

Conformal Lagrangian Dynamics on Contact 9- Manifolds

Ibrahim Yousif .I. Abad alrhman and Abdul Aziz .B. M. Hamed
Department of Math and Physics - Faculty of Education West Kordufan University- Alnhoud City-Sudan.

ARTICLE INFO

Article history:

Received: 15 May 2017;
Received in revised form:
12 June 2017;
Accepted: 24 June 2017;

Keywords

Differential geometry, Contact 9- Manifolds,
Lagrangian Dynamics.

Abstract

In this study, we concluded the Conformal Lagrangian Dynamics on $(\boldsymbol{T} \boldsymbol{M}, \boldsymbol{\xi}, \boldsymbol{J})$, being a model. Finally introduce, some geometrical and physical results on the related mechanic systems have been discussed.

© 2017 Elixir All rights reserved.

1. Introduction

Differential geometry is a rich and beautiful field in pure mathematics whose origins lie in classical physics. Specifically, Contact spaces arose as the natural setting in which to study Lagrangian mechanics . A Contact structure is precisely what is needed to associate a dynamical system on the space to each energy function.

It is the most important studies on the subject of paper is a study entitled (Lagrangian Mechanics on Contact 5-Manifolds)
In the study entitled conformal Euler-Lagrange mechanical on contact 5- Manifolds , presents Lagrangian Mechanics on contact 5-manifolds. In the end, the some results related to contact 5-manifolds. dynamical systems are also discussed

The paper is structured as follows. In second 2, we review contact 5-manifolds. In second 3 we introduce Lagrangian equations for dynamical systems on contact 5- manifold .In conclusion, we discuss some geometric-physical results about Lagrangian equations and fields constructed on the base manifolds

2. Contact 9-Manifolds

Definition 2-1 [2]

Let M be a manifold of odd dimension $(2 \mathrm{n}+1)$ and $\boldsymbol{\xi}$ field The pair $(\boldsymbol{M}, \boldsymbol{\xi})$ Is called a contact manifold
Theorem 2-2. A conformal manifold is a differentiable manifold equipped with an equivalence class of Riemann metric tensors, in which twof $\mathbf{f}_{\mathbf{1}}$ metricsf $_{\mathbf{2}}$ and are equivalent if and only if
$\boldsymbol{f}_{2}=\boldsymbol{B}^{2} \boldsymbol{f}_{1}$
where is a smooth positive function. $\boldsymbol{B}>\mathbf{0}$
Theorem 2.3
.[1] A conformal transformation is a change of coordinates such that the metric changes by $\boldsymbol{\sigma}^{\mathbf{a}} \rightarrow \boldsymbol{\sigma}^{\mathbf{b}}$
$f_{a b}(\sigma) \rightarrow B^{2}(\sigma) f_{a b}(\sigma)$
Theorem 2.4
Let $\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{4}}, \frac{\partial}{\partial x_{5}}, \frac{\partial}{\partial x_{6}}, \frac{\partial}{\partial x_{7}}\right)$ bases on manifold, \boldsymbol{J} Conformal to the structure coefficient
$J\left(\frac{\partial}{\partial x_{1}}\right)=B^{2} \cos \theta\left(\frac{\partial}{\partial x_{5}}\right)+B^{2} \sin \theta\left(\frac{\partial}{\partial x_{6}}\right) \quad, J\left(\frac{\partial}{\partial x_{2}}\right)=B^{2} \cos \theta\left(\frac{\partial}{\partial x_{6}}\right)+B^{2} \sin \theta\left(\frac{\partial}{\partial x_{5}}\right)$
$J\left(\frac{\partial}{\partial x_{3}}\right)=-B^{2} \cos \theta\left(\frac{\partial}{\partial x_{7}}\right)+B^{2} \sin \theta\left(\frac{\partial}{\partial x_{8}}\right), \quad J\left(\frac{\partial}{\partial x_{4}}\right)=-B^{2} \cos \theta\left(\frac{\partial}{\partial x_{8}}\right)+B^{2} \sin \theta\left(\frac{\partial}{\partial x_{7}}\right)$
$J\left(\frac{\partial}{\partial x_{5}}\right)=-B^{-2} \cos \theta\left(\frac{\partial}{\partial x_{1}}\right)-B^{-2} \sin \theta\left(\frac{\partial}{\partial x_{2}}\right), J\left(\frac{\partial}{\partial x_{6}}\right)=B^{-2} \cos \theta\left(\frac{\partial}{\partial x_{2}}\right)-B^{-2} \sin \theta\left(\frac{\partial}{\partial x_{1}}\right)$
$J\left(\frac{\partial}{\partial x_{7}}\right)=-B^{-2} \cos \theta\left(\frac{\partial}{\partial x_{3}}\right)-B^{-2} \sin \theta\left(\frac{\partial}{\partial x_{4}}\right), \quad J\left(\frac{\partial}{\partial x_{8}}\right)=B^{-2} \cos \theta\left(\frac{\partial}{\partial x_{4}}\right)-B^{-2} \sin \theta\left(\frac{\partial}{\partial x_{3}}\right)$

3. Lagrangian Dynamics

Definition 3.1 [1].
A Lagrangian function for a Hamiltonian vector field ξ on M is a smooth function $L: T M \rightarrow R$ such that
$\mathbf{i}_{\xi} \boldsymbol{\omega}_{\mathrm{L}}=\mathbf{d E} \mathrm{L}_{\mathrm{L}}$
Kinetic energy given $\boldsymbol{T}: \boldsymbol{M} \rightarrow \boldsymbol{R}$ such that
$T=\frac{1}{2} m_{i}\left(\dot{x}_{1}^{2}+\dot{x}_{2}^{2}+\dot{x}_{3}^{2}+\dot{x}_{4}^{2}+\dot{x}_{5}^{2}+\dot{x}_{6}^{2}+\dot{x}_{7}^{2}+\dot{x}_{8}^{2}\right)$
Potential energy $\quad \boldsymbol{P}: \boldsymbol{M} \rightarrow \boldsymbol{R}$ such that
$P=m_{i} \boldsymbol{g} h$

$$
m_{i}=\text { mass } \quad \text { and } \quad h=\text { stand } \quad, g=\text { gravity acceleration }
$$

The Lagrangian function $\mathbf{L}: \mathbf{R}^{\mathbf{1 0 n}} \rightarrow \mathbf{R}$ is map that satisfies the condition then

$$
\begin{equation*}
\mathbf{L}=\mathbf{T}-\mathbf{P} \tag{6}
\end{equation*}
$$

Definition 3.2 [2].
A Lagrangian system is a triple $(\boldsymbol{M} ; \boldsymbol{\xi})$, where $(\boldsymbol{\omega} ; \boldsymbol{L})$ is a Symplectic manifold and $\boldsymbol{L} \in \boldsymbol{C}^{\infty}(\boldsymbol{M})$ is a function, called the Hamiltonian function.
Theorem 3.3
Let M be m-real dimensional configuration manifold .A tensor field \boldsymbol{J} on TM is called an almost complex structure on TM if at every point p of TM, J is endomorphism of the tangent space $\boldsymbol{T}_{\boldsymbol{p}}(\boldsymbol{M})$ such that $\boldsymbol{J}^{\mathbf{2}}=\mathbf{- 1}$ are complex is

$$
\begin{equation*}
J^{2}\left(\frac{\partial}{\partial x_{i}}\right)=-\frac{\partial}{\partial x_{i}} \quad i=1,2,3,4,5,6,7,8 \tag{7}
\end{equation*}
$$

J is called almost complex manifold
Proposition 3.4
Let λ be the vector field characterized by
$\lambda=\sum_{i=1}^{8}\left(X^{i} \frac{\partial}{\partial x_{i}}\right) \quad X^{i}=\dot{x}^{i}$
(TM, $\boldsymbol{g}, \boldsymbol{J}$).then vector field defined by

$$
\begin{aligned}
J(\lambda)= & J\left(\sum_{i=1}^{8}\left(X^{i} \frac{\partial}{\partial x_{i}}\right)\right)=\sum_{i=1}^{8} X^{i} J\left(\frac{\partial}{\partial x_{i}}\right) \\
& J(\lambda)=X^{1} J\left(\frac{\partial}{\partial x_{1}}\right)+X^{2} J\left(\frac{\partial}{\partial x_{2}}\right)+X^{3} J\left(\frac{\partial}{\partial x_{3}}\right)+X^{4} J\left(\frac{\partial}{\partial x_{4}}\right)+X^{5} J\left(\frac{\partial}{\partial x_{5}}\right)+X^{6} J\left(\frac{\partial}{\partial x_{6}}\right)+X^{7} J\left(\frac{\partial}{\partial x_{7}}\right)+X^{8} J\left(\frac{\partial}{\partial x_{8}}\right)
\end{aligned}
$$

$J(\lambda)=$
$X^{1} J\left(B^{2} \cos \theta\left(\frac{\partial}{\partial x_{5}}\right)+B^{2} \sin \theta\left(\frac{\partial}{\partial x_{6}}\right)\right)+X^{2} J\left(B^{2} \cos \theta\left(\frac{\partial}{\partial x_{6}}\right)+B^{2} \sin \theta\left(\frac{\partial}{\partial x_{5}}\right)\right)+X^{3} J\left(-B^{2} \cos \theta\left(\frac{\partial}{\partial x_{7}}\right)+B^{2} \sin \theta\left(\frac{\partial}{\partial x_{8}}\right)\right)+$
$X^{4} J\left(-B^{2} \cos \theta\left(\frac{\partial}{\partial x_{8}}\right)+B^{2} \sin \theta\left(\frac{\partial}{\partial x_{7}}\right)\right)+X^{5} J\left(-B^{-2} \cos \theta\left(\frac{\partial}{\partial x_{1}}\right)-B^{-2} \sin \theta\left(\frac{\partial}{\partial x_{2}}\right)\right)+$
$X^{6} J\left(B^{-2} \cos \theta\left(\frac{\partial}{\partial x_{2}}\right)-B^{-2} \sin \theta\left(\frac{\partial}{\partial x_{1}}\right)\right)+X^{7} J\left(-B^{-2} \cos \theta\left(\frac{\partial}{\partial x_{3}}\right)-B^{-2} \sin \theta\left(\frac{\partial}{\partial x_{4}}\right)\right)+$
$X^{8} J\left(B^{-2} \cos \theta\left(\frac{\partial}{\partial x_{4}}\right)-B^{-2} \sin \theta\left(\frac{\partial}{\partial x_{3}}\right)\right)$
Liouville vector field on contact 9 -manifold (T $\boldsymbol{M}, \boldsymbol{g}, \boldsymbol{J}$). then vector field defined by energy function given by

$$
E_{L}^{G_{1}}=U_{G_{1}}(L)-L
$$

is vertical derivation (differentiation) $\mathbf{d}_{\mathbf{G}_{\mathbf{i}}}$
is defined

$$
d=\sum_{i=1}^{8}\left(\frac{\partial}{\partial x_{i}} d x_{i}\right)=\frac{\partial}{\partial x_{1}} d x_{1}+\frac{\partial}{\partial x_{2}} d x_{2}+\frac{\partial}{\partial x_{3}} d x_{3}+\frac{\partial}{\partial x_{4}} d x_{4}+\frac{\partial}{\partial x_{5}} d x_{5}+\frac{\partial}{\partial x_{6}} d x_{6}+\frac{\partial}{\partial x_{7}} d x_{7}+\frac{\partial}{\partial x_{8}} d x_{8}
$$

The $\quad \boldsymbol{d}_{\boldsymbol{J}}: \boldsymbol{F}(\boldsymbol{M}) \rightarrow \Lambda^{\mathbf{1}} \boldsymbol{M}$

$$
\begin{array}{rl}
d_{J}=J(d)=\sum_{i=1}^{8} & J\left(\frac{\partial}{\partial x_{i}}\right) d x_{i} \\
& =J\left(\frac{\partial}{\partial x_{1}}\right) d x_{1}+\mathrm{J}\left(\frac{\partial}{\partial x_{2}}\right) d x_{2}+\mathrm{J}\left(\frac{\partial}{\partial x_{3}}\right) d x_{3}+\mathrm{J}\left(\frac{\partial}{\partial x_{4}}\right) d x_{4}+\mathrm{J}\left(\frac{\partial}{\partial x_{5}}\right) d x_{5}+\mathrm{J}\left(\frac{\partial}{\partial x_{6}}\right) d x_{6}+J\left(\frac{\partial}{\partial x_{7}}\right) d x_{7} \\
& +\mathrm{J}\left(\frac{\partial}{\partial x_{8}}\right) d x_{8} \quad d_{J} L=
\end{array}
$$

$\left(B^{2} \cos \theta\left(\frac{\partial L}{\partial x_{5}}\right)+B^{2} \sin \theta\left(\frac{\partial L}{\partial x_{6}}\right)\right) d x_{1}+\left(B^{2} \cos \theta\left(\frac{\partial L}{\partial x_{6}}\right)+B^{2} \sin \theta\left(\frac{\partial L}{\partial x_{5}}\right)\right) d x_{2}+\left(-B^{2} \cos \theta\left(\frac{\partial L}{\partial x_{7}}\right)+B^{2} \sin \theta\left(\frac{\partial L}{\partial x_{8}}\right)\right) d x_{3}+$ $\left(-B^{2} \cos \theta\left(\frac{\partial L}{\partial x_{8}}\right)+B^{2} \sin \theta\left(\frac{\partial L}{\partial x_{7}}\right)\right) d 4+\left(-B^{-2} \cos \theta\left(\frac{\partial L}{\partial x_{1}}\right)-B^{-2} \sin \theta\left(\frac{\partial L}{\partial x_{2}}\right)\right) d x_{5}+$
$\left(\mathrm{B}^{-2} \cos \theta\left(\frac{\partial L}{\partial x_{2}}\right)-\mathrm{B}^{-2} \sin \theta\left(\frac{\partial L}{\partial x_{1}}\right)\right) d x_{6}+\left(-\mathrm{B}^{-2} \cos \theta\left(\frac{\partial L}{\partial x_{3}}\right)-\mathrm{B}^{-2} \sin \theta\left(\frac{\partial L}{\partial x_{4}}\right)\right) d x_{7}+$ $\left(\mathrm{B}^{-2} \cos \theta\left(\frac{\partial L}{\partial x_{4}}\right)-\mathrm{B}^{-2} \sin \theta\left(\frac{\partial L}{\partial x_{3}}\right)\right) d x_{8}$
Let $\quad \emptyset_{L}=-\mathbf{d}(J d)=-\mathbf{d}\left(d_{J} L\right)=-\mathbf{d}\left(\left(B^{2} \cos \theta\left(\frac{\partial L}{\partial x_{5}}\right)+B^{2} \sin \theta\left(\frac{\partial L}{\partial x_{6}}\right)\right) d x_{1}+\left(B^{2} \cos \theta\left(\frac{\partial L}{\partial x_{6}}\right)+B^{2} \sin \theta\left(\frac{\partial L}{\partial x_{5}}\right)\right) d x_{2}+\right.$ $\left(-B^{2} \cos \theta\left(\frac{\partial L}{\partial x_{7}}\right)+B^{2} \sin \theta\left(\frac{\partial L}{\partial x_{8}}\right)\right) d x_{3}+\left(-B^{2} \cos \theta\left(\frac{\partial L}{\partial x_{8}}\right)+B^{2} \sin \theta\left(\frac{\partial L}{\partial x_{7}}\right)\right) d 4+$

47334 Ibrahim Yousif.I. Abad alrhman and Abdul Aziz.B. M. Hamed / Elixir Appl. Math. 107C (2017) 47332-47338 $\left(-\mathrm{B}^{-2} \cos \theta\left(\frac{\partial L}{\partial x_{1}}\right)-\mathrm{B}^{-2} \sin \theta\left(\frac{\partial L}{\partial x_{2}}\right)\right) d x_{5}+\left(\mathrm{B}^{-2} \cos \theta\left(\frac{\partial L}{\partial x_{2}}\right)-\mathrm{B}^{-2} \sin \theta\left(\frac{\partial L}{\partial x_{1}}\right)\right) d x_{6}+$ $\left.\left(-B^{-2} \cos \theta\left(\frac{\partial L}{\partial x_{3}}\right)-B^{-2} \sin \theta\left(\frac{\partial L}{\partial x_{4}}\right)\right) d x_{7}+\left(B^{-2} \cos \theta\left(\frac{\partial L}{\partial x_{4}}\right)-B^{-2} \sin \theta\left(\frac{\partial L}{\partial x_{3}}\right)\right) d x_{8}\right)$

$$
d=\sum_{i=1}^{8}\left(\frac{\partial}{\partial x_{i}} d x_{i}\right)=\frac{\partial}{\partial x_{1}} d x_{1}+\frac{\partial}{\partial x_{2}} d x_{2}+\frac{\partial}{\partial x_{3}} d x_{3}+\frac{\partial}{\partial x_{4}} d x_{4}+\frac{\partial}{\partial x_{5}} d x_{5}+\frac{\partial}{\partial x_{6}} d x_{6}+\frac{\partial}{\partial x_{7}} d x_{7}+\frac{\partial}{\partial x_{8}} d x_{8}
$$

The $\quad \boldsymbol{d}_{\boldsymbol{J}}: \boldsymbol{F}(\boldsymbol{M}) \rightarrow \Lambda^{\mathbf{1}} \boldsymbol{M}$

$$
\begin{array}{rl}
d_{J}=J(d)=\sum_{i=1}^{8} & J\left(\frac{\partial}{\partial x_{i}}\right) d x_{i} \\
& =J\left(\frac{\partial}{\partial x_{1}}\right) d x_{1}+\mathrm{J}\left(\frac{\partial}{\partial x_{2}}\right) d x_{2}+\mathrm{J}\left(\frac{\partial}{\partial x_{3}}\right) d x_{3}+\mathrm{J}\left(\frac{\partial}{\partial x_{4}}\right) d x_{4}+\mathrm{J}\left(\frac{\partial}{\partial x_{5}}\right) d x_{5}+\mathrm{J}\left(\frac{\partial}{\partial x_{6}}\right) d x_{6}+J\left(\frac{\partial}{\partial x_{7}}\right) d x_{7} \\
& +\mathrm{J}\left(\frac{\partial}{\partial x_{8}}\right) d x_{8}
\end{array}
$$

$$
d_{J} L=
$$

$\left(B^{2} \cos \theta\left(\frac{\partial L}{\partial x_{5}}\right)+B^{2} \sin \theta\left(\frac{\partial L}{\partial x_{6}}\right)\right) d x_{1}+\left(B^{2} \cos \theta\left(\frac{\partial L}{\partial x_{6}}\right)+B^{2} \sin \theta\left(\frac{\partial L}{\partial x_{5}}\right)\right) d x_{2}+\left(-B^{2} \cos \theta\left(\frac{\partial L}{\partial x_{7}}\right)+B^{2} \sin \theta\left(\frac{\partial L}{\partial x_{8}}\right)\right) d x_{3}+$ $\left(-B^{2} \cos \theta\left(\frac{\partial L}{\partial x_{8}}\right)+B^{2} \sin \theta\left(\frac{\partial L}{\partial x_{7}}\right)\right) d 4+\left(-B^{-2} \cos \theta\left(\frac{\partial L}{\partial x_{1}}\right)-B^{-2} \sin \theta\left(\frac{\partial L}{\partial x_{2}}\right)\right) d x_{5}+$ $\left(\mathrm{B}^{-2} \cos \theta\left(\frac{\partial L}{\partial x_{2}}\right)-\mathrm{B}^{-2} \sin \theta\left(\frac{\partial L}{\partial x_{1}}\right)\right) d x_{6}+\left(-\mathrm{B}^{-2} \cos \theta\left(\frac{\partial L}{\partial x_{3}}\right)-\mathrm{B}^{-2} \sin \theta\left(\frac{\partial L}{\partial x_{4}}\right)\right) d x_{7}+$ $\left(\mathrm{B}^{-2} \cos \theta\left(\frac{\partial L}{\partial x_{4}}\right)-\mathrm{B}^{-2} \sin \theta\left(\frac{\partial L}{\partial x_{3}}\right)\right) d x_{8}$
Let $\quad \emptyset_{L}=-\mathbf{d}(\mathrm{Jd})=-\mathbf{d}\left(d_{J} \mathrm{~L}\right)=-\mathbf{d}\left(\left(\mathbf{B}^{2} \cos \theta\left(\frac{\partial L}{\partial x_{5}}\right)+\mathbf{B}^{2} \sin \theta\left(\frac{\partial L}{\partial x_{6}}\right)\right) d x_{1}+\left(\mathbf{B}^{2} \cos \theta\left(\frac{\partial L}{\partial x_{6}}\right)+B^{2} \sin \theta\left(\frac{\partial L}{\partial x_{5}}\right)\right) d x_{2}+\right.$ $\left(-B^{2} \cos \theta\left(\frac{\partial L}{\partial x_{7}}\right)+B^{2} \sin \theta\left(\frac{\partial L}{\partial x_{8}}\right)\right) \mathrm{d} x_{3}+\left(-B^{2} \cos \theta\left(\frac{\partial L}{\partial x_{8}}\right)+B^{2} \sin \theta\left(\frac{\partial L}{\partial x_{7}}\right)\right) d 4+$ $\left(-\mathrm{B}^{-2} \cos \theta\left(\frac{\partial L}{\partial x_{1}}\right)-\mathrm{B}^{-2} \sin \theta\left(\frac{\partial L}{\partial x_{2}}\right)\right) d x_{5}+\left(\mathrm{B}^{-2} \cos \theta\left(\frac{\partial L}{\partial x_{2}}\right)-\mathrm{B}^{-2} \sin \theta\left(\frac{\partial L}{\partial x_{1}}\right)\right) d x_{6}+$ $\left.\left(-\mathrm{B}^{-2} \cos \theta\left(\frac{\partial L}{\partial x_{3}}\right)-\mathrm{B}^{-2} \sin \theta\left(\frac{\partial L}{\partial x_{4}}\right)\right) d x_{7}+\left(\mathrm{B}^{-2} \cos \theta\left(\frac{\partial L}{\partial x_{4}}\right)-\mathrm{B}^{-2} \sin \theta\left(\frac{\partial L}{\partial x_{3}}\right)\right) d x_{8}\right)$ $\emptyset_{L}=-\mathbf{d}(\mathrm{Jd})=-\mathbf{d}\left(\boldsymbol{d}_{\boldsymbol{J}} \mathrm{L}\right)$
$=\sum_{i=1}^{8}\left(B^{2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{5} \partial x_{i}}\right)+2 B \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{5}}\right)+B^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{6} \partial x_{i}}\right)+2 B \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{6}}\right)\right) d x_{1} \wedge d x_{i}$
$+\sum_{i=1}^{8}\left(-B^{2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{6} \partial x_{i}}\right)+2 B \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{6}}\right)+B^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{5} \partial x_{i}}\right)+2 B \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{5}}\right)\right) d x_{2} \wedge d x_{i}$
$+\sum_{i=1}^{8}\left(\mathrm{~B}^{2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{7} \partial x_{i}}\right)+2 \mathrm{~B} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{7}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{8} \partial x_{i}}\right)+2 \mathrm{~B} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{8}}\right)\right) d x_{3} \wedge d x_{i}$
$+\sum_{i=1}^{8}\left(-B^{2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{8} \partial x_{i}}\right)+2 B \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{8}}\right)+B^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{7} \partial x_{i}}\right)+2 B \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{7}}\right)\right) d x_{4} \wedge d x_{i}$
$+\sum_{i=1}^{8}\left(-B^{-2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{1} \partial x_{i}}\right)+2 \mathrm{~B}^{-3} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{1}}\right)-B^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{2} \partial x_{i}}\right)+2 \mathrm{~B}^{-3} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{2}}\right)\right) d x_{5} \wedge d x_{i}$
$+\sum_{i=1}^{8}\left(\mathrm{~B}^{-2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{2} \partial x_{i}}\right)-2 \mathrm{~B}^{-3} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{2}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{1} \partial x_{i}}\right)-2 \mathrm{~B}^{-3} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{1}}\right)\right) d x_{6} \wedge d x_{i}$
$+\sum_{i=1}^{8}\left(-B^{-2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{3} \partial x_{i}}\right)-2 B^{-3} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{3}}\right)-B^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{4} \partial x_{i}}\right)-2 B^{-3} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{4}}\right)\right) d x_{7} \wedge d x_{i}$
$+\sum_{i=1}^{8}\left(\mathrm{~B}^{-2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{4} \partial x_{i}}\right)-2 \mathrm{~B}^{-3} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{4}}\right)-\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{3} \partial x_{i}}\right)-2 \mathrm{~B}^{-3} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{3}}\right)\right) d x_{8} \wedge d x_{i}$ Let $\quad i_{\lambda}\left(\emptyset_{L}\right)=\emptyset_{L}(\lambda)=\emptyset_{L}\left(\sum_{i=1}^{\boldsymbol{B}} \boldsymbol{X}^{\boldsymbol{i}} \frac{\partial}{\partial x_{i}}\right)$

$$
\begin{aligned}
& \sum_{i=1}^{x} X^{i}\left[\left(\mathrm{~B}^{2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{\mathrm{y}} \partial x_{i}}\right)+2 \mathrm{~B} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{\mathrm{i}}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{\mathrm{e}} \partial x_{i}}\right)+2 \mathrm{~B} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{\mathrm{i}}}\right)\right) d x_{2}\right. \\
& +\left(-\mathrm{B}^{2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{\mathrm{s}} \partial x_{i}}\right)+2 \mathrm{~B} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{\mathrm{i}}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{\mathrm{s}} \partial x_{i}}\right)+2 \mathrm{~B} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{\mathrm{i}}}\right)\right) d x_{z} \\
& +\left(\mathrm{B}^{2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{7} \partial x_{i}}\right)+2 \mathrm{~B} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{7}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{\mathrm{z}} \partial x_{i}}\right)+2 \mathrm{~B} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{\mathrm{i}}}\right)\right) d x_{z} \\
& +\left(-\mathrm{B}^{2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{\mathrm{z}} \partial x_{i}}\right)+2 \mathrm{~B} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{\mathrm{i}}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{7} \partial x_{i}}\right)+2 \mathrm{~B} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{7}}\right)\right) d x_{4}\left(-\mathrm{B}^{-2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{2} \partial x_{i}}\right)\right. \\
& \left.+2 \mathrm{~B}^{-z^{2}} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{i}}\right)-\mathrm{B}^{z} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{2} \partial x_{i}}\right)+2 \mathrm{~B}^{-z^{2}} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{i}}\right)\right) d x_{n} \\
& +\left(\mathrm{B}^{-z} \cos \theta\left(\frac{\partial^{z} L}{\partial x_{2} \partial x_{i}}\right)-2 \mathrm{~B}^{-z} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{i}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{2} \partial x_{i}}\right)-2 \mathrm{~B}^{-z} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{i}}\right)\right) d x_{0} \\
& +\left(-\mathrm{B}^{-z^{2}} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{z} \partial x_{i}}\right)-2 \mathrm{~B}^{-z} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{z}}\right)-\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{4} \partial x_{i}}\right)-2 \mathrm{~B}^{-2} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{i}}\right)\right) d x_{7} \\
& \left.+\left(\mathrm{B}^{-z} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{4} \partial x_{i}}\right)-2 \mathrm{~B}^{-z} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{i}}\right)-\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{2} \partial x_{i}}\right)-2 \mathrm{~B}^{-z} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{z}}\right)\right) d x_{z}\right]
\end{aligned}
$$

The energy function $\quad \boldsymbol{E}_{\boldsymbol{L}}=\boldsymbol{J}(\boldsymbol{\lambda})-\boldsymbol{L}$

$$
\begin{aligned}
E_{L}=X^{1}\left(B^{2} \cos \theta\right. & \left.\theta\left(\frac{\partial}{\partial x_{5}}\right)+B^{2} \sin \theta\left(\frac{\partial}{\partial x_{6}}\right)\right)+X^{2}\left(B^{2} \cos \theta\left(\frac{\partial}{\partial x_{6}}\right)+B^{2} \sin \theta\left(\frac{\partial}{\partial x_{5}}\right)\right) \\
& +X^{3}\left(-B^{2} \cos \theta\left(\frac{\partial}{\partial x_{7}}\right)+B^{2} \sin \theta\left(\frac{\partial}{\partial x_{8}}\right)\right)+X^{4}\left(-B^{2} \cos \theta\left(\frac{\partial}{\partial x_{8}}\right)+B^{2} \sin \theta\left(\frac{\partial}{\partial x_{7}}\right)\right) \\
& +X^{5}\left(-B^{-2} \cos \theta\left(\frac{\partial}{\partial x_{1}}\right)-B^{-2} \sin \theta\left(\frac{\partial}{\partial x_{2}}\right)\right)+X^{6}\left(B^{-2} \cos \theta\left(\frac{\partial}{\partial x_{2}}\right)-B^{-2} \sin \theta\left(\frac{\partial}{\partial x_{1}}\right)\right) \\
& +X^{7}\left(-B^{-2} \cos \theta\left(\frac{\partial}{\partial x_{3}}\right)-B^{-2} \sin \theta\left(\frac{\partial}{\partial x_{4}}\right)\right)+X^{8}\left(B^{-2} \cos \theta\left(\frac{\partial}{\partial x_{4}}\right)-B^{-2} \sin \theta\left(\frac{\partial}{\partial x_{3}}\right)\right)-L
\end{aligned}
$$

differential energy function

$$
\begin{aligned}
& d E_{L}=\sum_{i=1}^{8}\left[X^{1}\left[\mathrm{~B}^{2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{5} \partial x_{i}}\right)+2 \mathrm{~B} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{5}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{6} \partial x_{i}}\right)+2 \mathrm{~B} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{6}}\right)\right]\right. \\
&+X^{2}\left[-\mathrm{B}^{2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{6} \partial x_{i}}\right)+2 \mathrm{~B} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{6}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{5} \partial x_{i}}\right)+2 \mathrm{~B} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{5}}\right)\right] \\
&+X^{3}\left[\mathrm{~B}^{2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{7} \partial x_{i}}\right)+2 \mathrm{~B} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{7}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{8} \partial x_{i}}\right)+2 \mathrm{~B} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{8}}\right)\right] \\
&+X^{4}\left[-\mathrm{B}^{2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{8} \partial x_{i}}\right)+2 \mathrm{~B} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{8}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{7} \partial x_{i}}\right)+2 \mathrm{~B} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{7}}\right)\right] \\
&+X^{5}\left[-\mathrm{B}^{-2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{1} \partial x_{i}}\right)+2 \mathrm{~B}^{-3} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{1}}\right)-\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{2} \partial x_{i}}\right)+2 \mathrm{~B}^{-3} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{2}}\right)\right] \\
&+X^{6}\left[\mathrm{~B}^{-2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{2} \partial x_{i}}\right)-2 \mathrm{~B}^{-3} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{2}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{1} \partial x_{i}}\right)-2 \mathrm{~B}^{-3} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{1}}\right)\right] \\
&+X^{7}\left[-\mathrm{B}^{-2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{3} \partial x_{i}}\right)-2 \mathrm{~B}^{-3} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{3}}\right)-\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{4} \partial x_{i}}\right)-2 \mathrm{~B}^{-3} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{4}}\right)\right] \\
&\left.+X^{8}\left[\mathrm{~B}^{-2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{4} \partial x_{i}}\right)-2 \mathrm{~B}^{-3} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{4}}\right)-\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{3} \partial x_{i}}\right)-2 \mathrm{~B}^{-3} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{3}}\right)\right]\right]-\frac{\partial L}{\partial x_{3}} \mathrm{~d} x_{i}
\end{aligned}
$$

Let $=\boldsymbol{i}_{\lambda}\left(\emptyset_{L}\right) \mathrm{t} \quad \boldsymbol{d} \boldsymbol{E}_{L}$

$$
\begin{aligned}
&=\sum_{i=1}^{8} X^{i}\left[\left(\mathrm{~B}^{2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{5} \partial x_{i}}\right)+2 \mathrm{~B} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{5}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{6} \partial x_{i}}\right)+2 \mathrm{~B} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{6}}\right)\right) d x_{1}\right. \\
&+\left(-\mathrm{B}^{2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{6} \partial x_{i}}\right)+2 \mathrm{~B} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{6}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{5} \partial x_{i}}\right)+2 \mathrm{~B} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{5}}\right)\right) d x_{2} \\
&+\left(\mathrm{B}^{2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{7} \partial x_{i}}\right)+2 \mathrm{~B} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{7}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{8} \partial x_{i}}\right)+2 \mathrm{~B} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{8}}\right)\right) d x_{3} \\
&+\left(-\mathrm{B}^{2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{8} \partial x_{i}}\right)\right. \\
&\left.+2 \mathrm{~B} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{8}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{7} \partial x_{i}}\right)+2 \mathrm{~B} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{7}}\right)\right) d x_{4}\left(-\mathrm{B}^{-2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{1} \partial x_{i}}\right)\right. \\
&\left.+2 \mathrm{~B}^{-3} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{1}}\right)-\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{2} \partial x_{i}}\right)+2 \mathrm{~B}^{-3} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{2}}\right)\right) d x_{5} \\
&+\left(\mathrm{B}^{-2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{2} \partial x_{i}}\right)-2 \mathrm{~B}^{-3} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{2}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{1} \partial x_{i}}\right)-2 \mathrm{~B}^{-3} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{1}}\right)\right) d x_{6} \\
&+\left(-\mathrm{B}^{-2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{3} \partial x_{i}}\right)-2 \mathrm{~B}^{-3} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{3}}\right)-\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{4} \partial x_{i}}\right)-2 \mathrm{~B}^{-3} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{4}}\right)\right) d x_{67} \\
&\left.+\left(\mathrm{B}^{-2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{4} \partial x_{i}}\right)-2 \mathrm{~B}^{-3} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{4}}\right)-\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{3} \partial x_{i}}\right)-2 \mathrm{~B}^{-3} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{3}}\right)\right) d x_{8}\right]
\end{aligned}
$$

$$
=\sum_{i=1}^{8}\left[X^{1}\left[B^{2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{5} \partial x_{i}}\right)+2 \mathrm{~B} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{5}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{6} \partial x_{i}}\right)+2 \mathrm{~B} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{6}}\right)\right]\right.
$$

$$
+X^{2}\left[-\mathrm{B}^{2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{6} \partial x_{i}}\right)+2 \mathrm{~B} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{6}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{5} \partial x_{i}}\right)+2 \mathrm{~B} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{5}}\right)\right]
$$

$$
+X^{3}\left[\mathrm{~B}^{2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{7} \partial x_{i}}\right)+2 \mathrm{~B} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{7}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{8} \partial x_{i}}\right)+2 \mathrm{~B} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{8}}\right)\right]
$$

$$
+X^{4}\left[-\mathrm{B}^{2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{8} \partial x_{i}}\right)+2 \mathrm{~B} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{8}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{7} \partial x_{i}}\right)+2 \mathrm{~B} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{7}}\right)\right]
$$

$$
+X^{5}\left[-\mathrm{B}^{-2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{1} \partial x_{i}}\right)+2 \mathrm{~B}^{-3} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{1}}\right)-\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{2} \partial x_{i}}\right)+2 \mathrm{~B}^{-3} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{2}}\right)\right]
$$

$$
+X^{6}\left[\mathrm{~B}^{-2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{2} \partial x_{i}}\right)-2 \mathrm{~B}^{-3} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{2}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{1} \partial x_{i}}\right)-2 \mathrm{~B}^{-3} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{1}}\right)\right]
$$

$$
+X^{7}\left[-\mathrm{B}^{-2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{3} \partial x_{i}}\right)-2 \mathrm{~B}^{-3} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{3}}\right)-\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{4} \partial x_{i}}\right)-2 \mathrm{~B}^{-3} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{4}}\right)\right]
$$

$$
\left.+X^{8}\left[\mathrm{~B}^{-2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{4} \partial x_{i}}\right)-2 \mathrm{~B}^{-3} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{4}}\right)-\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{3} \partial x_{i}}\right)-2 \mathrm{~B}^{-3} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{3}}\right)\right]\right]
$$

$$
-\frac{\partial L}{\partial x_{i}} \mathrm{~d} x_{i}
$$

$X^{1}\left[\mathrm{~B}^{2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{5} \partial x_{i}}\right)+2 \mathrm{~B} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{5}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{6} \partial x_{i}}\right)+2 \mathrm{~B} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{6}}\right)\right]$
$=X^{1}\left[\mathrm{~B}^{2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{5} \partial x_{i}}\right)+2 \mathrm{~B} \cos \theta\left(\frac{\partial \mathrm{~B}}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{5}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{6} \partial x_{i}}\right)+2 \mathrm{~B} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{6}}\right)\right]-\frac{\partial L}{\partial x_{i}} \mathrm{~d} x_{i}$
differential energy function

$$
\begin{aligned}
& d E_{L}=\sum_{i=1}^{8}\left[X^{1}\left[\mathrm{~B}^{2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{5} \partial x_{i}}\right)+2 \mathrm{~B} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{5}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{6} \partial x_{i}}\right)+2 \mathrm{~B} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{6}}\right)\right]\right. \\
& +X^{2}\left[-\mathrm{B}^{2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{6} \partial x_{\mathrm{i}}}\right)+2 \mathrm{~B} \cos \theta\left(\frac{\partial B}{\partial x_{\mathrm{i}}}\right)\left(\frac{\partial}{\partial x_{6}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{5} \partial x_{\mathrm{i}}}\right)+2 \mathrm{~B} \sin \theta\left(\frac{\partial B}{\partial x_{\mathrm{i}}}\right)\left(\frac{\partial}{\partial x_{5}}\right)\right] \\
& +X^{3}\left[\mathrm{~B}^{2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{7} \partial x_{\mathrm{i}}}\right)+2 \mathrm{~B} \cos \theta\left(\frac{\partial B}{\partial x_{\mathrm{i}}}\right)\left(\frac{\partial}{\partial x_{7}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{8} \partial x_{\mathrm{i}}}\right)+2 \mathrm{~B} \sin \theta\left(\frac{\partial B}{\partial x_{\mathrm{i}}}\right)\left(\frac{\partial}{\partial x_{8}}\right)\right] \\
& +X^{4}\left[-\mathrm{B}^{2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{8} \partial x_{\mathrm{i}}}\right)+2 \mathrm{~B} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{8}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{7} \partial x_{i}}\right)+2 \mathrm{~B} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{7}}\right)\right] \\
& +X^{5}\left[-\mathrm{B}^{-2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{1} \partial x_{i}}\right)+2 \mathrm{~B}^{-3} \cos \theta\left(\frac{\partial B}{\partial x_{\mathrm{i}}}\right)\left(\frac{\partial}{\partial x_{1}}\right)-\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{2} \partial x_{i}}\right)+2 \mathrm{~B}^{-3} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{2}}\right)\right] \\
& +X^{6}\left[\mathrm{~B}^{-2} \cos \theta\left(\frac{\partial^{L} L}{\partial x_{2} \partial x_{i}}\right)-2 \mathrm{~B}^{-3} \cos \theta\left(\frac{\partial B}{\partial x_{\mathrm{i}}}\right)\left(\frac{\partial}{\partial x_{2}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{L} L}{\partial x_{1} \partial x_{\mathrm{i}}}\right)-2 \mathrm{~B}^{-3} \sin \theta\left(\frac{\partial B}{\partial x_{\mathrm{i}}}\right)\left(\frac{\partial}{\partial x_{1}}\right)\right] \\
& +X^{7}\left[-\mathrm{B}^{-2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{3} \partial x_{i}}\right)-2 \mathrm{~B}^{-3} \cos \theta\left(\frac{\partial B}{\partial x_{\mathrm{i}}}\right)\left(\frac{\partial}{\partial x_{3}}\right)-\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{4} \partial x_{i}}\right)-2 \mathrm{~B}^{-3} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{4}}\right)\right] \\
& \left.+X^{8}\left[\mathrm{~B}^{-2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{4} \partial x_{i}}\right)-2 \mathrm{~B}^{-3} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{4}}\right)-\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{3} \partial x_{i}}\right)-2 \mathrm{~B}^{-3} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{3}}\right)\right]\right] \\
& -\frac{\partial L}{\partial x_{3}} \mathrm{~d} x_{i} \\
& =\sum_{i=1}^{8}\left[X^{1}\left[\mathrm{~B}^{2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{5} \partial x_{i}}\right)+2 \mathrm{~B} \cos \theta\left(\frac{\partial \mathrm{~B}}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{5}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{6} \partial x_{i}}\right)+2 \mathrm{~B} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{6}}\right)\right]\right. \\
& +X^{2}\left[-\mathrm{B}^{2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{6} \partial x_{i}}\right)+2 \mathrm{~B} \cos \theta\left(\frac{\partial \mathrm{~B}}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{6}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{5} \partial x_{i}}\right)+2 \mathrm{~B} \sin \theta\left(\frac{\partial \mathrm{~B}}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{5}}\right)\right] \\
& +X^{3}\left[\mathrm{~B}^{2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{7} \partial x_{i}}\right)+2 \mathrm{~B} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{7}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{8} \partial x_{i}}\right)+2 \mathrm{~B} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{8}}\right)\right] \\
& +X^{4}\left[-\mathrm{B}^{2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{8} \partial x_{i}}\right)+2 \mathrm{~B} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{8}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{7} \partial x_{i}}\right)+2 \mathrm{~B} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{7}}\right)\right] \\
& +X^{5}\left[-\mathrm{B}^{-2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{1} \partial x_{i}}\right)+2 \mathrm{~B}^{-3} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{1}}\right)-\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{2} \partial x_{i}}\right)+2 \mathrm{~B}^{-3} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{2}}\right)\right] \\
& +X^{6}\left[\mathrm{~B}^{-2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{2} \partial x_{i}}\right)-2 \mathrm{~B}^{-3} \cos \theta\left(\frac{\partial \mathrm{~B}}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{2}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{1} \partial x_{i}}\right)-2 \mathrm{~B}^{-3} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{1}}\right)\right] \\
& +X^{7}\left[-\mathrm{B}^{-2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{3} \partial x_{i}}\right)-2 \mathrm{~B}^{-3} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{3}}\right)-\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{4} \partial x_{i}}\right)-2 \mathrm{~B}^{-3} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{4}}\right)\right] \\
& \left.+X^{8}\left[\mathrm{~B}^{-2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{4} \partial x_{i}}\right)-2 \mathrm{~B}^{-3} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{4}}\right)-\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{3} \partial x_{i}}\right)-2 \mathrm{~B}^{-3} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{3}}\right)\right]\right]-\frac{\partial L}{\partial x_{i}} \mathrm{~d} x_{i} \\
& X^{1}\left[\mathrm{~B}^{2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{5} \partial x_{i}}\right)+2 \mathrm{~B} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{5}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{6} \partial x_{i}}\right)+2 \mathrm{~B} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{6}}\right)\right] \\
& =X^{1}\left[\mathrm{~B}^{2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{5} \partial x_{i}}\right)+2 \mathrm{~B} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{5}}\right)+\mathrm{B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{6} \partial x_{i}}\right)+2 \mathrm{~B} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{6}}\right)\right]-\frac{\partial L}{\partial x_{i}} \mathrm{~d} x_{i}
\end{aligned}
$$

Or
$-X^{1} \mathrm{~B}^{2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{5} \partial x_{i}}\right)+2 X^{1} \mathrm{~B} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{5}}\right)+X^{1} \mathrm{~B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{6} \partial x_{i}}\right)+2 X^{1} \mathrm{~B} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{6}}\right)$

$$
-X^{1} \mathrm{~B}^{2} \cos \theta\left(\frac{\partial^{2} L}{\partial x_{5} \partial x_{i}}\right)+2 X^{1} \mathrm{~B} \cos \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{5}}\right)+X^{1} \mathrm{~B}^{2} \sin \theta\left(\frac{\partial^{2} L}{\partial x_{6} \partial x_{i}}\right)+2 X^{1} \mathrm{~B} \sin \theta\left(\frac{\partial B}{\partial x_{i}}\right)\left(\frac{\partial}{\partial x_{6}}\right)+\frac{\partial L}{\partial x_{1}} \mathrm{~d} x_{1}=0
$$

$\cos \theta\left[X^{1} \frac{\partial}{\partial x_{i}}+X^{2} \frac{\partial}{\partial x_{i}}+X^{3} \frac{\partial}{\partial x_{3}}+X^{4} \frac{\partial}{\partial x_{4}}+X^{5} \frac{\partial}{\partial x_{5}}+X^{6} \frac{\partial}{\partial x_{6}}+X^{7} \frac{\partial}{\partial x_{7}}+X^{8} \frac{\partial}{\partial x_{8}}\right] \mathbf{B}^{2} \frac{\partial L}{\partial x_{5}}$
$-\sin \theta\left[X^{1} \frac{\partial}{\partial x_{i}}+X^{2} \frac{\partial}{\partial x_{i}}+X^{3} \frac{\partial}{\partial x_{3}}+X^{4} \frac{\partial}{\partial x_{4}}+X^{5} \frac{\partial}{\partial x_{5}}+X^{6} \frac{\partial}{\partial x_{6}}+X^{7} \frac{\partial}{\partial x_{7}}+X^{8} \frac{\partial}{\partial x_{8}}\right] \mathrm{B}^{2} \frac{\partial L}{\partial x_{6}}+\frac{\partial L}{\partial x_{1}} \mathrm{~d} x_{1}=0$
The integral curve of the vector filed G , let $\boldsymbol{\rho}: \boldsymbol{R} \rightarrow \boldsymbol{R}^{2}$ the curve

$$
\begin{gathered}
\gamma(\alpha)=\frac{\partial \alpha}{\partial t}=X^{1} \frac{\partial}{\partial x_{1}}+X^{2} \frac{\partial}{\partial x_{2}}+X^{3} \frac{\partial}{\partial x_{3}}+X^{4} \frac{\partial}{\partial x_{4}}+X^{6} \frac{\partial}{\partial x_{6}}+X^{7} \frac{\partial}{\partial x_{7}}+X^{8} \frac{\partial}{\partial x_{8}} \\
\cos \theta\left(\frac{\partial}{\partial t}\right)\left(B^{2} \frac{\partial L}{\partial x_{5}}\right)+\sin \theta\left(\frac{\partial}{\partial t}\right)\left(B^{2} \frac{\partial L}{\partial x_{6}}\right)+\left(\frac{\partial L}{\partial x_{1}}\right)=0
\end{gathered}
$$

$\cos \theta\left[X^{1} \frac{\partial}{\partial x_{i}}+X^{2} \frac{\partial}{\partial x_{i}}+X^{3} \frac{\partial}{\partial x_{3}}+X^{4} \frac{\partial}{\partial x_{4}}+X^{5} \frac{\partial}{\partial x_{5}}+X^{6} \frac{\partial}{\partial x_{6}}+X^{7} \frac{\partial}{\partial x_{7}}+X^{8} \frac{\partial}{\partial x_{8}}\right] \mathrm{B}^{2} \frac{\partial L}{\partial x_{6}}$
$-\sin \theta\left[X^{1} \frac{\partial}{\partial x_{i}}+X^{2} \frac{\partial}{\partial x_{i}}+X^{3} \frac{\partial}{\partial x_{3}}+X^{4} \frac{\partial}{\partial x_{4}}+X^{5} \frac{\partial}{\partial x_{5}}+X^{6} \frac{\partial}{\partial x_{6}}+X^{7} \frac{\partial}{\partial x_{7}}+X^{8} \frac{\partial}{\partial x_{8}}\right] \mathbf{B}^{2} \frac{\partial L}{\partial x_{5}}+\frac{\partial L}{\partial x_{2}} \mathrm{~d} x_{2}=\mathbf{0}$

$$
\cos \theta\left(\frac{\partial}{\partial t}\right)\left(B^{2} \frac{\partial L}{\partial x_{6}}\right)+\sin \theta\left(\frac{\partial}{\partial t}\right)\left(B^{2} \frac{\partial L}{\partial x_{5}}\right)+\left(\frac{\partial L}{\partial x_{2}}\right)=0
$$

$-\cos \theta\left[X^{1} \frac{\partial}{\partial x_{i}}+X^{2} \frac{\partial}{\partial x_{i}}+X^{3} \frac{\partial}{\partial x_{3}}+X^{4} \frac{\partial}{\partial x_{4}}+X^{5} \frac{\partial}{\partial x_{5}}+X^{6} \frac{\partial}{\partial x_{6}}+X^{7} \frac{\partial}{\partial x_{7}}+X^{8} \frac{\partial}{\partial x_{8}}\right] B^{2} \frac{\partial L}{\partial x_{7}}$

$$
+\sin \theta\left[X^{1} \frac{\partial}{\partial x_{i}}+X^{2} \frac{\partial}{\partial x_{i}}+X^{3} \frac{\partial}{\partial x_{3}}+X^{4} \frac{\partial}{\partial x_{4}}+X^{5} \frac{\partial}{\partial x_{5}}+X^{6} \frac{\partial}{\partial x_{6}}+X^{7} \frac{\partial}{\partial x_{7}}+X^{8} \frac{\partial}{\partial x_{8}}\right] \mathbf{B}^{2} \frac{\partial L}{\partial x_{8}}+\frac{\partial L}{\partial x_{3}} \mathrm{~d} x_{3}=0
$$

$$
\cos \theta\left(\frac{\partial}{\partial t}\right)\left(B^{2} \frac{\partial L}{\partial x_{7}}\right)+\sin \theta\left(\frac{\partial}{\partial t}\right)\left(B^{2} \frac{\partial L}{\partial x_{8}}\right)+\left(\frac{\partial L}{\partial x_{3}}\right)=0
$$

$$
\cos \theta\left[X^{1} \frac{\partial}{\partial x_{i}}+X^{2} \frac{\partial}{\partial x_{i}}+X^{3} \frac{\partial}{\partial x_{3}}+X^{4} \frac{\partial}{\partial x_{4}}+X^{5} \frac{\partial}{\partial x_{5}}+X^{6} \frac{\partial}{\partial x_{6}}+X^{7} \frac{\partial}{\partial x_{7}}+X^{8} \frac{\partial}{\partial x_{8}}\right] B^{2} \frac{\partial L}{\partial x_{8}}
$$

$$
+\sin \theta\left[X^{1} \frac{\partial}{\partial x_{i}}+X^{2} \frac{\partial}{\partial x_{i}}+X^{3} \frac{\partial}{\partial x_{3}}+X^{4} \frac{\partial}{\partial x_{4}}+X^{5} \frac{\partial}{\partial x_{5}}+X^{6} \frac{\partial}{\partial x_{6}}+X^{7} \frac{\partial}{\partial x_{7}}+X^{8} \frac{\partial}{\partial x_{8}}\right] \mathbf{B}^{2} \frac{\partial L}{\partial x_{7}}+\frac{\partial L}{\partial x_{4}} \mathrm{~d} x_{4}=0
$$

$$
\cos \theta\left(\frac{\partial}{\partial t}\right)\left(B^{2} \frac{\partial L}{\partial x_{8}}\right)+\sin \theta\left(\frac{\partial}{\partial t}\right)\left(B^{2} \frac{\partial L}{\partial x_{7}}\right)+\left(\frac{\partial L}{\partial x_{4}}\right)=0
$$

$-\cos \theta\left[X^{1} \frac{\partial}{\partial x_{i}}+X^{2} \frac{\partial}{\partial x_{i}}+X^{3} \frac{\partial}{\partial x_{3}}+X^{4} \frac{\partial}{\partial x_{4}}+X^{5} \frac{\partial}{\partial x_{5}}+X^{6} \frac{\partial}{\partial x_{6}}+X^{7} \frac{\partial}{\partial x_{7}}+X^{8} \frac{\partial}{\partial x_{8}}\right] \mathrm{B}^{2} \frac{\partial L}{\partial x_{1}}$
$-\sin \theta\left[X^{1} \frac{\partial}{\partial x_{i}}+X^{2} \frac{\partial}{\partial x_{i}}+X^{3} \frac{\partial}{\partial x_{3}}+X^{4} \frac{\partial}{\partial x_{4}}+X^{5} \frac{\partial}{\partial x_{5}}+X^{6} \frac{\partial}{\partial x_{6}}+X^{7} \frac{\partial}{\partial x_{7}}+X^{8} \frac{\partial}{\partial x_{8}}\right] \mathbf{B}^{2} \frac{\partial L}{\partial x_{2}}+\frac{\partial L}{\partial x_{5}} \mathrm{~d} x_{5}=0$

$$
\cos \theta\left(\frac{\partial}{\partial t}\right)\left(B^{-2} \frac{\partial L}{\partial x_{1}}\right)+\sin \theta\left(\frac{\partial}{\partial t}\right)\left(B^{-2} \frac{\partial L}{\partial x_{2}}\right)+\left(\frac{\partial L}{\partial x_{5}}\right)=0
$$

$\cos \theta\left[X^{1} \frac{\partial}{\partial x_{i}}+X^{2} \frac{\partial}{\partial x_{i}}+X^{3} \frac{\partial}{\partial x_{3}}+X^{4} \frac{\partial}{\partial x_{4}}+X^{5} \frac{\partial}{\partial x_{5}}+X^{6} \frac{\partial}{\partial x_{6}}+X^{7} \frac{\partial}{\partial x_{7}}+X^{8} \frac{\partial}{\partial x_{8}}\right] \mathrm{B}^{2} \frac{\partial L}{\partial x_{2}}$
$-\sin \theta\left[X^{1} \frac{\partial}{\partial x_{i}}+X^{2} \frac{\partial}{\partial x_{i}}+X^{3} \frac{\partial}{\partial x_{3}}+X^{4} \frac{\partial}{\partial x_{4}}+X^{5} \frac{\partial}{\partial x_{5}}+X^{6} \frac{\partial}{\partial x_{6}}+X^{7} \frac{\partial}{\partial x_{7}}+X^{8} \frac{\partial}{\partial x_{8}}\right] \mathbf{B}^{2} \frac{\partial L}{\partial x_{1}}+\frac{\partial L}{\partial x_{6}} \mathrm{~d} x_{6}=0$

$$
\cos \theta\left(\frac{\partial}{\partial t}\right)\left(B^{-2} \frac{\partial L}{\partial x_{2}}\right)+\sin \theta\left(\frac{\partial}{\partial t}\right)\left(B^{-2} \frac{\partial L}{\partial x_{1}}\right)+\left(\frac{\partial L}{\partial x_{6}}\right)=0
$$

$-\cos \theta\left[X^{1} \frac{\partial}{\partial x_{i}}+X^{2} \frac{\partial}{\partial x_{i}}+X^{3} \frac{\partial}{\partial x_{3}}+X^{4} \frac{\partial}{\partial x_{4}}+X^{5} \frac{\partial}{\partial x_{5}}+X^{6} \frac{\partial}{\partial x_{6}}+X^{7} \frac{\partial}{\partial x_{7}}+X^{8} \frac{\partial}{\partial x_{8}}\right] \mathrm{B}^{2} \frac{\partial L}{\partial x_{3}}$
$-\sin \theta\left[X^{1} \frac{\partial}{\partial x_{i}}+X^{2} \frac{\partial}{\partial x_{i}}+X^{3} \frac{\partial}{\partial x_{3}}+X^{4} \frac{\partial}{\partial x_{4}}+X^{5} \frac{\partial}{\partial x_{5}}+X^{6} \frac{\partial}{\partial x_{6}}+X^{7} \frac{\partial}{\partial x_{7}}+X^{8} \frac{\partial}{\partial x_{8}}\right] \mathrm{B}^{2} \frac{\partial L}{\partial x_{4}}+\frac{\partial L}{\partial x_{7}} \mathrm{~d} x_{7}=0$

$$
\cos \theta\left(\frac{\partial}{\partial t}\right)\left(B^{-2} \frac{\partial L}{\partial x_{3}}\right)+\sin \theta\left(\frac{\partial}{\partial t}\right)\left(B^{-2} \frac{\partial L}{\partial x_{4}}\right)+\left(\frac{\partial L}{\partial x_{7}}\right)=0
$$

$\cos \theta\left[X^{1} \frac{\partial}{\partial x_{i}}+X^{2} \frac{\partial}{\partial x_{i}}+X^{3} \frac{\partial}{\partial x_{3}}+X^{4} \frac{\partial}{\partial x_{4}}+X^{5} \frac{\partial}{\partial x_{5}}+X^{6} \frac{\partial}{\partial x_{6}}+X^{7} \frac{\partial}{\partial x_{7}}+X^{8} \frac{\partial}{\partial x_{8}}\right] \mathrm{B}^{2} \frac{\partial L}{\partial x_{4}}$
$-\sin \theta\left[X^{1} \frac{\partial}{\partial x_{i}}+X^{2} \frac{\partial}{\partial x_{i}}+X^{3} \frac{\partial}{\partial x_{3}}+X^{4} \frac{\partial}{\partial x_{4}}+X^{5} \frac{\partial}{\partial x_{5}}+X^{6} \frac{\partial}{\partial x_{6}}+X^{7} \frac{\partial}{\partial x_{7}}+X^{8} \frac{\partial}{\partial x_{8}}\right] \mathrm{B}^{2} \frac{\partial L}{\partial x_{3}}+\frac{\partial L}{\partial x_{8}} \mathrm{~d} x_{8}=0$

$$
\cos \theta\left(\frac{\partial}{\partial t}\right)\left(B^{-2} \frac{\partial L}{\partial x_{4}}\right)+\sin \theta\left(\frac{\partial}{\partial t}\right)\left(B^{-2} \frac{\partial L}{\partial x_{3}}\right)+\left(\frac{\partial L}{\partial x_{8}}\right)=0
$$

Thus

$$
\begin{align*}
& \cos \theta\left(\frac{\partial}{\partial t}\right)\left(B^{2} \frac{\partial L}{\partial x_{5}}\right)+\sin \theta\left(\frac{\partial}{\partial t}\right)\left(B^{2} \frac{\partial L}{\partial x_{6}}\right)+\left(\frac{\partial L}{\partial x_{1}}\right)=0, \cos \theta\left(\frac{\partial}{\partial t}\right)\left(B^{2} \frac{\partial L}{\partial x_{6}}\right)+\sin \theta\left(\frac{\partial}{\partial t}\right)\left(B^{2} \frac{\partial L}{\partial x_{5}}\right)+\left(\frac{\partial L}{\partial x_{2}}\right)=0 \\
& \cos \theta\left(\frac{\partial}{\partial t}\right)\left(B^{2} \frac{\partial L}{\partial x_{7}}\right)+\sin \theta\left(\frac{\partial}{\partial t}\right)\left(B^{2} \frac{\partial L}{\partial x_{8}}\right)+\left(\frac{\partial L}{\partial x_{3}}\right)=0, \cos \theta\left(\frac{\partial}{\partial t}\right)\left(B^{2} \frac{\partial L}{\partial x_{8}}\right)+\sin \theta\left(\frac{\partial}{\partial t}\right)\left(B^{2} \frac{\partial L}{\partial x_{7}}\right)+\left(\frac{\partial L}{\partial x_{4}}\right)=0 \\
& \cos \theta\left(\frac{\partial}{\partial t}\right)\left(B^{-2} \frac{\partial L}{\partial x_{1}}\right)+\sin \theta\left(\frac{\partial}{\partial t}\right)\left(B^{-2} \frac{\partial L}{\partial x_{2}}\right)+\left(\frac{\partial L}{\partial x_{5}}\right)=0, \cos \theta\left(\frac{\partial}{\partial t}\right)\left(B^{-2} \frac{\partial L}{\partial x_{2}}\right)+\sin \theta\left(\frac{\partial}{\partial t}\right)\left(B^{-2} \frac{\partial L}{\partial x_{1}}\right)+\left(\frac{\partial L}{\partial x_{6}}\right)=0 \\
& \cos \theta\left(\frac{\partial}{\partial t}\right)\left(B^{-2} \frac{\partial L}{\partial x_{3}}\right)+\sin \theta\left(\frac{\partial}{\partial t}\right)\left(B^{-2} \frac{\partial L}{\partial x_{4}}\right)+\left(\frac{\partial L}{\partial x_{7}}\right)=0 \quad, \cos \theta\left(\frac{\partial}{\partial t}\right)\left(B^{-2} \frac{\partial L}{\partial x_{4}}\right)+\sin \theta\left(\frac{\partial}{\partial t}\right)\left(B^{-2} \frac{\partial L}{\partial x_{3}}\right)+\left(\frac{\partial L}{\partial x_{8}}\right)=0 \tag{9}
\end{align*}
$$

4. Conclusions

The solutions of the Lagrangian equations (9) are named Conformal Lagrangian Dynamics on Contact 9- Manifolds determined by on the mechanical system triple ($\mathbf{T M}, \mathbf{g}, \mathbf{L}$) are the paths of vector field \mathbf{J} on \mathbf{M}.

References

[1] Zeki Kasap, Conformal E Lagrange Mechanical Equations on Contact 5- Manifolds, international Journal of Innovative Mathematical Research -Volume 3-Lssue 5 May 2015,pp41-48.
[2] Zeki KASAP, Hamilton Equations on a Contact 5-Manifolds, Elixir International Journal, Math. 92 (2016) 38743-38748.
[3] M. Manev and M. Ivanova, Canonical-type connection on almost contact manifolds with B-metric, Ann. Glob. Anal. Geom., 43, (2013), 397-408.
[4] C. Bellettini, Almost complex structures and calibrated integral cycles in contact 5-manifolds, Advances in Calculus of Variations, Vol.6, Issue 3, (2013), 339-374.
[5] H. Kodama, Complex contact three manifolds with Legendrian vector fields, Proc. Japan Acad. Ser. A Math. Sci., 78, Number 4, (2002), 51-54. Geom., 43, (2013), 397-408.
[6] J.B. Etnyre, Contact structures on 5-manifolds, http://arxiv.org/pdf/1210.5208v2.pdf, (2013), 1-18.

