang [15] combined some scalars with the mean of the auxiliary 

variable    and proposed calibration alternative ratio estimator of mean in stratified sampling. 

In this paper, based on Vishwakarma and Singh [21] separate ratio-product estimator, a new improved ratio estimator for 

population mean in stratified random sampling is introduced using the theory of calibration estimation. 

 

 2.     Notations and review of existing estimator 

Consider a finite population   of   elements   (          ) which consists of   strata with    units in the  th stratum 

from which a simple random sample of size    is taken without replacement. The total population size be   ∑   
 
   

 and the 

sample size   ∑   
 
   

, respectively. Associated with the  th element of the  th stratum are      and      with       being 

the covariate; where      is the   value of the  th element in stratum  , and      is the   value of the  th element in stratum  , 

          and             where   and   are the study variable and auxiliary variable respectively. For the  th stratum, 

let       ⁄  be the stratum weights and        ⁄  , the sample fraction. 

Let the  th stratum means of the study variable   and auxiliary variable   ( ̅  ∑          ̅  ∑      ⁄
  
   ⁄

  
   ) be the 

unbiased estimator of the population mean ( ̅  ∑          ̅  ∑      ⁄
  
   ⁄

  
   ) of   and   respectively, based on    

observations. 

Vishwakarma and Singh [21] proposed a separate ratio-product estimator for population mean in stratified random sampling 

as:   
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To obtain the first degree approximation, let consider the following definitions: 
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Substituting (2) into (3), gives 
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                                                                                                                                             (7) 

Expressing (1) in terms of the  's in (2) with respect to (7), gives 
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It is assumed that |   |    so that expanding (     )
   as a series in power of      multiplying out and retaining 

terms of the e 's to the second degree, gives 
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Squaring both sides of (9) and retaining terms to the second degree, gives 
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Taking expectation of both sides of (10) and using the results in (4), gives the MSE of  ̅  (  ) to the first order of 

approximation as: 
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The     of  ̅  (  ) in (11) is minimized when 
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Substituting (12) in (11) gives  
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Applying (5) gives 
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3.    Suggested estimator 

Let rewrite (1) as 
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where the coefficient 
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3 and   

  is the new weights called the calibration weights and are chosen such that a chi-square-type 

loss functions of the form: 
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is minimized subject to a calibration constraints of the form: 

∑   
    
  

        ( ̅  )                                                                                                                                               (16) 

Minimizing the loss function (15) subject to the calibration constraints (16) leads to the calibration weights for stratified 

sampling given by 
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Where  ( ̅  )  ∑   
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Substituting (17) into (14) gives the proposed estimator as: 
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4.    Variance estimator  

Let  

 ̅  
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Squaring both sides of (20) and taking expectation gives 
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Substituting (18) into (22) 
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Minimizing (23) with respect to   gives 
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So that 
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where        
Substituting (24) into (23) gives 
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5.     Application  

For numerical illustration, the same data set of Vishwakarma and Singh [21] is considered. The values of the parameters 

related to the study variable ( )  and the auxiliary variable ( ) are shown in table 1. 

Table 1: Data statistics 

Parameter Stratum 1 Stratum 2 Stratum 3 Total 
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74775.467 
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10.12 

503.375 

132.66 

259113.70 

5709.1629 

0.9738 

0.2083 

0.1024 

11 

4 

7.967 

340.00 

38.438 

65885.60 

1404.71 

0.8827 

0.1591 

0.1936 
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The percent relative efficiency (   ) of an estimator   with respect to the stratified random sampling estimator ( ̅  ) is 

defined by 
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Table 2.  MSE Values and PREs of Estimators 

 S/No.                                                                                                                                  Estimator MSE      PREs 

1 Stratified sampling 8274.8790 100.00 

2 Hansen-Hurwitz-Gurney 1159.0469 713.94 

3 Singh-Vishwakarma 842.2866  872.13 

4 Vishwakarma- Singh 842.2866   982.07 

5 Proposed   35.9668           23006.99 

  

In Table 2, the values of MSE and PRE are given. It is observed that the proposed estimator has the minimum MSE and 

highest gains in efficiency and therefore is the best estimator for the data. 

In the same way, when comparing the MSE of proposed estimator with MSE of existing estimators, it is observed that 

proposed estimator is more efficient than Hansen-Hurwitz-Gurney [22] combined ratio estimator, Singh-Vishwakarma [23] 

combined ratio-product estimator and Vishwakarma- Singh [21] separate ratio-product estimator respectively. 

 

6.    Conclusion 

       In this study, a new improved ratio estimator is introduced following Vishwakarma-Singh [21] estimator using calibration 

estimation theory. The relative performances of new estimator are compared with an empirical study. It is found that suggested 

estimator perform better than existing estimators. 
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