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I. Introduction 

A. Background  

Cognitive radio systems typically involve primary users 

of the spectrum, who are incumbent licensees and secondary 

users who seek to use the spectrum opportunistically when 

the primary users are idle. The introduction of cognitive 

radios inevitably creates increased interference and thus can 

degrade the quality-of-service of the primary system. The 

impact on the primary system, for example in terms of 

increased interference, must be kept at a minimal level. It is 

required therefore, that cognitive radios sense and check the 

spectrum availability, and must be able to detect even very 

weak primary user signals. Thus, spectrum sensing is one of 

the most essential functionalities of cognitive radio. [1] 

Wideband Spectrum Sensing is the technique, which 

suggests the spectrum that we have to sense will have the 

frequency bandwidth more than the coherent bandwidth of 

the channel. The typical narrowband sensing techniques are 

limited in the way that they make use of single binary 

decision and cannot detect individual spectrum opportunity 

available in the wideband spectrum. [2] 

 

Recently, compressed sensing/compressive sampling 

(CS) has been considered as a promising technique to 

improve and implement cognitive radio (CR) systems. In the 

area of signal processing, compressed sensing is one of the 

significant technique for extracting and reconstructing a 

signal by exploring the solution to underdetermine significant 

linear systems.  

The central problem of compressed sensing (CS) is to 

estimate an unknown signal x ∈ R
N
 from m linear 

measurements y = (y1,…, ym) given by y = Φx + w, where, x 

∈ R
N
 is a sparse vector, meaning its number of nonzero 

components K is smaller than N. The support of x is the 

locations of the nonzero entries and is sometimes called its 

sparsity pattern. And Φ ∈ R
MxN

 is a known measurement 

matrix, y ∈ R
M

 represents a vector of measurements and w ∈ 

R
M

 is a vector of measurements errors (noise). 

Over the years, the OMP (Orthogonal Matching Pursuit) 

algorithm has long been considered as a heuristic algorithm 

hard to be analyzed. Recently, however, many efforts have 

been made to discover the condition of OMP ensuring the 

exact recovery of sparse signals.  
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 ABSTRACT 

This paper presents a Compressive Sensing (CS) greedy iterative algorithm, based on 

OMP: Sparsity-Independent-OMP (SI-OMP), for varying sparsity spectral conditions. As 

CS is one of the most essential techniques used by a Cognitive Radio (CR) for efficient 

usage of spectrum, it is required to be optimally simple, and, still, swift in working. The 

complexity here refers to the Number of computations a CR is required to make while 

using such algorithms and, this also, will in turn affect the effective requirement of 

hardware and power consumption. The proposed algorithm introduces negligible 

additional complexity, but enables a significant performance improvement in the 

reconstruction accuracy for arbitrarily varying spectral conditions. The spectrum here is a 

function of time and frequency both, exhibiting varying sparsity in both the domains. 
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In one direction, studies to identify the recovery condition 

using probabilistic analyses have been proposed. Tropp and 

Gilbert showed that when the measurement matrix Φ is 

generated at random and the measurement size is about K log 

N, OMP ensures the accurate recovery of every fixed K-sparse 

signal with overwhelming probability. [3] 

Research Gap 

It can be seen that existing studies towards implementing 

compressive sensing on signal processing do subsist with 

advantages as well as limitations too. However, a closer look 

into the studies taking place until date was found with a 

noticeable research gap: [4] 

 Less Effective Survey 

 Less focus on Reconstruction 

 Ambiguity in implementing Sparsity matrix 

B. Motivation for this work 

Considering the research gap mentioned above, 

reconstruction ability of the technique is one aspect we can 

enhance further in CS using the OMP based scheme.  

Besides, there exists a broad spectrum of applications that 

involve non-Gaussian, heavy-tailed processes, which seems to 

expand very rapidly. Examples of such applications are: 

wireless communications, tele-traffic, hydrology, geology, 

atmospheric noise, economics and image and video 

processing, etc. This, simply, will lead to a spectrum condition 

where over-crowding will take place. That means very 

frequent use and non-use of the spectrum! And this means the 

sparsity of the spectrum, both in frequency domain and time 

domain!   

In addition, sparsity is a simple but effective model for 

many real-life signals. For instance, a signal, or, an image may 

be larger, but when viewed in the right basis (e.g. a wavelet 

basis), many of the coefficients may be negligible, and so the 

signal, or, image may be compressible into a file of much 

smaller size without seriously affecting the information 

contained in it.  In other words, many signals are effectively 

sparse in the wavelet basis. More complicated models than 

sparse signals can also be studied, but for simplicity, we will 

restrict attention to the sparse case here. 

Intuitively, if a signal x ∈ R 
n
 is S-sparse, then it should 

only have S degrees of freedom rather than n. In principle, one 

should now only need S measurements or so to reconstruct x, 

rather than n. This is the underlying philosophy of 

compressive sensing: one only needs a number of 

measurements proportional to the compressed size of the 

signal, rather than the uncompressed size.  

Moreover, compressed sensing is advantageous whenever 

signals are sparse in a known basis; measurements (or 

computation at the sensor end) are expensive; but 

computations at the receiver end are cheap. 

Also, we should be able to estimate the sparsity because it 

helps address a wide range of issues: 

 Modeling assumptions 

 The Number of measurements 

 The Measurement matrix 

 Recovery algorithms 

Therefore, the sparsity in frequency and time domain will 

be the main plausible concern in CS research. When we 

estimate a signal through a CS system, we assume that the 

sparsity level of a specific frequency spectrum is already 

given. This approach can fail when the sparsity assumptions 

given are invalid due to sparsity varying environment. 

With all the advancements of the secondary usage of the 

spectrum will also increase, making the spectrum denser.  

At this time, we will need the algorithm that can work 

well with varying sparsity levels. 

Moreover, we consider the sparsity in time domain as 

well as one of the important factors to deal with. We have to 

take into account both deterministic (static), and, dynamic, 

scenario for change in the sparsity of the signal as we know 

that the spectrum usage varies with time largely. 

Use of an appropriate sparsifying basis and measurement 

matrix, then, can be instrumental for improving the sensing 

performance and deal with sparsity variations.  

Therefore, the algorithm, that is sparsity-robust and 

provides a satisfactory signal reconstruction is one, much 

anticipated development we can look for. 

C. Contribution of this work 

As we have discussed above, the sparsity level variations, 

both in frequency and time domain, motivated us to work out 

an algorithm that is Sparsity-Independent.  We have used a 

random-sparse spectrum in frequency, which varies randomly 

in time over a specific period. We are using a presentation 

basis, which can work well with both the time and frequency 

domain, thus addressing the sparsity in both time and 

frequency domain. The algorithm presents an improved 

performance while not increasing the complexity largely.  

Besides, the spectral reconstruction and hence, recovery 

have also improved, giving a better detecting, or sensing, 

ability. 

 We have used the algorithm based on matching pursuit 

that decomposes any signal into a linear expansion of 

waveforms that belong to a redundant dictionary of functions.  

The functions that are well-localized in both time and 

frequency, are called time-frequency atoms. Following this 

line of thought, we are proposing the use of wavelet 

transforms that offer considerably good time-frequency 

decomposition and localization of them. 

D. Organization of the paper 

In this paper, in section II, we will discuss about the 

proposed new scheme based on OMP. In section III, we will 

be discussing the experimental set-up; in section IV we will 

encounter the performance metrics and results. The 

implications and conclusions will be discussed in section V. 

We will get to know the different parametric notations used 

throughout the paper through the table 1. 

Table 1. Notations. 

Parameters Description 

x Input signal in frequency domain 

y Output signal in frequency domain 

w Noise in measurements (Measurement Error) 

 Estimated signal in Rd 

v N x 1 dimensional Data Vector for OMP 

K Sparsity 

Φ M x N Sparse Measurement Matrix  

M Measurement Vector length 

N Signal input length 

φd Columns of the measurement matrix 

xn Rows of the measurement matrix or measurement 

vectors for OMP 

am N-dimensional approximation of v for OMP 

rm N-dimensional residual for OMP 

Λ0 index set for OMP 

λt Index for OMP 

η Error tolerance for OMP 

II. Sparsity-Independent Orthogonal Matching Pursuit 

We describe here a sparsity-independent greedy recovery 

algorithm for K-sparse signal and provide analyses for 
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parameter setting, computational complexity, and recovery 

performance.  

The proposed method contains these steps: 1) Deciding 

the sparsity threshold heuristically, 2) Applying the 

sparsifying basis to the signal, 3) Applying measurement 

matrix to the sparsified signal, 4) Applying first iteration of 

the OMP, 5) Cross Validating the output, 6) Applying further 

iterations of OMP if required, 7) Checking for the algorithm 

stoppage criteria, and, 8) Recovering the signal and locating 

and estimating the K-non-zero frequency components output.  

A. System Model  

Suppose that a total spectrum of x Hz is considered to be 

shared among a number of primary and secondary users. This 

can be either an ad-hoc network sharing a total of x Hz 

spectrum among its nodes or a secondary network of cognitive 

radios trying to use the licensed spectrum opportunistically for 

secondary communication. Assume that each node in the ad-

hoc network or each cognitive radio needs a bandwidth of B 

Hz for the communication. Define n ≜ x/B to be the number 

of available channels and denote by fi the center frequency of 

the ith channel. [5] 

Therefore, let our x be the wide band signal in frequency 

domain as, 

x = [x1, x2, … , xn]
T
                                                 (1) 

where n ≜ x/B = 30, and, {xi} are signal values in 

frequency domain uniformly sampled over B with spacing 

B/N, and indices {i} are related to frequency locations. In 

noiseless case, if |fi|
2
 ≠ 0, then the spectrum is occupied at the 

i-th frequency location. Otherwise, ‗i‘ represents the unused 

frequency location that is accessible to secondary users.  

B. Problem Formulation 

As the CS framework depends on the sparsity of a signal 

majorly in frequency domain, we present here the sparsity of 

the vector in form of mathematical model. 

Definition 

Sparsity: An N-dimensional vector, x∈ C
N
 is said to be K-

sparse if it has K or fewer non-zero coordinates, i.e., 

 ≤ K≪N, x∈ 

C
N
.                                                                           (2) 

where, ||.||0 denotes the ℓ0-norm which just counts the 

number of non-zero components in the vector and p is a 

constant that is traditionally used to parameterize the standard 

ℓp-norm. 

In practice, the signals often encountered are not exactly 

sparse, but are compressible (close to being sparse). 

Definition 

Compressibility: A vector is called compressible if its entries 

obey a power decay law  

|x|(i) ≤ Rri
-r
,                                                                  (3) 

Where, |x|(i) is the ith largest value of x, i.e., (|x|(1) ) ≥|x|(2) ≥…..) 
≥|x|(N)), r>1, and Rr is a positive constant which depends only 

on r. 

This means only a few entries of a compressible vector 

are large while most of them are small. It should be noted that 

sparse signals are compressible.  

Let us have our discrete-time signal x∈C
N
, which we can 

expand in terms of an N x 1 orthonormal basis (e.g. wavelet, 

Fourier) vectors  with i=1, .., N as  

                                                   (4) 

Where, si with i=1, …,N are the entries of coefficient 

sequence of X. Alternatively, stacking  for i=1, …, N as 

columns results in an N X N sparsifying basis  matrix ᴪx= 

[  ]. Then X can be represented in matrix-

vector form as  

X= ᴪx s.                                                                   (5) 

Sensing, i.e., of the time domain signal X is done by 

collecting measurements by correlating X with some sensing 

vectors ϕi (waveforms in case of the continuous-time domain), 

i.e., 

  i=1, 2, ……,M.                                               (6) 

The approaches including greedy algorithms such as 

Orthogonal Matching Pursuit, Stage-wise OMP, or Iterative 

re-weighted algorithms, calculate the support of the signal 

iteratively, and work for a specific number of measurements 

M = cKlog(N/K)                                                   (7) 

Where c is the over-measuring factor (c>0, varies 

between 2 and 20 depending upon the recovery algorithm). 

Theorem 

(Neyman-Pearson approach to the binary hypothesis problem). 

Max Pr (H1; H1)                                                  (8) 

s.t. Pr (H1; H0) = α.                                                 (9) 

where the notation Pr (Hi; Hj) indicates the probability of 

deciding hypothesis Hi when Hj is true. 

The classical Neyman-Pearson approach to binary 

hypothesis testing suggests maximizing Pr (H1; H1) with an 

upper-bound constraint on Pr (H1; H0). The Pr (H1; H0) can be 

constrained by choosing an appropriate threshold for the 

decision. We now define the Likelihood Ratio (LR), which is 

required to understand the hypothesis testing. 

Definition 

Likelihood Ratio: Let y∈ C
M 

be an observed vector of i.i.d. 

random variables from a certain distribution. The likelihood 

ratio is then given by 

.                                                           (10) 

The function  indicates for each value of y the likelihood 

of H1 versus the likelihood of H0. The logarithm of the 

function  is referred to as the Log-Likelihood Ratio (LLR). 

The classical approaches for detection based on CS, 

recover the signal first by solving the optimization problem 

given as,  < . For example, 

this could be a simple threshold to just detect the presence or 

the absence of a signal. We try to avoid this redundant 

approach and reconstruct the signal and do the detection of the 

signal. We formulate this problem as Sparse Signal 

Reconstruction problem. This problem becomes intriguing 

when only M observations (M < N) are available. 

Ideally, we would like to measure all the n coefficients of 

f, but we only get to observe a subset of these and collect the 

data, 

Yk=‹f, ›, k∈ M,                                              (11) 

Where, M ⊂ {1, . . . , n} is a subset of cardinality n < N. 

For sparse signal recovery, among various algorithms used, 

the greedy iterative Orthogonal Matching Pursuit (OMP) is 

one of the most widely used recovery techniques.  

C. The Classic Orthogonal Matching Pursuit (OMP) 

As our work is based on classic, greedy CS algorithm, 

OMP, we will first take a look at this basic algorithm Signal 

recovery can be considered as a problem dual to sparse 

approximation. Since x has only K nonzero components, the 

data vector v =Φx is a linear combination of m columns from 

Φ. In the language of sparse approximation, we say that v has 

an K-term representation over the dictionary Φ. Therefore, for 

recovering sparse signals, we can make use of sparse 

approximation algorithms. 
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 To identify the ideal signal s, we need to determine 

which columns of Φ participate in the data vector v. The idea 

behind the algorithm is to pick columns in a greedy fashion. 

At each iteration, we choose the column of Φ that is most 

strongly correlated with the remaining part of v. Then we 

subtract off its contribution to v and iterate on the residual. 

One hopes that, after m iterations, the algorithm will have 

identified the correct set of columns. 

 

 

The MP (Matching Pursuit) is one of the basic greedy 

algorithms that find one atom at a time. In OMP, following 

steps of the algorithm we find the one atom that best matches 

the signal given the previously found atoms. While in the next 

step, it finds the next one, to best fit the residual. [3] 

 

 

 

 

 

Algorithm 1: OMP for Compressive Sensing 

Presentation Matrix and Sensing Matrix Application 

Input: 
 x=wbs 

 RIC=δ=delta=0.36 

Output: 

 The M x N Measurement Matrix, Θ=Φ  

 The N x 1 dimensional data vector b 

Procedure: 

Initialize: 
 Wavelet Decomposition Level, K=1 

Decompose: 
 Wavelet Decomposition of x, with db1, for generating Sparse Representation Matrix, ᴪ 

Calculate: 
 Measure the sparsity level, sprlvl, of input using Gini Index method 

 If Calculate the Size of the Dictionary, N=length(C), C=final decomposed signal 

 Take tn=sprlvl  

 Calculate the Number of Measurements, M= (1 + delta)*4*tn*log (N)  

Design: 
 Design M x N Sensing Matrix Φ 

 Find N x 1 dimensional data vector b= Φ*C 

Basic OMP Algorithm 

Input:  

• The M x N measurement matrix Θ=Φ  

 The N x 1 dimensional data vector b 

 The sparsity level K of the ideal signal 

 Maximum number of iterations m 

 Error tolerance η. 

Output:  

 An estimate  in Rd for the ideal signal 

 A index set Λm containing m elements from {1,….,d} 

 An N-dimensional approximation am of the data b 

 An N-dimensional residual rm = b -am 

Procedure:  

Initialize:  
The index set I = ∅ and the residual r = b 

 The set of non-zero elements as empty,  

 The index set Λ0=Ø, and,  

 Iteration count t=1. 

Repeat:  
 The following, ‗K‘ times:  

 Identify 

 Find the index  λt that solves the easy optimization problem,  

λt = arg maxj=1,…,d |‹rt-1,φj›|. 

 If the maximum occurs for multiple indices, break the tie deterministically. 

 Update 
 Add to the index set and the matrix of chosen atoms: 

Λt← Λt-1,      λt  and Φt ← [Φt-1, φ λt].  

We here consider that Φ0 is an empty matrix. 

 A least square problem is solved to obtain a new signal estimate: 

xt ← arg maxx||b- Φt x||2 . 

 Calculate the new approximation of the data and the new residual 

• at ← Φt xt  

• rt ← b – at . 

  t ← t+1, and find the new index λt, if t < m . 

 The estimate    for the ideal signal has nonzero indices at the components listed in Λm. The value of the estimate    in component λj equals the jth 

component of xt . 

 Return if t≥m. 
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OMP, as it promises, gives us an algorithm with less 

complexity and considerably good recovery performance. With 

the technique tested for its performance through simulations, 

we found that the algorithm provides reconstruction accuracy 

between the two, up to around 0.7. Nevertheless, this is a 

remarkable performance; still it requires priory information 

regarding the sparsity level of the signal/ spectrum to be 

sensed. 

In a dynamically varying scenario of secondary spectrum 

usage, this can practically limit us to first check the sparsity 

and then get the detection, introducing redundancy in the 

process. For avoiding the redundant process of sparsity 

estimation, we present the algorithm, which is Sparsity 

Information Independent, rather, Sparsity-Independent. 

A. The Solution to Sparse-Spectrum Recovery Problem: 

The Sparsity-Independent Orthogonal Matching Pursuit 

(S-I-OMP) 

There are two significant challenges: 1) choosing an 

appropriate number of sub-Nyquist measurements, and 2) 

deciding when to terminate the greedy recovery algorithm that 

reconstructs wideband spectrum. 

The classical OMP provides us with a considerably good 

performance in signal recovery. However, it requires the prior 

knowledge of the sparsity of the spectrum, which it is supposed 

to sense. This makes the situation difficult when we have an 

environment where the sparseness of the signal keeps on 

changing. We are proposing an OMP-based greedy algorithm 

which will not require the advanced knowledge of the sparsity 

of the spectrum. 

The main difference between the classical OMP and 

SIOMP lies there in four major considerations: 

1. The application of adaptive sparsifying basis or presentation 

matrix 

2. The measurement matrix selection based on incoherence 

with the sparsifying basis 

3. The application of Residue Threshold as algorithm stopping 

criteria 

4. The Cross Validation is applied for overcoming the over-

fitting of the noise by terminating the iterations in time 

avoiding the requirement of priory knowledge of sparsity level. 

The sparsity-robust OMP algorithm here, enables a CR to 

automatically choose the number of measurements while 

guaranteeing the wideband spectrum recovery with a small 

predictable recovery error. This is realized by the proposed 

measurement infrastructure and the validation technique.  

The key difference between the classical OMP and the 

proposed SI-OMP is that the proposed algorithm can find a 

good spectral estimate by using only a small testing subse 

Furthermore, the algorithm is able to recover the wideband 

spectrum without requiring knowledge of the instantaneous 

spectral sparsity level. Such an algorithm bridges the gap 

between CS theory and practical spectrum sensing.  The 

proposed recovery algorithm can autonomously adopt a proper 

number of iterations, therefore solving the problems of under-

fitting or noise over-fitting, which commonly exist in most 

greedy recovery algorithms. The halting criterion plays a 

crucial role in determining the performance of the Adaptive 

Compressive Spectrum Sensing framework. To improve the 

energy efficiency of CRs, we hope that the compressive 

sampling can come to a halt at the earliest appropriate time 

such that the current spectral estimate is a good estimate. The 

residue threshold is also used as a stopping criterion. 

Moreover, Cross Validation technique is also proposed for 

limiting the number of iterations carried out by the algorithm, 

which specifically avoids the need for prior knowledge of 

sparsity level. Furthermore, before applying the algorithm, we 

define a specific sparsity threshold before sparsifying basis 

application and we can convert the sparse spectrum in to the 

spectrum with a specific sparsity level that our algorithm may 

handle with efficiently.  

Besides, we are using the noiselets and/ or circulant matrix 

for forming the measurement matrix for taking the advantage 

of incoherence between the presentation matrix and sensing 

matrix for better sensing performance. 

 

 
Sparsity-Robust OMP for Compressive Sensing 

Presentation Matrix and Sensing Matrix Application 

Input: 

 x=wbs 

 Sparsity Threshold, Sprth, heuristically (in terms of Gini Index (GI)) 

 RIC=δ=delta=0.36 

Output: 

 The M x N Measurement Matrix, Θ=Φ  

 The N x 1 dimensional data vector b 

Procedure: 

Initialize: 

 Wavelet Decomposition Level, K=1 

Decompose: 

 Wavelet Decomposition of x, with db1, for generating Sparse Representation Matrix, ᴪ 

Calculate: 

 Measure the sparsity level, sprlvl, of output using Gini Index method 

 If sprlvl < sprth, K←K+1, and further decomposition of x, Else, 

 Calculate the Size of the Dictionary, N=length(C), C=final decomposed signal 

 Calculate tn=final sparsity level of decomposed signal 

 Calculate the Number of Measurements, M= (1 + delta)*4*tn*log (N)  

Design: 

 Design M x N Sensing Matrix Φ using Noiselets, and/ or Circulant Matrix 

 Find N x 1 dimensional data vector b= Φ*C 

Main Sparsity-Independent OMP-based Algorithm 

Input:  
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• The M x N measurement matrix Θ=Φ  

 The N x 1 dimensional data vector b 

 Maximum number of iterations m 

 Error tolerance η 

 Cross Validation Matrix ACV 

 yCV=ACV x +nCV (where nCV is Cross Validation measurement noise) 

 Count ‘p’ and final count ‘q’ 

  

Output:  

 An estimate  in Rd for the ideal signal 

 A index set Λm containing m elements from {1,….,d} 

 An N-dimensional approximation am of the data b 

 An N-dimensional residual rm = b -am 

Procedure:  

Initialize:  

 The index set I = ∅ and the residual r = b 

 The set of non-zero elements as empty,  

 The index set Λ0=Ø, and,  

 Iteration count t=1 

 Set Cross Validation Count p=1 

 The threshold for residual, R, heuristically: R=0 for noiseless channel and R=energy of noise for AWGN channel 
  

Repeat:  

 The following, ‗K‘ times:  

 Identify 

 Find the index  λt that solves the easy optimization problem,  

λt = arg maxj=1,…,d |‹rt-1,φj›|. 

 If the maximum occurs for multiple indices, break the tie deterministically. 

 Update 
 Add to the index set and the matrix of chosen atoms: 

Λt← Λt-1,      λt  and Φt ← [Φt-1, φ λt].  

We here consider that Φ0 is an empty matrix. 

 A least square problem is solved to obtain a new signal estimate: 

xt ← arg maxx||b- Φt x||2 . 

 Calculate the new approximation of the data and the new residual 

• at ← Φt xt  

• rt ← b – at . 

 If , then, set new CV residual corresponding to   

•  

 p←p+1, until p ≥ q 

 Compute oCV =  

 Compute the difference between the recovered signal, and input signal, x, 

   corresponding to p. 

 Compute the recovery error, . 

 Return if and Output  and terminate the algorithm. Else, 

 Compare the norm of rt with R. 

 If rt > threshold R, keep on iterating 

 t ← t+1, and find the new index λt, if t < m . 

 If t ≥ m Or the energy of residual rt<threshold R, Return 

III. The Experimental Setup and Simulations 

We carried out simulations for Classical OMP  and SI-

OMP for signal recovery for spectrum sensing purpose. 

We did run the simulations for two types of environment 

for the proposed SI-OMP: Static scenario in which the 

frequency-domain sparsity level assumes a specific value and 

remains static at that level, and, Dynamic scenario in which the 

frequency-domain sparsity level keeps changing with time over 

a specific time-period of simulations. 

The simulation was carried out on Matlab 2011b, and 

later, Matlab 2014a version for both the algorithms. The 

system was running on the processor Intel Core i5, M460, with 

a 64-bit OS, and 2.53 GHz Clock Speed.  

We are constructing a wideband signal, which can be 

varied randomly in terms of frequencies. We have considered 

that if the signal changes constantly in time and assumes 

dynamic nature, then how our algorithm will react.  

Here is a signal in the transform domain, which has a fixed 

number k of non-zeros, all of equal amplitude, located in 

random positions. We are then applying the CS framework, 

and vary n, the number of samples used in the sensing scheme. 

The CS matrix Φ is constructed, which has its columns drawn 

independently at random.  

These columns come from a uniform distribution  found 

on the unit sphere S n−1 in Euclidean n-space. 

For deterministic experimentation we construct, at 

baseband, a wideband spectrum range [0 MHz – 60 MHz] 

containing 30 channels of 2 MHz each  of static nature and 

encode it as c = c1, c2, … , cn; where n = 30. Every channel 

may be possibly occupied by a Primary User (PU) using digital 

modulation scheme either 16-PSK or 16-QAM. Therefore, the 

symbol rate will be 2 MHz, number of samples per symbol will 

be 16, and number of symbols in a frame can be chosen to be 

512. Here, we shall consider the Nyquist sampling frequency, 

fs = 128 MHz and the sampling number, N = 8192. 
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While for the subjective approach, we are generating a 

spectrum with frequency domain sparsity levels that vary 

randomly with time. It is a wideband spectrum range [0 GHz – 

60 GHz] containing 30 channels of 2 GHz each and define 

them as c = c1, c2, … , cn; where n = 30. Every channel may 

be possibly occupied by a Primary User (PU) using digital 

modulation scheme either 16-PSK or 16-QAM. 

The simulation parameters are tabulated in Table 2. Let 

number of samples per symbol be M = 16 and let N= Sampling 

Number = 8192 for Gaussian random matrix for an AWGN 

channel.

Table2.Simulation Parameters for Experimental 

Setup for checking the performances of classical OMP 

and SI-OMP. 

Parameter Value 

The Wide Band Spectrum Band 

width 

60 MHz/ 60 GHz 

Number of Channels 30 

Band Width of a single channel 2 MHz/ 2 GHz 

Modulation Scheme 16-QAM 

Number of Samples per Symbol 

Symbol, M 

16 

Number of Symbols per Frame 512 

Sampling Number, N 8192 

Sampling Frequency, Fs 128 MHz/ 121.14 GHz 

SNR 5 dBm 

Sensing Parameters 

Channel Type AWGN 

Representation Matrix Daubechies Wavelets 

(1st-4th Order) 

Sensing Matrix Random Sparse Matrix  

(constructed using Noiselets  

and/ or Circulant Matrix) for 

SI-OMP) 

IV. The Performance Metrics and Results 

The results are depicted here in form of graphical plots 

for both the algorithms, for different sparsity levels in 

frequency domain with a static spectrum. These are 

expressed in terms of the Time taken for simulation (sec) and 

the reconstruction accuracy between the input and output of 

the algorithms. 

We can know the speed of algorithm with help of the 

time taken by it for the simulation. This indicates how 

quickly the algorithm succeeds in recovering the unknown 

input spectral component when implemented in a cognitive 

radio working as a secondary user and it indicates how fast 

the particular algorithm will be out of the two we have 

considered. 

The reconstruction accuracy on the other hand, is used 

here to show how much the algorithm succeeds in recovering 

the unknown input spectrum.  

The reconstruction accuracy is derived for both the 

algorithms using the xcorr and mscohere commands in 

Matlab. It is derived by taking the root, mean and square of 

the two outputs obtained by the two commands. The xcorr 

gives the correlation between the two signals (here the input 

and output spectrums) in terms of cross-correlation between 

the two random processes. On the other hand, the mscohere 

finds the magnitude squared estimate of the input signals x 

and y (here the input and output spectrums) indicating how 

well the two signals correspond to each other at each 

frequencies. 

We observed that measuring sparsity by counting 

nonzeros is inherently limited. While it is a seemingly ideal 

approach to measuring sparsity, in practice, real signals will 

not typically have exact zeros anywhere in the transform. 

Hence, results of the type just shown, while instructive, are 

of limited practical interest. 

With this regards, the sparsity level is measured by the 

Gini Index, instead of counting the non-zeros. As the Gini 

index is one of the most reliable measures for sparsity, we 

have opted to use it here. 

Gini index is used to express the percentage of sparsity 

that gives its value in true sense. It is one of the most 

dependable measures for sparsity, [6] 

GI (x) = 1                       (12) 

Here the vector f = [f(1), f(2), ……., f(N)] is given  and 

we have re-ordered and represented its elements using f[k] for 

k = 1, 2, ….., N, where |f[1]| ≤ |f[2]|, ….., ≤ |f[N]|, and ||f||1 is 

the l1 norm of the function f. 

The Gini index possesses the values between zero to 

one. Therefore, percentage representation required 

multiplication with 100. For us, Sparsity K is defined in 

terms of Gini Index in Table 3. 

Table 3.The sparsity orders considered in terms of GINI 

index and number of active spectrum components. 

Gini Index(%) Number of Active (Static) Spectrum 

Components (out of 30) 

100 1 

79.3103 7 
62.069 12 

41.3793 18 
20.6897 24 

0 30 

Performance Analysis 

To evaluate efficiency of the algorithm, it can be taken 

into account properties of the algorithm (complexity, velocity 

or speed, memory consumption), the amount of compression, 

and that how closely the reconstruction resembles the 

original signal. In this work, we will focus on the complexity 

of the algorithms, speed, and, a quantification of the 

difference/ similarity between the original signal and its 

reconstruction after compression. Moreover, the probability 

of detection PD, probability of missed detection PM, and, the 

probability of false alarm PF, or their average across 

channels, are among the prominent performance metrics used 

to characterize the wideband sensing performance of these 

algorithms. 

The parameters affecting the sensing performance 

Before we can analyze the performances of these two 

algorithms for the static scenario, and compare them, we 

must get the insight of the experimental parameter 

considerations used here for performing the sensing.  

As we have applied the algorithms to a wideband signal, 

for compressed sensing, we have represented with 

sparsifying basis and then sensed by measurement matrix. 

These two procedures affect the sensing performance of the 

two algorithms. Therefore, we will have to introduce the 

basics of the two actions we perform. Let us have a quick 

look into these two: 

The Sparsifying Basis (DWT): 

For both this algorithms, we sparsify the signal before 

application to the algorithms. This we have done to make it 

sure that the signal under consideration is sparse in actual 

sense. 
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 The Discrete Wavelet Transforms (DWTs) are used as 

sparsifying basis. It does possess its own excellent time 

frequency localization property. Usage of DWT in 1D signal 

corresponds to 1D filter in every dimension. The use of DWT 

as sparsifying basis enables us to remove the blocking 

objects. It is useful as a tool in addressing the sparse nature 

of the spectrum in both frequency and time domain.  

The computational complexity of applying DWT basis 

for sparsification one time is equivalent to O(N), where N is 

the number of time samples. 

Restricted Isometry Property and the Number of 

measurements and the Measurement matrix 

As an alternative to coherence and to probabilistic 

analysis, a large number of algorithms within the broader 

field of CS have been studied using the restricted isometry 

property (RIP) for the matrix Φ [7]. A matrix Φ satisfies the 

RIP of order K if there exists a constant δ∈(0,1) such that,  

,                 (13) 

holds for all x such that ||x||0 ≤ K [17]. In other words, Φ 

acts as an approximate isometry on the set of vectors that are 

K -sparse. Much is known about finding the matrices 

satisfying the RIP. For example, if we draw a random M x N 

matrix Φ whose entries ϕij are independent and identically 

distributed sub-Gaussian random variables, then provided 

that  

M = O(Klog(N/K)/ )                                           (14) 

with high probability, Φ will satisfy the RIP of order K 

[17]. When it is satisfied, the RIP for a matrix provides a 

sufficient condition to guarantee successful sparse recovery 

using a wide variety of algorithms [7].  

The Number of measurements is decided based on the 

criteria of noise present in the measurement matrix. If the 

noise is absent, i.e., the measurements are error-free, the 

number of measurements can be considered to be  

M≥(1+δ)4Klog(N).                                                 (15) 

While we expect the noise to be present, the Number of 

measurements can be, 

M ≥ (1 + δ)2Klog(N − K).                                 (16) 

The RIC (the Restricted Isometry Constant), δ here, was 

taken to be 0.36.  

As Tropp and Gilbert have shown that when the number 

of measurements scales as M≥(1+δ)4 Klog (N) for some δ > 

0, A has i.i.d. Gaussian entries, and the measurements are 

noise-free (w = 0), the  OMP method will recover the correct 

sparse pattern of x with a probability that approaches one as 

n and k → ∞. 

 The number of measurements is defined based on this 

relation for our proposed CS scheme. 

Incoherence between Sparsifying and Measurement 

Matrices 

One other consideration is the incoherence between the 

representation (sparsifying) matrix and sensing 

(measurement) matrix. The higher the incoherence between 

the two, the better the recovery of the signal will be! For this 

reason, we have used the Noiselets and the Circulant Matrix 

as the sensing or measurement matrix. 

The importance of Incoherence 

Fix f ∈ R
n
 and suppose that the coefficient sequence x of 

f in the basis Ψ is K-sparse. Select m measurements in the Φ 

domain uniformly at random. Then if 

M ≥ C · µ
2
(Φ, Ψ) · K · log N.                               (17) 

Here three things can be stated: (1) The role of the coherence 

is completely transparent; the smaller the coherence, the 

fewer samples are needed, hence our emphasis on low 

coherence systems in the previous section. (2) One suffers no 

information loss by measuring just about any set of m 

coefficients, which may be far less than the signal size 

apparently demands. If µ(Φ, Ψ) is equal or close to one; then 

on the order of KlogN samples suffice instead of n. (3) The 

signal x can be exactly recovered from our condensed dataset 

while we do not assume any knowledge about the number of 

nonzero coordinates of x, their locations, and their 

amplitudes which we assume are all completely unknown a 

priori. 

We propose the use of wavelets bases for Ψ, the 

presentation matrix, and noiselets for Φ, the sensing matrix. 

Here, the coherence between noiselets and Haar wavelets (or, 

say, db1) is √2, and that between noiselets and Daubechies 

D4 and D8 wavelets is respectively about 2.2 and 2.9 across 

a very wide range of sample sizes n. This extends to higher 

dimensions as well. (Noiselets are also incoherent with 

spikes to a great extent and incoherent with the Fourier 

basis.) Our interest in noiselets comes from the fact that, (1) 

they are incoherent with systems providing sparse 

representations of image data and other types of data, and (2) 

they can be associated with very fast algorithms; the run-time 

for the noiselet transform is O(n), and just like the Fourier 

transform, the noiselet matrix does not need to be stored 

when it‘s needed to be applied to a vector. This is of crucial 

importance for efficient numerical computations without 

which CS would not be very practical. [8] 

Use of Noiselets for designing the Measurement Matrix 

[9] 

To improve the incoherence between the sparsifying 

matrix and sensing (measurement matrix), we propose to use 

the noiselets as the bases for measurement matrix. 

 The incoherent condition means that the rows ϕj of the 

matrix Φ cannot sparsely represent the elements of the 

sparsity-inducing basis ψi, and vice versa. 

 Improvement in incoherence between the sparsifying 

matrix and sensing matrix will improve the compressive 

sensing performance of the algorithm. 

Noiselets  can totally spread out the signal energy in the 

measurement domain and are identified to be maximally 

incoherent with the Haar wavelet. The mutual incoherence 

parameter between the noiselet measurement matrix Φ and 

the sparsifying Haar wavelet transform matrix Ψ is shown to 

be equal to 1, which is the minimum value possible for the 

incoherence. Also for Daubechies wavelets, for db2, it is 2.2; 

and, for db4, it is 2.9. Therefore, theoretically, noiselets are 

the best suited measurement basis function for CS systems 

where the wavelet is used as sparsifying transform matrix. 

[10] 

Motivation 

 The motivations behind using noiselets as a 

measurement matrix in CS are as follows [9]: 

 • Noiselet basis function is unitary and , therefore, it does 

not amplify noise as in the case of random encoding.  

• Noiselets completely spreads out the signal energy in the 

measurement domain and are maximally incoherent with 

wavelets.  

• Contrasting the random basis, noiselet basis has conjugate 

symmetry. Thus, this property of symmetry can be exploited 

by using the partial Fourier like technique.  

• Noiselets are derived in the same way as wavelets, therefore 

it can be modeled as a multi-scale filter-bank and can be 

applied in O(N · log(N)).  
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The CS algorithms can successfully recover the sparse 

signal from smaller number of measurements if the φk are 

incoherent with respect to Ψ — in a general consideration; 

this means that the φk are global and diverse in the Ψ domain.  

Use of Circulant Matrix for designing sensing matrix 

Optimal incoherence is attained by completely random 

measurement matrices. However, such matrices are often 

complicated and costly to implement in hardware 

realizations. Random Toeplitz and circulant matrices can be 

realized with far more simplicity, (or even naturally) in 

various applications. [11] 

In CS applications, a physical implementation is 

required for the acquisition of the linear projections A . In 

most cases, the use of an i.i.d.  

Gaussian random matrix A is either unfeasible or overly 

expensive. This motivates the study of easily implementable 

CS matrices. One of such matrices is the Circulant matrix, 

which has been shown to be almost as efficient as the 

Gaussian random matrix for CS encoding/decoding. [11] 

 
Here the C has its ith row formed by i-1 times‘ circulant 

shifting its first row as shown above. 

In various physical domains, it is easy to compute TΩ , 

where T is circulant and TΩ is its submatrix that contains a 

subset of rows of T. Since the multiplication T  is equivalent 

to the discrete convolution operation h ⋆ T  for a certain 

vector h, TΩ  is the Ω-subsample of the convolution h ⋆ T . 

[11] 

Tropp et al. described a random filter for acquiring a 

signal : a random vector h, called a random-tap FIR, is 

convolved with  followed by down-sampling to yield the 

compressive measurements b. In this example, the sensing 

matrix is the circulant matrix induced by h. [12] 

The use of circulant matrix allows for faster signal 

recovery. 

However, we can see that the use of Circulant matrix for 

designing the measurement matrix does not assure the sparse 

outcome. But we can see from various examples that not 

having the sparse measurement matrix does not affect the 

basic concept of compressive sensing. [13] 

The metrics for evaluating the sensing performance of the 

algorithm: 

Here we have focused on the computational complexity 

of the algorithms, speed, and, a quantification of the 

difference/ similarity between the original signal and its 

reconstruction after the application of compressive sensing. 

In addition, the probability of detection, PD, the probability of 

missed detection, PM, and, the probability of false alarm, PF; 

or, their average across channels, are some of the prominent 

performance metrics used to characterize the wideband 

sensing performance of these algorithms. 

We will now have a brief analysis of these performance 

metrics for the algorithms under consideration. 

Computational Complexity 

Normally the computational complexity is equivalent to 

the number of steps an algorithm takes to solve the problem 

as a function of the input size. 

 

 

Classical OMP 

At each stage, OMP computes residual correlations and 

solves a least-squares problem for the new solution estimate. 

OMP builds up the active set one element at a time. Hence, 

an efficient implementation would necessarily maintain a 

Cholesky factorization of the active set matrix and update it 

at each stage, thereby reducing the cost of solving the least-

squares system. In total, k steps of OMP would take at most 

4k
3
/3+knN +O(N) flops. Without any sparsity assumptions 

on the data, OMP takes at most n steps, thus, its worst-case 

performance is bounded by 4n
3
/3+n

2
N +O(N) operations. 

[14] 

 Sparsity-Independent OMP (SIOMP):  
The main difference between the classical OMP and 

SIOMP lies there in these major considerations:the 

application of adaptive sparsifying basis or presentation 

matrix, the measurement matrix selection based on 

incoherence with the sparsifying basis, the application of 

Residue Threshold as algorithm stopping criteria, and, the 

Cross Validation is applied for overcoming the over-fitting of 

the noise by terminating the iterations in time. 

For an n-fold cross-validation, each single example 

occurs exactly n−1 times as a training example. Hence, the 

time needed to evaluate all tests is reduced by a factor n−1 

compared to running the original algorithm n times. The time 

needed to assign examples to child nodes is reduced by n−1 

if the same test is selected in all folds, otherwise a smaller 

reduction occurs. Besides this speedup there are no changes 

in the computational complexity of the algorithm (except for 

the extra computations involved in, for instance, selecting 

elements from a two-dimensional array instead of a one-

dimensional array).  As with one-dimensional array, the 

computational complexity is around O(N), while with two-

dimensional array, it will be O(N
2
). Specifically for cross-

validation, the algorithm can be further improved if the 

employed statistics S, for any data set D, can be computed 

from the corresponding statistics of its subsets in a partition. 

This holds for all statistics that are essentially sums, since in 

that case S(D) = åi S(Di). Such statistics could also be called 

additive. 

In an n-fold cross-validation, the data set D is partitioned 

into n sets Di, and the training sets Ti can be defined as 

D−Di. It is then sufficient to compute statistics just for the 

Di; those for the Ti can be easily computed from this without 

further reference to the data (first compute S(D) = åi S(Di); 

then S(Ti) = S(D)−S(Di)). Since each example occurs in 

exactly 1 of the Di‘s, updating statistics has to be done only 

N times instead of N(n−1) times (with N the number of 

examples). [15] 

Bearing in mind the above steps required for the SIOMP, 

we have counted the number of FLOPs needed for the 

execution of the algorithm. This provides us the idea about 

the complexity of the algorithm. The total number of FLOPs 

required by SIOMP are approximately: O(N
2
) + O(NM) + 

O(kMN (kNlog2N+k
3
 ) ) + O(N

2
log2N) +     O(Nlog2N) + 

O(2NMk) + O(Nlog2N). [16] 

We are taking into consideration the matrix format of the 

algorithm components, which are applied to recover the 

sparse signal back. As we already have discussed, the sparse 

representation and sensing, both take place in form of 

generation of relevant matrices. Therefore, we are taking the 

number of rows and columns of the matrices into the usage 

for finding the relationship for counting the number of 

FLOPs or the complexity of the algorithm.  
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Here, O(kMN (kNlog2N+k
3
 ) ) is the complexity of the 

classical OMP. The other terms indicate here that the 

complexity count adds up in the new proposed scheme. As 

the big-Oh notation is a function of variable ‗N‘, the number 

of measurements, the other terms might be considered as 

constants and can be ignored. As 

O(N)⊆O(NlogN)⊆O(N
2
)⊆O(N

2
log2N)⊆O(N

3
), we can omit 

some terms out of the above expression.  

As the Big-Oh notation refers to the worst case 

performance in terms of the time taken, or, space or memory 

occupied, by the algorithm, the constants are ignored and 

only the order of the variable (the ‗O‘ stands for which) is 

taken into account. Therefore, we can consider the 

complexity of the proposed algorithm can be approximately 

O(kMN (kNlog2N+k
3
 ) ) + O(N

2
log2N).  

Table 4.Various cases for simulation of SI-OMP with deterministic approach. 

Case 1: The Number of Measurements for Cross Validation Matrix = Length of Measurement Vector 

 AWGN Channel and Noiseless Measurement Matrix with noiselets and Circulant Matrix 

For Number of Measurements =M (M   = round(N/2), N = length (C)), Sparsity Threshold=0.8 

Case 2: The Number of Measurements for Cross Validation Matrix = Length of Measurement Vector 

 AWGN Channel and Noiseless Measurement Matrix with noiselets only 

For Number of Measurements =M (M   = round(N/2), N = length (C)), Sparsity Threshold=0.8 

Case 3: The Number of Measurements for Cross Validation Matrix = Length of Measurement Vector 

 AWGN Channel and Noiseless Measurement Matrix with Circulant Matrix only 

For Number of Measurements =M (M   = round(N/2), N = length (C)), Sparsity Threshold=0.8 

Case 4: The Number of Measurements for Cross Validation Matrix = 90 

 AWGN Channel and Noiseless Measurement Matrix with Noiselets and Circulant Matrix 

For Number of Measurements =M (M   = round(N/2), N = length (C)), Sparsity Threshold=0.8 

Case 5: The Number of Measurements for Cross Validation Matrix = 90 

 AWGN Channel and Noiseless Measurement Matrix with Noiselets only 

For Number of Measurements =M (M   = round(N/2), N = length (C)), Sparsity Threshold=0.8 

Case 6:  The Number of Measurements for Cross Validation Matrix = 90 

 AWGN Channel and Noiseless Measurement Matrix with Circulant Matrix only 

For Number of Measurements =M (M   = round(N/2), N = length (C)), Sparsity Threshold=0.8 

Case 7: The Number of Measurements for Cross Validation Matrix = 90 

 AWGN Channel and Noiseless Measurement Matrix with Noiselets and Circulant Matrix 

For Number of Measurements =M (M   = (1+δ)*4*K*log(N), N = length(C ),δ=RIC=0.36)), Sparsity Threshold=0.99 

 

O(N
2
) + O(NM) + O(kMN (kNlog2N+k

3
 ) ) + O(N

2
log2N) + 

O(Nlog2N) + O(2NMk) + O(Nlog2N) = O(max(N
2 

+ NM + 

kMN(klog2N+k
3
) + N

2
log2N + 2Nlog2N + 2NMk)).       (18) 

From this we can find that O(max(N
2 

+ NM + 

kMN(klog2N+k
3
) + N

2
log2N + 2Nlog2N + 2NMk)) ⊆ O 

(N
2
log2N). Therefore, we can conclude that the complexity of 

the proposed algorithm will be O (N
2
log2N). 

Here we can consider that inclusion of Cross Validating 

concept in the algorithm has not affected the overall 

complexity of OMP itself in considerable way. The 

complexity that we have come to derive is affected by entire 

algorithm including the application of presentation and 

sensing matrices as well.  

Other parameters used as performance metrics for the 

algorithm are, the Execution Time, or, Run Time; the 

Reconstruction Accuracy; and, the Reconstruction Error, for 

the algorithms.  

For evaluating the above-mentioned parameters, we have 

taken these considerations or scenarios into account for 

simulations: 

As we have considered the sparsification or presentation 

matrix adaptively, the input spectrum is sparsified adaptively 

based on the input sparsity level and predefined sparsity 

threshold that we are defining heuristically. Moreover, we are 

taking into consideration the effect of incoherence between the 

representation matrix and the sensing matrix. For this reason, 

we are applying two criteria: one, the Noiselets, and the other, 

the Circulant matrix. Both do possess a very small amount of 

coherence with wavelets, which we have used here for 

representation matrix basis.  

Furthermore, we are applying some more algorithm 

stoppage criteria for the OMP. The residue we obtain is 

compared with the specified threshold and the number of  

 

iterations is limited with the specific limit applied there. 

Besides these, we are using the cross validation (CV) 

technique for limiting the time taken by the OMP for signal 

recovery. 

Based on these considerations, we have defined different 

seven situations, tabulated in Table 4.  

The properties of the Big-Oh notation help us simplify the 

above expression. Rule for summation and Property 5 can  

Here, give us the equation in simplified form. 

In the first case, we are using both the Noiselets and the 

Circulant Matrix for generating the Measurement or Sensing 

Matrix. In the second case, we are using the Noiselets only for 

getting the Measurement Matrix. In the third case, we are 

using the Circulant Matrix only to obtain the Measurement 

Matrix. While in the fourh case, we have used both the 

Noiselets and Circulant matrix for the above purpose; but with 

the Cross Validation matrix‘s number of measurements 

limited to 90. In the previous three cases, it was kept equal to 

the length of the measurement vector generated by the main 

algorithm. In the 5th case we are keeping the number of 

measurements in CV matrix, equal to 90 but we have used 

circulant matrix only to define the measurement matrix. While 

in the 6th case we have used noiseless only with CV matrix‘s 

number of measurements equaling 90. The seventh case has 

the number of measurements kept according to the formula 

discussed above using both Noiselets and Circulant matrix for 

designing the Measurement matrix keeping the CV MM‘s 

number of measurements equal to 90 again. Here we have 

experimented with the sparsity threshold keeping it 0.99. 

We have made comparison of the results obtained for 

these different simulation scenarios with SIOMP with that of 

Classical OMP and Karhunen-Loève Transform (KLT) for 

Measurement Matrix without noise and with AWGN. 
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For the subjective approach, we have considered three 

cases with the construction of measurement matrix: 1. we have 

used only noiselet for constructing the measurement matrix, 2. 

we have used only circulant matrix for that, and, 3. we have 

used both noiselet and circulant matrix for constructing the 

measurement matrix. 

The Execution Time or the Run Time of the algorithms 

(second):  

This parameter defines the speed of the algorithm for 

solving the given problem. Here, we consider the sensing of 

the spectrum and detecting the spectral holes as the main 

objectives; as the device, using these algorithms for spectrum 

sensing will be a Cognitive Radio device and a non-licensed 

secondary user (SU).  

In the dynamically changing environment of spectrum 

usage and allotments, it will be necessary to sense the 

spectrum and detect the opportunities for spectrum reuse, and 

make decisions quickly, within the least possible time 

duration. Hence, we consider the Run Time of the algorithm 

or Execution Time is one of the most important performance 

metrics. We express this parameter in the unit of seconds. The 

graphs depicting the results in Figure 1-a here indicate that the 

proposed Sparsity-Independent OMP (with the deterministic 

approach) takes runtime more than that taken by the Classical 

OMP and KLT. 

 
Figure 1a.Execution time for the SI-OMP with 

deterministic approach and OMP and KLT for various 

experimental considerations. 
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Figure 1b. Execution time for the SI-OMP with subjective 

approach for various experimental considerations. 

The algorithm implemented with both the Noiselets and 

Circulant matrix used for Measurement Matrix (MM) design, 

takes the highest time gradually increasing with higher 

sparsity level (and lower Gini index values). When we have 

used Circulant Matrix only in Case 3, the time taken by the 

algorithm is high again but not affected by the sparsity levels. 

With Noiselets only used for design of MM (Case 2), the 

time is quite less and it only goes high when sparsity levels are 

increased high. In the Case 4, we have used both the Noiselets 

and Circulant matrix for MM, taking the number of 

measurements for Cross Validation (CV) measurement matrix 

in OMP equal to 90. This has shown a considerable effect as it 

requires quite a lesser time compared to that with Case 1. 

Consequently, we have used the same MM for CV in OMP 

and used only Circulant matrix for main MM design in Case 6. 

The time does not vary much considerably, but surely, it is 

lessened compared to the Case 3. On the other hand, with the 

same CV scenario in OMP, with only Noiselets being used as 

in Case 5, the time taken is reduced. For all these cases the 

number of measurements for the main MM, we have taken to 

be equal to N/2, where N is the length of the signal.  

In case 7, however, we have used the formula depicted 

here, using both Noiselets and Circulant matrix for MM 

design. We can see the time getting reduced with increasing 

sparsity as well as on an overall account by a considerable 

amount. 

For randomly varying sparsity levels with time, we can 

see that for all the three cases mentioned above, the execution 

time remains around 2-3 second for a specific discrete instance 

of sensing. For any sparsity input level, initially the execution 

time seems to be similar to that with deterministic approach. 

The graphs in the Figure 1-b present the resultant discrete 

simulation time durations for dynamically varying sparsity 

levels. The highest time around 2.8 to 3.0 seconds, though, 

seems to be taken by the algorithm with measurement matrix 

constructed using circulant matrix only, while using db1 as the 

sparsifying basis. While for the same algorithm with db2 as 

sparsifying basis, the time is as low as 2.22 seconds compared 

to that for the others.  

The Reconstruction Accuracy of the Algorithms 

The Reconstruction Accuracy here, is used to show how 

much the algorithm succeeds in recovering the unknown input 

spectrum. This in turn can indicate the spectrum detection 

ability of the algorithm. 

The reconstruction accuracy is derived for both the 

algorithms using the xcorr and mscohere commands in 

Matlab. It is derived by taking the root, mean and square of 

the two outputs obtained by the two commands. The xcorr 

gives the correlation between the two signals (here the input 

and output spectrums) in terms of cross-correlation between 

the two random processes. On the other hand, the mscohere 

finds the magnitude squared estimate of the input signals x 

and y (here the input and output spectrums) indicating how 

well the two signals correspond to each other at each 

frequencies. 

The reconstruction accuracy, or, the measure of similarity 

between the input and output spectrums to the algorithm, is 

obtained in a good measure. For almost all the cases for the 

proposed SI-OMP, the reconstruction accuracy has increased 

with increasing sparsity levels and it is almost the same.  

We obtain the reconstruction accuracy values, which 

range from 0.95 to 0.99 for all these seven cases.  

It shows that the algorithm performance has improved 

considerably as for Classical OMP it remained around 0.7 

(with the MM with AWGN and without any noise) and for 

KLT (with the MM with AWGN and without any noise), with 

which, reconstruction accuracy varied drastically from 0.7 to 

0.3 at different sparsity levels.  
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The reconstruction accuracy improvement as depicted in 

Figure 2-a, shows that the recovery of the spectrum can be 

done effectively with this proposed SI-OMP and this, in turn, 

helps to detect the spectral holes efficiently.  
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Figure 2a. Reconstruction Accuracy for the SI-OMP (with 

deterministic approach) and OMP and KLT for various 

experimental considerations . 
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Figure 2b. Reconstruction Accuracy for the SI-OMP with 

subjective approach for various experimental 

considerations. 

With the sparsity varying randomly with time, we can see 

the variations of reconstruction accuracy take place between 

0.99 to 0.8 approximately. Mostly the values steadying above 

and around 0.9 while seldom dropping to 0.7 for all the cases 

mentioned above. This goes the same way for the different 

input initial sparsity levels. We can see that the reconstruction 

accuracy is varying in the same fashion for all different 

considerations, and it highest with the algorithm with 

measurement matrix constructed using circulant matrix only, 

while sparsification basis being db2. Figure 2-b shows the 

resultant graphs here. 

The Reconstruction Error (%): 

Here the error represents the dissimilarities between the 

input and output spectrums of the algorithms. It shows that 

how much these algorithms fall short of giving out the 

accurate spectrum reconstruction, and, consequently, recovery 

and it is expressed in percentage. 

It will be natural to observe the variation pattern of this 

parameter be opposite to that of the Reconstruction Accuracy. 

Reconstruction error, shown in Figures 3-a-b gives us the 

measure of how much dissimilar the input and output 

spectrums to the algorithm are! The resultant plots in Figure 3-

a, indicate that it is reduced very much considerably with the 

new SI-OMP, compared with that obtained with Classical 

OMP and KLT. It also shows that with much lesser 

Probability of Missed Detection, the spectral conditions can be 

detected efficiently. 

 
Figure 3a. Reconstruction Error for the SI-OMP (with 

deterministic approach) and OMP and KLT for various 

experimental considerations. 
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Figure 3b. Reconstruction Error for the SI-OMP with 

subjective approach for various experimental 

considerations. 

As for the subjective approach, the reconstruction error, 

as shown in Figure 3-b, varies from 2.0 % to 20 % for all three 

above-mentioned cases. It normally varies around 5-10 % for 

most of the times and infrequently shoots up to the values 

beyond 25 %.  

The Probability of Missed Detection (PM) and The 

Probability of False Alarm (PF) 

The Probability of Missed Detection (PM) is actually the 

chance of missing the detection of any existing spectrum 

component actively present. While the Probability of False 

Alarm (PFA) is the chance where in the sensing process, the 

CR will get the detection of an active spectrum component 

even if the said component is not active. 

In simplest form, spectrum sensing of a single channel is a 

binary hypothesis testing problem. Specifically, 

H0: y[n] = w[n], n = 1, N                                  (19) 

H1: y[n] = x[n] + w[n], n = 1, . . . , N.                    (20) 

Where, x[n] represents a primary user‘s signal, w[n] is 

noise and n represents time. The received signal y[n] is vector, 

of length L; and n is the sample index. 

For simplicity, let 0 and 1 denote the two hypotheses, let 

the random variable H denote the state of the signal, and let 

the random variable denote the sensing decision. Thus, the 

probability of missed detection and the probability of false 

alarm are defined as, 

                                      (21) 

.                                      (22) 

Small PF is necessary in order to provide possible high 

throughput in dynamic spectrum access networks, since a false 

alarm wastes a spectrum opportunity. On the other hand, small 

PM is necessary in order to limit the interference to PUs. A 

detection algorithm can seek tradeoffs between PM and PF by 

varying the detection threshold. [44] 
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For finding out these probabilities, let us make a simple 

consideration. Suppose, we have these events being observed 

during a spectrum sensing/ detection process: 

A = {a Signal is ON}                                     (23) 

B= {a Signal is Detected}                                      (24) 

Therefore, the complementary events will be, 

A
c
 = {a Signal is OFF}                                                   (25) 

B
c
= {a Signal is NOT Detected}                                  (26) 

Therefore, we get:  

PD = P(A∩B) =P(A)P(B|A),                                    (27) 

PF  = P(A
c
∩B) = P(A

c
)P(B|A

c
),                                     (28) 

And,  PM = P(B
c
∩A) = P(A)P(B

c
|A).                                  (29) 

Based on these assumptions, the Probability of False 

alarm, PF, and Probability of Missed detection, PM, were 

calculated for both the algorithms.  

For detailed understanding, we will have a look at the 

basic detector theory. We classify the detectors as Classical 

Detector and Compressed Detector, as we have to find the 

probabilities giving the measure of performance of a 

Compressive Sensing algorithm. 

Classical Detector  

We first discuss a classical detector and then described 

how a compressed detector can be derived using the same 

approach. Let us say that there are two hypotheses concerning 

the signal; that it is present in the measurements or it is not. 

The classical Neymon-Pearson (NP) detector involves a 

likelihood ratio test where the sufficient statistics t ≡ hy, xi is 

compared against a threshold γ. Here y are the measurements, 

x is the signal of interest and γ is set to achieve certain 

probability of false alarm rate PF ≤ α for some 0 ≤ α ≤ 1. It is 

easy to show that: 

Here, 

 PD = P(B|A)=Probability of Detection = Probability of 

Signal being Detected when Signal is ON. 

 PM = P(B
c
|A) = Probability of Missed Detection = 

Probability of Signal NOT being Detected when Signal is ON. 

 PF = (P|A
c
) = Probability of False Alarm = Probability of 

Signal being Detected even when the Signal is OFF. 

 P(B
c
|A

c
) = Probability of Signal NOT being Detected when 

the Signal is OFF. 

PD(α) = Q(Q
−1

(α) −√(SNR)),                                     (34) 

where Q(·) is the flipped version of standard Gaussian 

cumulative distribution function. 

Compressed Detector This theory can easily be extended to 

the case when the measurements are made using a compressed 

sampler. Therefore, we consider the following hypothesis: 

H0 : y = Φn                                                                 (30) 

H1 : y = Φ(x + n)                                                   (31) 

where n  N(0, σ
2
) is white Gaussian noise. It is 

straightforward to show that in this case the sufficient statistics 

is . It can be seen that for some  > 0, the 

probability of false rate is approximately given by the 

following equation: 

PD(α) ≈ Q(Q
−1

(α) −√(M/N)√SNR)                                     (32) 

A false alarm occurs whenever the noise voltage exceeds a 

defined threshold voltage. It can be given as, 

 
2 2 2 22 2

2

n T

fa

T T

n
P f n dn e dn e 



 

    N

       (33) 

As T is the threshold and we have taken, 

threshold=sigma, PFA (or, PF) =e
(-1/2) 

= 0.606531, 

heuristically. 

 

 Comparing equations, PD(α) = Q(Q
−1

(α) −√(SNR)), and, 

PD(α) ≈ Q(Q
−1

(α) −√(M/N)√SNR), we can see that the 

performance of the detector will be deteriorated with M 

decreasing (as expected), and the rate of performance 

degradation depends on SNR. 

During the simulations, that we carried out for Classical 

OMP and the proposed SI-OMP, the input and output 

spectrums were matched. With help of the level of matching 

between the two, different probabilities related to the detecting 

performance of the algorithms were calculated. The more the 

matching, the better the detection we found; therefore giving a 

higher probability of detection. 

PFA, can be set to determine the required threshold of 

SNR for that specific PFA. Or else, It was calculated for 

different SNR specifications using the following commands 

from MATLAB.  

noisepow = 1.38e-23*293*db2pow(1)*33e6; 

Ntrial=1000; 

snrthreshold=5; 

noise = sqrt(noisepow/2)*(randn(1000,1)+1j*randn(1000,1));  

threshold=sqrt(noisepow*db2pow(snrthreshold)); 

We can also find the snrthreshold by setting the PF values 

heuristically and take the help from the following MATLAB 

command, 

snrthresh=npwgnthresh(pfa). 

It calculates the SNR threshold in decibels for detecting a 

deterministic signal in white Gaussian noise. The detection 

uses the Neyman-Pearson decision rule to determine the 

specified Probability of False Alarm, PFA. This function of 

Matlab uses a square-law detector.  

Based upon above concepts, we have considered various 

cases for different values of PFA for obtaining the 

corresponding Probabilities of Detection. From this it is easy 

to obtain the specific corresponding Probability of Missed 

Detection, PM. 

Here we have plotted the results for six various cases 

mentioned above for our proposed SIOMP in Figure 4. The 

curves shown here are plotted for sparsity levels versus the 

probability of detection PD. As we already know theoretically, 

that the probability of detection increases in direct proportion 

with the SNR. Therefore, we have not shown the resulting 

Probability of Detection for our algorithm in that context. 

Instead, we are showing how the parameter behaves with 

various values of sparsity levels in frequency domain. 

 
Figure 4. Probability of Detection (PD) for the SI-OMP for 

various experimental considerations 

The results above show that the algorithm performance 

deteriorates by some amount as the sparsity level increases, 

i.e., the number of active component present increases.  
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For case 6, the performance is most consistent one, and, it 

is found the same way for the case 4, too. At highest sparsity 

in Gini index with only one active spectral component present, 

 we have the probability of detection obtained with the 

proposed algorithm, at its highest value for almost for all the 

different cases under consideration. With decreasing Gini 

index levels, upto 62.069 %, it has very small changes in the 

PD performance. Then after around 41.3793 % of Gini index, 

we find the PD values vary widely and decrease below 0.9. 

Specifically this is observed for case 1 and case 2. Then again, 

it improves and when we reach the highest sparsity levels, the 

performance is quite improved.  

Other performance metrics proposed in the literature 

include, but are not limited to, the missed detection probability 

of wideband. It is defined as the probability that not all ON 

channels are correctly detected, and, the (empirical) 

probability of detecting a given number of ON channels and 

so forth. [44] 

The output SNR decreases for increasing sparsity for all 

the cases almost uniformly, except for case 3, where it rises 

high at the highest sparsity of input signal. 

This indicates that the probability of detection will be 

improved with this algorithm if we use it for Spectrum 

Sensing.  

The Implications 

The simulations took place for all the algorithms around a 

thousand times for each. 

It is observed, here, that with increasing number of 

measurements, i.e., the sparsity level, M, in OMP, the 

reconstruction accuracy, r, tends to decrease and simulation 

time seems to increase. KLT on the other hand takes not much 

simulation time, but the reconstruction accuracy with it seems 

to vary drastically. This means the OMP performs better at 

spectrum sensing and can work better at estimating the 

spectral holes. 

For the SI-OMP, however, the reconstruction accuracy, r, 

does not vary significantly and it is already well obtained in 

the ranges of 0.92 to 0.995 for the deterministic approach. 

However, with the dynamic sparsity considerations, the 

reconstruction accuracy value varies between 0.99 and 0.8. 

The normal range of variation for that remains within 0.85 to 

0.95 for most of the times. The simulation times do not vary 

significantly for both the deterministic and subjective 

approaches. This means the algorithm can handle the dynamic 

conditions as well as static conditions.  

The results above show that the performance of the OMP 

is improving with the increasing density of the spectrum, and, 

even, gives out an appreciable performance for dynamic 

conditions. It is then evident that the algorithms we discussed 

above are the enabling tools for efficient spectrum sensing for 

the CR. Improvisation of these may help development of a 

sophisticated spectrum sensing CR that will lead towards the 

better spectrum resource sharing and utilization. 

IV.Conclusion and Future Work 

The results obtained above prove that although quite 

competent, the KLT is much data dependent and the 

computational time of the algorithm is high for eigenvector 

decompositions.  

The OMP is also an efficient and impressive algorithm, 

which is a fast greedy algorithm that iteratively builds up a 

signal representation by selecting the atom that maximally 

improves the representation at each iteration. The OMP is 

easily implemented and it converges quickly. That made it an 

attractive choice to work on. As we could improvise the signal 

recovery performance of the OMP, we can be able to use it for 

varying sparsity environment. 

We found through the above results that the new scheme 

based on OMP is successfully applicable for sparsity robust 

environments for compressive spectrum sensing. As it is an 

extended version of Matching Pursuit, and with appropriate 

modifications, SI-OMP is well capable of sensing the time-

frequency atoms. We have taken a deterministic approach as 

well as subjective, we have presented the results for both, a 

static spectrum conditions in terms of time for various levels 

of sparsity in frequency domain, and frequency-domain 

sparsity varying with time; and we have found that the 

proposed Sparsity-Independent OMP has shown improvement 

in its performance very largely. 

In the algorithm, the basis for the presentation matrix also 

contributes largely in its improved performance. We also wish 

to state that the presentation matrix, which is formed using 

discrete wavelet transforms, is capable to handle the time-

frequency atom localization problem well and along with the 

basic ability of OMP itself, it is able to track the time domain 

variations in the spectrum also the way it has been doing with 

the static spectrum. 

In future, we hope that we can still improve the 

performance of the algorithm for obtaining uniform 

performance for both static and dynamic spectral sparsity 

conditions, and hence, better reconstructing and estimating the 

spectral opportunities to make the secondary usage of the 

spectrum more efficient. 
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