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Introduction 

Cylindrical shells have wide application as one of the 

important structural elements in many engineering fields. Such 

fields include civil, marine, mechanical, aeronautic and 

chemical engineering [1].  

Cylindrical shell structures can fail either by yielding of 

buckling. The collapse of the structures precipitated by 

buckling is often a more serious problem than fracture or 

yielding. Buckling sometime occurs suddenly without 

warning, causing a catastrophic failure. Fracture or yielding, 

on the other hand, can also produce failure, but the elasticity of 

the material permits a redistribution of the stresses often 

allowing a progressive collapse rather than a sudden complete 

collapse characteristic of buckling. Once buckling is initiated 

within the structure, there is little or no chance of recovery 

unless the load is suddenly [2], [3]. In fact, buckling 

phenomenon in cylindrical shell occurs when most of the 

strain energy which is stored as membrane energy has been 

converted to bending energy requiring large deformation 

resulting to catastrophic failure [2]. Hence, the design of thin 

cylindrical shells should be based on buckling criteria [4]. 

Buckling behaviour of cylindrical shells (in particular, the 

critical buckling load) is not accurately predicted by linear 

elastic equations due to initial imperfections of the shell 

structure under the action of compressive loads. [5] 

The imperfections include geometrical, structural and 

loading imperfections. These imperfections affect the load 

carrying capacity of the shell. The most dominant among these 

imperfections is geometrical imperfections [6], [7].  

The geometrical imperfection is mostly due to deviation 

in circularity of the shell during its manufacturing.  

The presence of this imperfection greatly reduces the 

buckling load predicted for a shell of perfect geometry. Thus, 

reliable prediction of buckling strength of these shell 

structures is important, because the buckling failure is 

catastrophic [8], [9], [10], [11]. 

The main objective of this research is to develop buckling 

stress of imperfect unstiffened thin cylindrical shell under 

uniform axial compression using the Ritz method. This was 

achieved by assuming the displacement function of the shell. 

Its stress function was obtained from the assumed 

displacement function from the compatibility equation which 

was carried out by nonlinear large deflection theory.  The 

expression of the stored energy in the shell as well as work 

done by the external load was obtained using both the stress 

and displacement functions. The large deflection terms, effect 

of imperfection in the strain displacement and the external 

load were considered in the formulation of total strain energy 

of the imperfect shell. The resulted total strain energy was 

minimized using the Ritz method to determine the equation for 

obtaining the buckling stress values of the shell. 

Let  x and y be the axial and circumferential axis in the 

median surface of the undeformed cylindrical shell as shown 

in Fig. 1, w is  the total radial deflection and w0 represents the 

initial radial deflection. 

From the theory of elasticity, the strain – displacement 

relations of the cylindrical shell is as expressed in Eqns. (1a), 

(1b) and (1c) respectively 
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ABSTRACT 

This research focused on determination of buckling stress values of internally pressurized 

unstiffened imperfect thin cylindrical shell under axial compression. The method of 

solution was carried out by the use of nonlinear large deflection theory and the effect of 

initial imperfections in the strain-displacement equations was considered. The Ritz 

method was used to determine the buckling stress parameter of the shell.  Numerical 

examples were carried out; it was found that as imperfect ratio increases, the buckling 

stress values decreases at constant wavelength ratio, deflection parameters, radius of 

curvature, internal pressure and thickness of the shell. However, with the use of varying 

values of imperfect ratio, wavelength ratio, deflection parameters, and thickness of the 

shell at constant internal pressure and radius of curvature, the buckling stress value 

progressively to a maximum point known as the critical value and then depreciate 

progressively. This nonlinear analysis in the Ritz method and the imperfect ratio is 

responsible for the behaviour of the cylindrical shell.  
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2.0 Energy expression for the cylindrical shell 

   

Fig 1. Coordinates and Displacement Components of a 

point on the Middle- surface of the shell. 
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The stresses and strains in the middle surface of the shell 

in the case of plane stress are related to each other by the 

following equations. 

   
 

    (      )      
                                           (2a) 

   
 

    (      )
                                                 (2b) 

    
 

      
   

                                                           (2c) 

Substituting Eqns. (1a), (1b) and (1c) into their related 

equations in Eqns. (2a), (2b) and (2c), the followings were 

obtained; 
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Eliminating variables u and v in Eqns. (3) and (4), the 

relation between stress function F and radial component 

displacement, w was expressed as follows: 

(
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Where 
   

  

    
  

   

  is called Laplace operator. 
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For simplicity,   was assumed to be proportional to     
. 

Thus,   
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here Л is called the imperfection ratio. It is independent of x 

and y. With the expression from Eqns (5b) and (6), the 

compatibility equation was expressed as; 
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Where ∇^4 is called Bilharmonic operator. 

Equation (7) is the compatibility equation of perfect thin 

cylindrical shell. 

The strain energy of isotropic medium referred to 

arbitrary orthogonal coordinates was expressed as: 
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Substituting Eqns. 1(a-c), 2(a-c), 3(a-c) and 4 into Eqn. 

(8a), we have expressions stated in Eqns. (8) and (9) 

respectively: 

i.The extensional strain energy in the shell was expressed as; 
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ii.The work of the external force applied at the ends of the 

shell. 
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Where σ_c = constant stress over the shell thickness. 

iiiThe potential due to the internal pressure, p 
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Where m and   n are the numbers of waves in axial and 

circumferential directions respectively. The corresponding 

stress function for cylindrical shell subjected to compressive 

force acting concentrically: 
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The coefficients a_11,a_22,a_02,a_20,a_31,a_13  in Eqn. 

(12) were determined in terms of〖 f〗_(2,) 〖 f〗_3, and 〖 f〗_4 

from the compatibility equation as expressed in Eqns. 13(a-f): 

    
   

         
 

 
          (

 ̅ 

  
  

 )
           (13a) 

    
   

           
  

 

   ̅ 

                                          (13b) 

    
   

         
  

  

    ̅   
       

  ̅ 

    ̅   
         

   

                                                                                      (13c)  

  
    

   

           
 ̅ 

    ̅   
      

                     (13d) 

    
   

           
  ̅ 

(   ̅ )
       

                       (13e) 

    
   

           
  ̅ 

(    ̅ )
       

                      (13f) 



Ezeh, J.C et al./ Elixir Civil Engg. 106 (2017) 46541-46544 46543 

Where 
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 ̅      called wavelength ratio in axial and circumferential 

direction 

 3.0 Expression of Total Potential for unstiffened 

Cylindrical Shell Subjected to Internal Pressure and Axial 

Compressive Force 

The total potential of the system, ∏ is the sum of the strain 

energies and it is expressed as follows,                        
                                                                 (14) 

The non-dimensional form of the strain energies were as 

shown in Eqns (15), (16) and (17) 

 ̅  
   

     
  ̅   ̅ 

      ̅ ̅      
 (   ̅ )

 

    

   
  (   ̅ )

 

   
 

  ( ̅
    

     
 )  

 

   [    ̅     
  

     ̅      
 ]                                                      (15) 

 ̅  
   

     
   * ̅ 

    ̅ ̅  (
 ̅ 

  
  

  
 ̅ 

 
  

 )       +  

                                                                               (16) 

 ̅  
   

     
   ̅      

 ̅ 

 
(
  

 

 
   

 )    ̅      
    (17) 

Where 
 ̅  

   

     
and    ̅  

   

  
  respectively   The 

non-dimensional form of the total potential of the system, ∏   , 

is expressed as shown in Eqn (17b) 

 ̅   ̅   ̅   ̅                                                             (17b) 

3.1 Minimization of Total                           

Internally Pressurized Unstiffened Thin Cylindrical Shell 

Subjected to Axial Compression  

The total potential energy of internally pressurized thin 

cylindrical subjected to axial compression must be minimum 

when the structure is in equilibrium.     

The variation of potential with respect to each of the arbitrary 

parameters vanished for equilibrium, this gave rise to 

Eqn.(18): 
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Evaluation of   ̅
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      yielded Eqns (19) 

– (21): 
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he notations used in Eqns. (19),(20)  and (21) were defined as 

follows;        
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Where    
  

 
             

  

  

 

Eliminating φ_2 and β from Eqns. (19), (20) and (21), the 

following equation was obtained:      
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Where  ⃗⃗ 2, and   ⃗⃗ 3    were defined as follows as derived:  
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Also,  ̅̅  and  ̅̅  were defined as follows: 
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Equation (25) is the governing equation for determining 

the critical buckling stress of an internally Pressurized 

Unstiffened Thin Cylindrical Shell Under Axial Compressive 

Force.  

4.0 Results and Discussions     

4.1 Results     

Numerical Examples For the purpose of this work, the 

following numerical examples were done: Buckling stress 

parameters of the cylindrical shells  for            were 
determined  With          ,     ,   ̅      

            ̅                    The Results were 

as shown in Table 1, while its graphical representation is as 

shown in Fig.2 
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Fig 2. Graph of buckling stress Vs Imperfect ratio with 

other parameters constant. 

 

Fig 3. Graph of Buckling stress Vs Varying Imperfect 

ratio, Wavelength ratio, and Deflection Parameters. 

Buckling stress parameter of the cylindrical shells 

with         ̅                   and varying 

thickness, h, imperfect ratio,   , wavelength ratio,  ̅ , and 

deflection parameters          . The results were as shown in 

Table 2, while its graphical representation is as shown in Fig.3 

4.2 Discussion of Results     

As shown in Fig.2, with constant values of         ,  ̅ 

   ̅     , as the imperfect ratio of the imperfect unstiffened 

cylindrical shell increases, the buckling stress of the shell 

decreases. While in Fig. 3, with increase in             ̅ at 

constant    ̅      , buckling stress increases progressively 

to a certain point called the critical buckling stress and then 

depreciate progressively.                  

 5.0 Conclusion                                                                                

The use of nonlinear large deflection theory in the Ritz 

method for determination of buckling stress of imperfect 

unstiffened thin cylindrical shell is very convenient. It made 

the derivation of buckling stress parameter equation easy. 

The buckling stress values obtained from the derived 

equation would be useful in stability design of imperfect 

unstiffened thin cylindrical shell. 
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Table 1. Buckling Stress Vs Imperfect ratio with other parameters constant of Imperfect unstiffened cylindrical shell. 

Imperfect ratio, Л 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Buckling Stress Parameter 3.0330 2.8148 2.5499 2.2660 1.9783 1.6951 1.4213 1.1590 0.9097 

Table 2. Buckling Stress of Imperfect unstiffened cylindrical shell from varying properties of the 

Thickness, h 

(metre) 

Imperfect ratio, 

Л 

Wavelength Ratio, 

𝝁̅ 

Deflection 

Parameter, 𝝀 

Deflection Parameter 1, 

 𝝀𝟏 

Buckling 

Stress 

0.05 0.1 1.0 1.0 0.5 0.2599 

0.10 0.2 1.2 2.0 1.0 2.1697 

0.15 0.3 1.4 3.0 1.5 0.4098 

0.15 0.4 1.6 4.0 2.0 0.08383 

 


