

D.Usha et al./ Elixir Computational Physics 107 (2017) 46933-46941 Available online at www.elixirpublishers.com (Elixir International Journal)

Computational Physics

Elixir Computational Physics 107 (2017) 46933-46941

Scaled Quantum Chemical Studies of the Structure and Vibrational Spectra of 2-Chloro-1-Fluoro-4-Nitrobenzene and 2,4-Dibromo-1-Fluorobenzene

D.Usha¹, L.F.A.Amirtharaj² and G.John James³ ¹Department of Physics, Women's Christian College, Nagercoil – 629 001, Tamil Nadu, India. ²Department of Physics, Government Arts College, Karur – 639 005, Tamilnadu, India. ³Department of Physics, Government Arts College, Tiruchirappalli – 620 022, Tamilnadu, India.

ARTICLE INFO Article history: Received: 30 April 2017;

Received in revised form: 22 May 2017; Accepted: 1 June 2017;

Keywords

FTIR, FT-Raman, 2-Chloro-1-Fluoro-4-Nitrobenzene, 2,4-Dibromo-1-Fluorobenzene, DFT.

Introduction

Benzene and its derivates have been investigated extensively using vibrational spectroscopy. Electronic spectra and vibrational spectra of some trisubstituted benzene have been studied and reported in the literature. Chloro,bromo, fluorobenzene and its derivatives are used to control carbon content in steel manufacturing [1]. It is also an intermediate for pharmaceutical pesticides and other organic compounds.

Literature survey reveals that to the best of my knowledge no DFT frequency calculations of 2-Chloro-1-fluoro-4nitrobenzene (CFNB) and 2,4-dibromo-1-fluorobenzene (DBFB) have been reported so far. Therefore, we have undertaken the detailed theoretical and experimental investigation of the vibrational spectra of the title molecules.

2. Experimental methods

The compounds CFNB and DBFB in the solid form were purchased from Lancaster chemical company, UK and used as such without any further purification. The FT-Raman spectrum of CFNB and DBFB has been recorded using 1064nm line of Nd:YAG laser as excitation wavelength in the region 100-3500cm⁻¹ on a BRUKER model IFS 66V spectrophotometer equipped with FRA 106 FT-Raman module accessory. The FTIR spectrum of CFNB and DBFB was recorded in the region 400-4000cm⁻¹ at a resolution of \pm 1 cm⁻¹ using BRUKER on IFS 66V model FTIR spectrophotometer using KBr pellet technique.

3. Computational Details

The entire calculations were performed at B3LYP levels using GAUSSIAN 03 Window [2] program package involving gradient geometry optimization [3].

ABSTRACT

The FTIR and FT-Raman spectra of 2-Chloro-1-Fluoro-4-Nitrobenzene (CFNB) and 2,4-Dibromo-1-Fluorobenzene (DBFB) have been recorded in the region 4000-400 cm⁻¹ and 3500-50 cm⁻¹, respectively. The structural and spectroscopic data of the molecule in the ground state were calculated by using density functional theory (DFT) employing B3LYP 6-311++G and 6-311++G(d,p) basis set. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibration were assigned on the basis of total energy distribution (TED) of the vibrational modes calculated with scaled quantum mechanical (SQM) method.

© 2017 Elixir All rights reserved.

Initial geometry generated from standard geometrical parameters was minimized without any constraint in the potential energy surface at B3LYP levels adopting the standard 6-311++G basis set. This geometry was then re-optimized again at B3LYP level, using basis set 6-311++G(d,p). The optimized structural parameters were used in the vibrational frequency calculations at the DFT levels to characterize all stationary points as minima. We have utilized the gradient corrected density functional theory (DFT) [4] with the three parameters hybrid functional (B3) [5] for the exchange part and Lee-Yang-Parr (LYP) correlation function [6], accepted as a cost-effective approach, for the computation of molecular structure, vibrational frequencies and energies of optimized structures. Vibrational frequencies computed at DFT level have been adjudicated to be more reliable than those obtained by the computationally demanding Moller-Plesset perturbation methods. Density functional theory offers electron correlation frequently comparable to second-order Moller-Plesset theory (MP2). Finally, the calculated normal mode vibrational frequencies provide thermodynamic properties also through the principle of statistical mechanics.

By combining the results of the GAUSSVIEW program [7] with symmetry considerations vibrational frequency assignments were made with a high degree of accuracy. There is always some ambiguity in defining internal coordination. However, the defined coordinate form complete set and matches quite well with the motions observed using the GAUSSVIEW program. Raman intensities (Ii) using the following relationship derived from the basis theory of Raman scattering [8,9].

$$I_{i} = \frac{f(v_{0} - v_{i})^{4}S_{i}}{v_{i} \left[1 - \exp\left(\frac{hcv_{i}}{kT}\right)\right]}$$
... (5.1)

Where v_o is the exciting frequency (in cm⁻¹ units), v_i is the vibrational wavenumber for the ith normal modes, h, c, k are fundamental constants and f is a suitable chosen common normalization factor for all peak intensities.

4. Results and Discussion

4.1. Molecular geometry

The optimized molecular structure of CFNB and DBFB both having C^s symmetry are shown in Fig. 1 and 2 respectively. The global minimum energy obtained by the DFT structure optimization for CFNB are calculated as -995.58645926Hartrees and -995.75777428 Hartrees, from 6-311++G and 6-311++G(d,p) basis sets , respectively. The global minimum energy obtained by the DFT structure optimization for DBFB is calculated as -5478.47944501 Hartrees and -5478.65826417 Hartrees, from 6-311++G and 6-311++G(d,p) basis sets, respectively.

Fig. 1.Molecular Structure of 2-chloro-1-fluoro-4nitrobenzene.

Fig. 2.Molecular Structure of 2,4-dibromo-1fluorobenzene.

Detailed description of vibrational modes is given by means of normal coordinate analysis (NCA). For this purpose, the full set of 48 and 42 standard internal coordinates for CFNB and DBFB are defined as given in Table 1 and 2 respectively. The local symmetry coordinates are summarized in Tables 3 and 4 for CFNB and DBFB respectively. The optimized geometrical parameters obtained by the large basis set calculations in this study for CFNB and DBFB are presented in Tables 5 and 6 respectively. The detailed vibrational band assignments of CFNB and DBFB calculated by the DFT calculations based on B3LYP level with 6-311++G and 6-311++G(d,p) basis set along with the calculated IR intensities, Raman activities, Reduced masses, force constant and normal mode descriptions (characterized by TED) are reported in Table 7 and 8.

Table.1.Definition of Internal Coordinates of 2-chloro-1-fluoro-4-nitrobenzene.

No. (i)	Symbol	Туре	Definition						
Stretching									
1	Si	C – F	C1 – F7						
2	qi	C - Cl	C2 – C18						
3	Qi	C – N	C4 – N10						
4,5	r _i	N – O	N10-O11, N10-O12						
6 – 8	R _i	C – H	C3 – H9, C5 – H13, C6 –						
			H14						
9 - 14	Ti	C – C	C1 – C2, C2 – C3, C3 – C4,						
			C4 – C5,C5 – C6, C6 – C1						
In-plane b	ending								
15 - 20	αi	ring	C1 - C2 - C3, C2 - C3 - C4,						
			C3 - C4 - C5, C4 - C5 - C6,						
			C5 - C6 - C1, C6 - C1 - C2						
21 – 26	βi	C - C - H	C2 – C3 – H9, C4 – C3 – H9,						
			C4 – C5 – H13, C6 – C5 –						
			H13,C5 – C6 – H14, C1 – C6						
			– H14						
27 - 28	γi	C – C –	C1 – C2 – C18, C3 – C2 –						
		Cl	C18						
29 - 30	θ_i	C - C - F	C6 - C1 - F7, C2 - C1 - F7						
31 - 32	π_{i}	C - C - N	C3 – C4 – N10, C5 – C4 –						
			N10						
33 - 34	σi	C - N - O	C4 – N10 – O11, C4 – N10 –						
			012						
35	фi	O - N - O	O11 – N10 – O12						
Out-of- pl	ane bending								
36 - 38	ωi	C – H	H9 – C3 – C4 – C2, H13 –						
			C5 - C6 - C4,						
			H14 - C6 - C1 - C5						
39	ψ_i	C – F	F7 - C1 - C2 - C6						
40	λi	C - Cl	C18 - C2 - C3 - C2						
41	ηί	C – N	N10-C4-C5-C3						
Torsion		•							
42 - 47	τι	ring	C1 - C2 - C3 - C4, C2 - C3						
		U	- C4 - C5, C3 - C4 - C5 -						
			C6, C4 - C5 - C6 - C1,						
			C5 - C6 - C1 - C2, C6 - C1						
			-C2-C3						
48	τι	$C - NO_2$	(C3, C5) - C4 - N10 - (O11,						
			012)						

Table 2.Definition of Internal Coordinates of 2,4dibromo-1-fluorobenzene.

	Definition							
Stretching								
1 r_i $C-F$ $C1-f7$								
$2-3$ r_i $c-br$ $c2-br8, c4-br8$	- br10							
$4-6$ q_i $C-H$ $C3-H9, C5$	– H11, C6 – H12							
$7 - 12$ Q_i $C - C$ $C1 - C2, C2$	-c3, c3-c4, c4-c5,							
c5 - c6, c6 -	c1							
In-Plane Bending								
$13 - 18$ α ring $c1 - c2 - c3$,	c2 - c3 - c4,							
c3 - c4 - c5,	c4 - c5 - c6							
$19-20$ β_i $C-c-f$ $c6-c1-f7$,	c2 - c1 - f7							
$21 - 24$ γ_i $c - c - br$ $c1 - c2 - br8$, c3 – c2, br8,							
c3 – c4 – br1	0, c5 - c4 - br10							
$25-30 \theta_i \qquad c-c-h \qquad c2-c3-h9,$	c4 - c3 - h9,							
c4 - c5 - H1	1, c6 – c5 – h11,							
c5 - c6 - h12	2, c1 - c6 - h12							
Out-of-plane bending								
31 ω_i C – F f7 – c1 – c2 –	- c6							
$32 - 33$ ψ_i C - Br Br8 - C2 - C	C3 - C1, Br10 - c4 - C1, C1, C1 - C2 -							
c5 – c3								

46934

46935

D.Usha et al./ Elixir Computational Physics 107 (2017) 46933-46941

34 - 36	μi	c - h	h9 - c3 - c4 - c2, h11 - c5 - c6 - c4, h12, c6 - C1 - C5
Torsion			
37 - 42		ring	c1 - c2 - c3 - c4, c2 - c3 - c4 - c5,
			c3 - c4 - c5 - c6, c4 - c5 - c6 - c1,
			c5 - c6 - c1 - c1, c6 - c1 - c2 - c3

Table 3.Definition of Local Symmetry Coordinates of 2chloro-1-fluoro-4-nitrobenzene.

No. (i)	Туре	Definition
1	CF	S1
2	CCl	q2
3	CN	Q3
4	NO ₂ ss	$(r4 + r5) / \sqrt{2}$
5	NO ₂ ass	$(r4 - r5) / \sqrt{2}$
6 – 8	СН	R6, R7, R8
9 - 14	CC	T9, T10, T11, T12, T13, T14
15	R trigd	$\frac{(\alpha 15 - \alpha 16 + \alpha 17 - \alpha 18 + \alpha 19 - \alpha 20)}{\sqrt{6}}$
16	R symd	$(-\alpha 15 - \alpha 16 + 2\alpha 17 - \alpha 18 - \alpha 19 + 2\alpha 20)$ $\sqrt{12}$
17	R asymd	$(\alpha 15 - \alpha 16 + \alpha 18 - \alpha 19) / 2$
18 - 20	bCH	$(\beta^{21} - \beta^{22}) / \sqrt{2}, \ (\beta^{23} - \beta^{24}) / \sqrt{2},$
		$(\beta^{25} - \beta^{26}) / \sqrt{2}$
21	bCCl	$(\gamma^{27} - \gamma^{28}) / \sqrt{2}$
22	bCF	$(\theta^{29} - \theta^{30}) / \sqrt{2}$
23	bCN	$(\pi^{31} - \pi^{32}) / \sqrt{2}$
24	NO ₂ rock	$(\sigma^{33} - \sigma^{34}) / \sqrt{2}$
25	NO ₂ twist	$(\sigma^{33}+\sigma^{34})/\sqrt{2}$
26	NO ₂ sciss	$(2\phi 35 - \sigma 33 - \sigma 34) / \sqrt{6}$
27 – 29	ωСН	ω36, ω37, ω38
30	ΨCF	¥39
31	λCCl	λ40
32	ΩCN	Ω41
33	tR trige	$(\tau 42 - \tau 43 + \tau 44 - \tau 45 + \tau 46 - \tau 47) / \sqrt{6}$
34	tR symd	$(\tau 42 - \tau 44 + \tau 45 - \tau 46) / \sqrt{2}$
35	tRasynd	$(-\tau 42 + 2\tau 43 - \tau 44 - \tau 45 + 2\tau 46 - \tau 47) / \sqrt{2}$
36	tNO ₂ wag	-18
50	uno2 wag	140

Table 4.Definition of Local Symmetry Coordinates of 2,4dibromo-1-fluorobenzene.

No. (i)	Туре	Definition
1	CF	r1
2, 3	cBr	R2, R3
4 - 6	СН	q4, q5, q6
7-12	CC	Q7, Q8, Q9, Q10, Q11, Q12
13	R trigd	$(\alpha 13 - \alpha 14 + \alpha 15 - \alpha 16 - \alpha 17 - \alpha 18) / \sqrt{6}$
14	R symd	$(-\alpha 13 - \alpha 14 + 2\alpha 15 - \alpha 16 - \alpha 17 + 2\alpha 18) /$
		$\sqrt{12}$
15	R asymd	$(\alpha 13 - \alpha 14 + \alpha 16 - \alpha 17) / \sqrt{2}$
16	bCF	$^{(\beta19-\beta20)/}\sqrt{2}$
17 – 18	bCBr	$(\gamma^{21} - \gamma^{22}) / \sqrt{2}, (\gamma^{23} - \gamma^{24}) / \sqrt{2}$

19 – 21	bCH	$(\theta^{25} - \theta^{26}) / \sqrt{2}, (\theta^{27} - \theta^{28}) / \sqrt{2}, (\theta^{29})$
		$-630) / \sqrt{2}$
22	ωCF	ω31
23 - 24	ψCBr	ψ32, ψ33
25 - 27	μСН	μ34, μ35, μ36
28	t R trigd	$(\tau^{37} - \tau^{38} + \tau^{39} - \tau^{40} + \tau^{41} - \tau^{42}) / \sqrt{6}$
29	t R symd	$(\tau^{37} - \tau^{39} + \tau^{40} - \tau^{42}) / \sqrt{2}$
30	t R asymd	$(-\tau 37 + 2\tau 38 - \tau 39 - \tau 40 + 2\tau 41 - \tau 42) /$
		$\sqrt{12}$

4.2. Vibrational Spectra

The 36 and 30 normal modes of CFNB and DBFB are distributed amongst the symmetry species as:

 $\overline{|3N-6|} = 25 \text{ A'(in-plane)} + 11 \text{ A''(out-of-plane)}$

 $\overline{[3N]}$ - 6 = 21 A' (in-plane) + 9 A" (out-of-plane) respectively,

in agreement with C_s symmetry. All the vibrations are active both in the Raman scattering and infrared absorption.

The observed and calculated frequencies of CFNB and DBFB are summarized in Tables 7 and 8 respectively. The detailed vibrational assignment of fundamental modes of CFNB and DBFB along with the calculated IR and Raman intensities and normal mode description (characterized) by TED are reported in tables. The FTIR and FT-Raman spectra of CFNB and DBFB are shown in Figs. 3 - 6.

Fig. 5.FTIR Spectrum of 2,4-dibromo-1-fluorobenzene.

Parameter	Value (Å)		Bond angle Value (°)		•	Dihedral Angle	Value (°)			
Bond length	B3LYP/ 6-311++G	B3LYP/ 6-311++G(d,p)		B3LYP/ 6-311++G	B3LYP/6-311++G(d,p)		B3LYP/6-311++G	B3LYP/ 6-311++G(d,p)		
C1 – C2	1.3927	1.3967	C1 - C2 - C3	119.4795	119.1925	C1 – C2 – C3 C4	-0	0.0028		
C2 – C3	1.3881	1.3886	C2 - C3 - C4	118.3913	118.7041	C2 – C3 – C4 – C5	0.0086	-0.0034		
C3 – C4	1.3961	1.3906	C3 - C4 - C5	122.392	122.4182	C3 - C4 - c5 - c6	-0.0107	0.0017		
c4 – c5	1.396	1.391	c4 - c5 - c6	118.6502	118.5976	c4 - c5 - c6 - c1	0.0062	0.0005		
c5 - c6	1.3926	1.3886	c5 - c6 - c1	119.0937	119.4899	c6 - c1 - c2 - c3	0.0	-0.0007		
c6 – c1	1.3891	1.3881	c6 - c1 - c3	121.9933	121.5978	c6-c1-c2-c18	-180.0016	-180.0002		
c1 – c7	1.3869	1.3384	c6 – c1 –f7	118.4499	118.9133	c1 - c2 - c3 - h9	17.9981	180.0018		
c2 - cl8	1.8017	1.7394	c2 - c1 - f7	119.5568	119.4889	c2 - c3 - c4 - n10	-180.0091	180.0022		
c3 – h9	1.0782	1.0807	c1 - c2 - c18	120.2882	120.1073	c3 - c4 - n10 -	180.0079	0.0215		
						o11				
c4 - n10	1.4652	1.4791	c3 - c2 - c18	120.2323	120.7001	c3 - c4 - n10 -	0.0154	180.0173		
						o12				
n10-011	1.2671	1.2237	c2 - c3 - h9	121.2955	121.037	c5 - c4 - n10 -	-0.0093	180.0269		
						o11				
n10-o12	1.267	1.2238	c4 - c3 - h9	120.3132	120.259	c5 - c4 - n10 -	-180.0017	0.0227		
						o12				
c5-h13	1.0783	1.0807	c3 - c4 - n10	118.4909	118.4809	c3 - c4 - c5 - h13	179.9962	-179.9989		
c6 – h14	1.0795	1.0825	c5 - c4 - n10	119.1171	119.1009	c4 - c5 - c6 - h14	180.0042	-179.9997		
			c4 - n10 - o11	118.0653	117.6029	c5 - c6 - c1 - f7	-180.001	179.999		
			c4 - n10 - o12	118.2218	117.4277	c1 - c6 - f7 - h14	0.001	-0.0008		
			c4 - c5 - h13	119.9095	119.8788					
			c6 - c5 - h13	121.4403	121.5237					
			c5 - c6 - h14	121.6161	121.5544					
			c1 - c6 - h14	119.2902	118.9557					
Table 6.0	Optimized geometric	cal parameters of 2,4-dib	oromo-1-fluoro	benzene obtained by	7 B3LYP/6-311++G and	B3LYP/6-311++G	(d,p) density function	onal calculations.		
Parameter Bond	Value (Å)		Bond angle	Value (°)		Dihedral Angle	Value (°)			
length	B3LYP/ 6-311++G	B3LYP/6-311++G(d,p)		B3LYP/ 6-311++G	B3LYP/6-311++G(d,p)		B3LYP/6-311++G	B3LYP/6-311++G(d,p)		
C1 – C2	1.3886	1.3917	C1 - C2 - C3	118.9433	119.5908	C1 – C2 – C3 –	-0.0033	0.0		
						C4				
C2 - C3	1.3954	1.3936	C2 - C3 - C4	119.3431	119.1149	C2 - C3 - C4 -	-0.0013	0.0		
						C5				
C3 – C4	1.393	1.3913	C3 - C4 - C5	121.4113	121.3699	C3 - C4 - C5 -	0.0056	0.0		
						C6				
C4 – C5	1.3935	1.392	C4 - C5 - C6	119.129	119.1518	C4 - C5 - C6 -	-0.0012	0.0		
						C1				
C5 - C6	1.3962	1.3917	C5 - C6 - C1	118.1532	119.7529	C5 - C6 - C1 -	-0.0035	0		
						C2				
C6 – C1	1.3865	1.3863	C6 - C1 - C2	122.0201	121.0197	C6 – C1 – C2 –	0.0057	0		
						C3				
C1 – F7	1.395	1.3446	C1 - C2 - Br8	120.6925	120.1945	C5 - C6 - C1 - F7	-180.0032	180.0		
C2 – Br8	1.931	1.9023	C3 - C2 - Br8	120.3642	120.2147	C6 - C1 - C2 -	180.061	180.0		
						Br8				
C3 – H9	1.0782	1.0807	C2 - C3 - H9	119.832	119.9517	C1 – C2 – C3 –	-180.034	180		

Table 5.Optimized geometrical parameters of 2-Chloro-1-fluoro-4-Nitrobenzene obtained by B3LYP/6-311++G and B3LYP/6-311++G(d,p) density functional calculations.

46937

D.Usha et al./ Elixir Computational Physics 107 (2017) 46933-46941

						H9			
C4 – Br10	1.9486	1.9143	C4 - C3 - H9	120.8249	120.9334	C2 – C3 – C4 –	179.9979	180	
						Br10			
C5 – H11	1.076	1.0812	C3 – C4 –	11.0511	119.0932	C3 – C4 – C5 –	-179.996	180	
			Br10			H11			
C6 – H12	1.0801	1.0825	C5 – C4 –	119.5376	119.537	C4 – C5 – C6 –	179.9989	180	
			Br10			H12			
			C4 – C5 –	120.577	120.5854	C5 - C6 - C1 -	179.9984	180	
			H11			H11			
			C6 - C5 -	120.294	120.2628	C1 - C2 - C3 - F7	180.0055	180	
			H11						
			C5 - C6 -	121.4499	121.2137	C2 - C3 - C4 -	-180.0036	180	
			H12			Br8			
			C1 – C6 –	119.3969	119.0335	C3 – C4 – C5 –	179.9988	180	
			H12			H9			
			C6 – C1 – F7	118.2305	118.8977	C4 - C5 - C6 -	180.0044	180	
						Br10			
			C2 - C1 - F7	119.7434	120.0826				

Table 7. The observed FTIR, FT Raman and calculated (Unscaled and Scaled) frequencies (cm⁻¹) using B3LYP/6-311++G and B3LYP/6-311++G(d,p), IR intensity (kM mol⁻¹), Raman activity (Å amu⁻¹), Reduced masses (amu) and force constant (mdyne Å⁻¹) and probable assignments (characterized by TED) of 2-chloro-1-fluoro-4-nitrobenzene.

Symmetry	Observed	l wovo	B3I VP/6-311		u) unu tore	e constant (i	indyne ir)	unu probu	B3I VP/6-311++ C (d n)						TFD%
species	numbers	(cm^{-1})	D 5E1170-511						D 5E1170-511	(u,p)					among types
Cs	FTIR	FT	Unscaled	Scaled	Reduced	Force	IR	Raman	Unscaled	Scaled	Reduced	Force	IR	Raman	of coordinates
C5	TIIN	Raman	Frequency	Frequency	masses	Constants	IN Intensity	activity	Frequency	Frequency	masses	Constants	Intensity	activity	of coordinates
		Kaman	cm ⁻¹	cm ⁻¹	masses	Constants	Intensity	activity	cm ⁻¹	cm ⁻¹	masses	Constants	Intensity	activity	
A'	3104ms	-	3235	3106	1.0954	6.7532	5.2311	102.9497	3230	3105	1.0921	6.7124	11.3415	39.9041	vCH(99)
A'	3081vw	3075w	3233	3080	1.0926	6.7297	10.5012	26.4336	3230	3081	1.0938	6.7221	6.5901	87.1536	vCH(96)
Α'	3061w	-	3213	3065	1.0912	6.6391	0.0287	83.3937	3205	3062	1.0912	6.6029	0.0241	102.9619	vCH(98)
A'	-	1662ms	1631	1665	8.3000	13.0082	1.5692	2.4397	1647	1663	9.0007	14.3892	29.4029	3.4268	vCC(91)
A'	1612vs	1620w	1620	1615	6.2580	9.6708	40.6855	117.7151	1622	1618	6.8834	10.6721	50.8810	70.8472	vCC(90)
A'	1545vs	-	1514	1550	2.5923	3.5000	85.0191	6.7341	1586	1548	12.6856	18.7929	253.3521	22.4630	_V CC(88)
A'	1482s	1480vw	1465	1480	6.6494	8.4130	161.2302	12.3607	1509	1483	3.0152	4.0449	125.4113	4.2392	_V CC(87)
Α'	1441vs	1450vs	1411	1445	4.6072	5.4025	29.6152	7.6763	1428	1443	4.3948	5.2765	3.0310	0.4929	NO ₂ ass(82)
A'	-	1363w	1354	1365	11.3742	12.2907	24.4955	2.3726	1370	1364	14.0238	15.4995	312.9419	197.0291	vCC(81)
A'	1306vs	-	1293	1310	1.5809	1.5565	15.7637	43.2035	1344	1309	10.9083	11.6022	22.6811	6.0392	vCC(80)
A'	1275ms	1277w	1267	1278	6.9393	6.5644	362.8251	288.0965	1279	1276	2.6602	2.5620	123.3151	20.9250	_V CN(79)
Α'	1238s	-	1241	1240	3.6655	3.3241	25.0738	4.2907	1255	1240	1.6412	1.5234	17.2313	11.0225	NO ₂ ss(80)
Α'	-	1150w	1166	1155	1.3326	1.0668	29.9308	8.4559	1145	1153	1.3254	1.0240	37.3303	10.1049	bCH(78)
Α'	1138ms	1136ms	1134	1140	4.2233	3.2020	23.8990	12.8055	1130	1140	3.8262	2.8762	46.1122	29.7657	bCH(74)
Α'	1118s	-	1071	1120	2.6299	1.7763	23.4061	6.4100	1067	1120	2.2343	1.4975	27.1719	3.6569	bCH(76)
A''	1049s	-	1007	1050	1.3183	0.7871	0.0366	0.0622	975	1050	1.3033	0.7297	0.0198	0.0492	vCF(73)
A''	-	1050vw	948	1058	1.3517	0.71457	34.0492	0.3063	918	1054	1.3593	0.6742	24.6269	0.1061	_V CCl(72)
	899w	-	882	905	8.5099	3.8996	24.5893	16.5539	911	901	8.7997	4.2994	37.6766	16.6106	bCN(71)
	839ms	836ms	864	845	1.3875	0.6105	38.9084	0.0612	845	842	1.4951	0.6295	25.9739	0.0191	R symd(74)
	811vs	815w	785	816	9.7936	3.5570	1.2385	0.3389	825	814	8.5104	3.4147	4.7015	1.2241	R asymd(70)
	745vs	-	710	752	8.1587	2.4228	46.7336	15.5392	725	741	8.2090	2.5391	55.6993	13.7204	R trigd (69)

D.Usha et al./ Elixir Computational Physics 107 (2017) 469	16933-46941
--	-------------

46938

							2	1 /						
-	724ms	693	730	5.7359	1.6208	1.0477	0.5185	723	723	8.2084	2.5281	19.2524	1.0435	ωCH(65)
718s	-	677	726	8.7861	2.3733	11.3790	2.1990	698	720	4.6019	1.3197	0.4014	0.7770	ωCH(64)
634s	644w	642	639	9.3865	2.2783	28.8596	2.9006	644	635	8.6046	2.1005	13.2969	3.0512	NO ₂ sciss(63)
603s	604ms	552	615	5.8527	1.0509	1.8028	2.0312	559	604	5.5581	1.0233	1.1894	1.5291	ωCH(62)
-	533w	536	540	4.5416	0.7673	0.2295	0.6752	533	534	4.4347	0.7429	0.7157	0.3442	t R trigd(61)
-	475vw	485	482	9.8044	1.3576	8.2848	4.8586	502	478	10.3007	1.5310	6.6661	3.0601	$NO_2wag(60)$
-	441w	457	450	3.1555	0.3887	4.1566	0.0219	452	444	3.2834	0.3843	3.5724	0.0321	R symd(67)
-	427ms	364	436	13.2349	1.0352	0.0195	2.6123	369	430	13.0950	1.0478	0.1091	4.0813	t R asymd(66)
-	387ms	348	394	14.4991	1.0338	0.5398	9.2982	351	391	13.9615	1.0104	0.2893	4.7721	$NO_2 \operatorname{rock}(67)$
-	306w	327	316	8.1880	0.5153	0.2165	0.7757	329	309	8.0742	0.5142	0.2388	1.0377	ωCN(62)
-	260ms	243	266	15.2510	0.5283	3.1840	0.9616	252	264	15.1102	0.5635	2.1035	0.6677	bCF(67)
-	238s	172	247	16.5168	0.2869	2.1944	1.3534	176	239	16.1200	0.2944	1.6590	1.1181	bCCl(69)
-	220ms	168	226	5.8022	0.0967	0.0452	0.7598	170	225	5.8092	0.0985	0.0143	0.9599	ωCF(62)
-	140w	116	147	10.5954	0.0834	6.8979	0.2371	115	142	10.6037	0.0821	4.7474	0.2440	ωCCl(61)
-	120vw	48	128	15.3359	0.0212	0.0788	0.8514	46	126	15.3064	0.0191	0.0610	0.5686	NO ₂ twist(59)

Abbreviations: t, torsion; R1 trigd, Ring 1 trigonal deformation; R2 trigd, Ring 2 trigonal deformation; asym, asymmetric; s, symmetric; ω , bending out-of-plane; asymd, asymmetric deformation; symd, symmetric deformation; b, bending in-plane; s, strong; w, weak; m, medium; vs, very weak; ms, medium strong, Harmonic Frequencies in cm⁻¹. The absolute IR intensity in Km mol⁻¹. Raman scattering activity in A⁴ amu⁻¹. Depolarization rations for plane and unpolarised in amu. Reduced masses in AMU Force constants in m Dyne A.

Table 8. The observed FTIR, FT Raman and calculated (Unscaled and Scaled) frequencies (cm⁻¹) using B3LYP/6-311++G and B3LYP/6-311++G(d,p), IR intensity (kM mol⁻¹), Raman activity (Å amu⁻¹), Reduced masses (amu) and force constant (mdyne Å⁻¹) and probable assignments (characterized by TED) of 2,4-dibromo-1-fluorobenzene.

Symmetry	Observed	wave	B3LYP/6-311++G (d,p)								TED% among				
species	number (c	m)	TT 1 1	0 1 1	D 1 1	г	ID	D	TT 1 1	0 1 1	D 1 1	г	ID	D	types of
Cs	FTIR	FI	Unscaled	Scaled	Reduced	Force	IR	Raman	Unscaled	Scaled	Reduced	Force	IR	Raman	coordinates
		Raman	Frequency	Frequency	masses	Constants	Intensity	activity	Frequency	Frequency	masses	Constants	Intensity	activity	
			cm ¹	cm ·					cm ²	cm ¹					
Α'	3247s	-	3221	3245	1.0940	6.6888	0.9466	120.3642	3221	3245	1.0924	6.6764	1.7223	56.8068	_V CH(99)
A'	3112vw	-	3219	3115	1.0952	6.6852	0.2774	82.5091	3216	3114	1.0950	6.6737	0.1533	127.6654	_V CH(98)
A'	3081w	3079ms	3203	3085	1.0896	6.5857	0.5643	58.6919	3200	3084	1.0894	6.5740	0.4147	86.3941	vCH(96)
Α'	1680ms	-	1617	1683	7.7772	11.9791	9.0511	17.1558	1613	1682	6.8726	10.5364	12.9324	21.0123	vCC(91)
Α'	1663s	-	1605	1665	6.1661	9.3629	12.0172	12.8055	1610	1665	7.8930	12.0606	1.5274	8.2726	vCC(90)
Α'	1584vs	1579ms	1508	1585	2.3444	2.1400	157.4857	1.2206	1498	1585	2.7026	3.5715	206.1099	3.7782	_V CC(88)
A'	1471vs	1477w	1404	1475	2.7404	3.1835	13.3571	12.3939	1402	1474	3.3836	3.9193	13.3500	2.9672	_V CC(86)
Α'	-	1309w	1324	1310	9.4481	9.7546	0.5435	2.7978	1308	1310	11.1461	11.2294	1.2680	2.6308	vCC(89)
A'	1268vs	-	1297	1270	1.4484	1.4361	7.3060	0.6204	1277	1269	1.6294	1.5654	41.8324	4.3666	_V CC(88)
Α'	1234vs	-	1232	1235	3.2539	2.9092	72.5339	14.3890	1254	1235	2.4575	2.2775	53.1736	14.5406	_V CF(79)
Α'	-	1151ms	1169	1155	1.4447	1.1632	1.9213	4.2682	1152	1152	1.3340	1.0427	1.3510	5.5945	vCBr(73)
A'	1094vs	-	1095	1096	2.8064	1.9824	26.6207	9.1624	1089	1096	2.4308	1.6979	24.7821	12.1164	vCBr(73)
Α'	1076vs	-	1075	1072	4.6509	3.1680	39.2761	8.5560	1060	1077	4.5304	2.9928	36.6043	2.7948	bCH(74)
A'	-	976s	1015	980	1.3846	0.8408	0.1127	0.1336	948	979	1.3158	0.6972	0.9239	0.0273	bCH(70)
A'	-	977vs	958	983	1.4514	0.7853	12.2636	0.4507	877	982	1.3354	0.6057	15.1523	0.1094	bCH(68)
Α'	867s	-	866	871	1.4558	0.6439	50.4565	0.3303	841	870	7.2623	3.0299	6.2156	27.3086	R asymd(78)
Α'	811s	-	830	815	7.6216	3.0944	8.1356	25.6467	824	830	1.4473	0.5790	35.3787	0.2210	R symd(74)
A'	-	715vs	754	720	3.5076	1.1751	0.2688	1.0182	689	718	8.1100	2.2694	36.5469	7.1576	R trigd(76)
Α'	-	695ms	691	698	7.8318	2.2055	23.7786	8.2192	689	696	4.6824	1.3084	0.0115	0.8127	bCF(65)
A'	668s	662s	614	670	10.0871	2.2377	45.9884	1.0764	622	670	9.2095	2.1004	36.1619	1.6143	bCBr(62)

46939	D.Usha et al./ Elixir Computational Physics 107 (2017) 46933-46941														
Α'	596s	590w	580	610	4.0115	0.7945	5.4001	0.5229	550	598	4.0811	0.7278	4.4634	0.2054	bCBr(61)
A"	544s	550vw	478	551	6.0192	0.8145	7.2438	2.6547	491	550	6.0655	0.8615	5.8424	1.7438	ωCH(65)
A"	-	528w	469	534	3.0473	0.8945	6.0206	0.0029	425	533	3.2715	0.3817	3.9915	0.0073	ωCH(62)
A"	-	428s	333	436	7.8381	0.5125	0.6890	0.5681	332	434	9.6022	0.6232	0.6995	1.8626	ωCH(65)
A"	-	415s	330	425	9.9475	0.6392	1.2398	2.4314	330	422	8.0150	0.5153	0.4533	1.0731	tRasymd(62)
A"	-	400ms	271	406	15.6733	0.6768	0.9537	8.9298	279	404	15.5155	0.7109	0.6271	6.8574	tRsymd(67)
A"	-	365vs	213	372	17.9415	0.4773	0.8673	1.1254	218	369	17.3743	0.4854	0.5290	0.8957	tRtrigd(61)
A''	-	230s	152	236	5.2912	0.0719	0.7703	1.4542	147	235	5.3547	0.0682	0.5479	1.6127	ωCF(62)
A"	-	210ms	126	218	26.5654	0.2493	0.0315	3.2180	128	217	26.0207	0.2501	0.0239	2.5820	ωCBr(59)
A"	-	150w	112	157	10.2609	0.0760	1.3847	0.4331	110	156	10.1777	0.0732	0.7774	0.4748	ω CBr(58)

Abbreviations: t, torsion; R1 trigd, Ring 1 trigonal deformation; R2 trigd, Ring 2 trigonal deformation; asym, asymmetric; ω, bending out-of-plane; asymd, asymmetric deformation; symd, symmetric deformation; b, bending in-plane; s, strong; w, weak; m, medium; vs, very weak; ms, medium strong, Harmonic Frequencies in cm⁻¹. The absolute IR intensity in Km mol⁻¹. Raman scattering activity in A⁴ amu⁻¹. Depolarization rations for plane and unpolarised in amu. Reduced masses in AMU Force constants in m Dyne A.

fluorobenzene.

C - **H** Vibrations

The C-H stretching vibrations of aromatic and heteroaromatic structure [10,11] are normally appearing in the region $3000 - 3100 \text{ cm}^{-1}$. In this region, the bands are not affected appreciably by the nature of the substituent. Hence, in the present investigation, the C-H stretching vibrations of CFNB are observed at 3104, 3081, 3061 cm⁻¹ in IR and Raman bands observed at 3075 cm⁻¹. The bands observed at 3247, 3112, 3081 cm⁻¹ in IR and 3079 cm⁻¹ in FT-Raman have been designated to C-H stretching vibrations for DBFB. The C-H in-plane and out-of-plane bending vibrations of the title compounds have also been identified and listed in Table 7 and 8.

C - **C** Vibrations

The bands between 1400 and 1650 cm⁻¹ in benzene derivatives are due to C-C stretching vibrations [1]. Therefore, the C - C stretching vibrations of CFNB are observed at 1612, 1545, 1482, 1306 cm⁻¹ in FTIR and 1662, 1620, 1480, 1363 cm⁻¹ in FT-Raman spectrum. The C-C stretching vibrations of DBFB are observed at 1680, 1663. 1584, 1471, 1268 cm⁻¹ in FTIR and in FT-Raman spectrum the bands observed at 1579, 1477, 1309 cm⁻¹. The in-plane and out-of-plane bending vibrations of carbon-carbon group are presented in Table 7 and 8 for the title compounds.

C - **F** Vibrations

In the vibrational spectra of related compounds, the bands due to C-F stretching vibrations [12]may be found over a wide frequency range 1360-1000 cm⁻¹ since the vibration is easily affected by adjacent atoms or groups. In the present investigation, the bands observed at 1275 cm⁻¹ in both IR and Raman and 1234 cm⁻¹ in IR have been assigned to C-F stretching mode of vibration for CFNB and DBFB respectively.

C - Br Vibrations

The assignment of C - Br stretching and deformation modes have been made through comparison with assignments in other halogens substituted benzene derivatives [13]. Krishnakumaret al., [14, 15]have assigned the C-Br vibrations in the frequency range 1300-550 cm⁻¹. In this study, the band observed at 1094 cm⁻¹ in FTIR spectrum and 1151 cm⁻¹ in Raman have been designated to C-Br stretching vibrations of DBFB.

NO₂ Group Vibrations

For molecules with an NO₂ group, the NO₂ asymmetric stretching vibration band range is 1625-1540 cm⁻¹ and that of symmetric stretching vibration is 1400-1360 cm⁻¹ [13]. In the present study, the asymmetric stretching modes of NO₂ group in CFNB is assigned at 1441 cm⁻¹ in IR and 1450 cm⁻¹ in Raman spectra, the band observed at 1238 cm⁻¹ in the IR have been assigned to NO2 symmetric stretching modes of CFNB. The bands appeared at 634 cm⁻¹ in IR and 644 cm⁻¹

in Raman have been assigned to scissoring modes of NO₂ group for CFNB.

The Rocking, wagging and twisting vibrational modes of NO₂ for the title compound are also presented in Table 7 and 8.

C-N Vibrations

The identification of C-N vibrations are a very difficult task, since the mixing of several modes are possible in the Silverstein et al. [16] assigned C-N stretching region. absorption in the region 1266-1382 cm⁻¹ for aromatic compounds. In the present work, the bands observed at 1275 cm⁻¹ in FT-IR spectrum have been assigned to C-N stretching vibrations. The same vibration which corresponds to Raman spectrum is at 1277 cm⁻¹. In our title molecule, the FTIR and FT Raman bands at 899 and 306 cm⁻¹ are assigned to C-N in-plane and out-of-plane bending vibrations respectively. 5.5. Conclusion

The vibrational properties of CFNB and DBFB have been investigated by FTIR and FT-Raman spectroscopies and were based on DFT calculations at the B3LYP/6-311G and B3LYP/6-311++G(d,p) level. The assignments of the most of the fundamentals of the title compounds provided in this work are quite comparable and unambiguous. The close agreement obtained between the calculated, the observed frequencies and the TED calculations are also supporting the assignments made for various functional groups present in the molecules. The results confirm the ability of the methodology applied for interpretation of the vibrational spectra of the title compounds in the solid phase. The frequencies calculated with B3LYP/6-311++G(d,p) method which are in a better agreement with the experimental ones are superior to those calculated with B3LYP/6-311++G method.

References

1.Ilango G, Arivazhagan M, Joseph Prince J & Balachandran V, Indian J. Pure Appl. Phys., 46 (2008) 698.

2.M.J.Frisch, G.W.Trucks H.B.Schlegal G.E.Scuseria, M.A.Robb, J.R.Cheesman, V.G.Zakrzewski, J.A.Montgomerg, Jr., R.E.Stratmann, J.C.Burant, S.Dapprich, J.M.Millam, A.D.Daniels, K.N.Kudin, M.C.Strain, O.Farkas, J.Tomasi, V.Barone, M.Cossi, R.Cammi, B.Mennucci, C.Pomelli, C.Adamo, S.Clifford, J.Ochterski, G.A.Petersson, P.Y. Ayala, Q.Cui, K.Morokuma, N.Rega , P.Salvador, J.J.Dannenberg, D.K.Malich, A.D.Rabuck, K Raghavachari, J.B.Foresman, J.Cioslowski, J.V.Ortiz, A.G. Baboul, B.B.Stetanov, G.Liu, A.Liashenko, P.Piskorz, I.Komaromi, RGomperts. R.L.Martin, D.J.Fox, T.Keith, M.A.Al-Laham, C.Y.Peng, A. Nanayakkara, M Challacombe, P.M.W.Gill, B.Johnson, W.Chen, M.W Wong, J.L Andres, C.Gonzalez, M Head-Gordon, E.S Replogle and J.A Pople, GAUSSIAN 03, Revision A 11.4, Gaussian, Inc, Pittsburgh PA, 2003.

3.Schlegal H B, J. Comput. Chem. 3 (1982) 214.

4.Hohenberg P, Kohu W, Phys. Rev.136 (1964) B 864.

5.A.D. Becke, J. Chem. Phys., 98 (1993) 5648.

6.C. Lee, W. Yang, R.G. Parr, Phys. Rev., 37 (1998) 785.

7.M.J.Frisch, A.B.Nielson, A.J.Holder, Gaussview Users Manual, Gaussian Inc., Pittsburgh, PA, 2000.

8.G.Keresztury, Raman Spectroscopy : Theory in : J.M. Chalmers, P.R.Griffiths (Ed.), Handbook of vibrational spectroscopy, Vol.1, Wiley, 2002.

9.Keresztury G, Holly S, Varga J, Besenyei G, Wang A Y, Durig J R, Spectrochem. Acta 49 A (1993) 2007.

Arivazhagan M, Krishnakumar V, Indian J. Pure Appl. Phys., 43 (2005) 573.

10.Krishnakumar V, Arivazhagan M, Indian J. Pure Appl. Phys., 41 (2003) 341.

11.Gunasekaran S, Seshadri S, Muthu S, Indian J. Pure Appl. Phys. 44 (2006) 581.

12.G.Socrates, Infrared and Raman Characteristic Group Frequencies - Tables and charts, third ed., Wiley, Chichester, 2001. 13.Krishnakumar V, Balachandran V, Spectrochim. Acta Part A 61 (2005) 1001.

14.Krishnakumar V, Balachandran V, Indian J. Pure Appl. Phys. 39 (2001) 623.

15.M.Silverstein,G.ClaytonBassler, C.Morrill, Spectrometric Identification of Organic Compounds, John Wiley, New York, 1981.

46941