A Fixed Point Theorem for (ε, δ) Type Contraction Mappings in Metrically Convex Spaces

Ladlay Khan
Department of Mathematics, Mewat Engineering College (Waqf), Pall, Nuh, Mewat 102 107, India.

ARTICLE INFO

Article history:

Received: 20 April 2017;
Received in revised form:
2 June 2017;
Accepted: 12 June 2017;

Keywords:

Fixed point,
Non-self mappings,
Metric convexity,
Meir and Keeler type condition.

Abstract

The aim of this paper is to establish a fixed point theorem for non-self mappings by using the Meir and Keeler (ε, δ) type contraction condition. Our result generalizes completely or partially the result due to Meir and Keeler [5], Rhoades [10] and others.

© 2017 Elixir All rights reserved.

Introduction

In 1969, Meir and Keeler [5] proved that Banach Contraction Principle remains true for weakly uniformly strict contractions: Given $\varepsilon>0$ there exists a $\delta>0$ such that

$$
\varepsilon<\mathrm{d}(\mathrm{x}, \mathrm{y})<\varepsilon+\delta \text { implies } \mathrm{d}(\mathrm{Tx}, \mathrm{Ty})<\varepsilon .
$$

The result due to Meir and Keeler [5] has been generalized and extended in various ways and there exists a considerable literature for self mappings. To mention a few, we cite [3,5,6,7,8,9].

In this paper, we prove a Meir and Keeler [5] type fixed point theorem for single-valued non-self mappings in metrically convex spaces by using the ideas of Rhoades [10]. In proving the result, we follow the definitions and conventions of Assad [1] and Assad and Kirk [2]. Before formulating our result, for the sake of completeness, we state the following result due to Rhoades [10].
Theorem 1.1. ([10]) Let (X, d) be a complete metrically convex metric space and K be a nonempty closed convex subset of X. Let $\mathrm{T}: \mathrm{K} \rightarrow \mathrm{X}$ be a mapping satisfying:

$$
\mathrm{d}(\mathrm{~T} x, \mathrm{~T} y) \leq \mathrm{M}(\mathrm{x}, \mathrm{y})
$$

where $M(x, y)=\max \{1 / 2 d(x, y), d(x, T x), d(y, T y), d(x, T y)+d(y, T x)\}$
for all $\mathrm{x}, \mathrm{y} \in \mathrm{K}$, with $\mathrm{x} \neq \mathrm{y}$, where $0<\mathrm{h}<1, \mathrm{q} \geq 1+2 \mathrm{~h}$ and $\mathrm{T} \mathrm{x} \in \mathrm{K}$ for each $\mathrm{x} \in \delta \mathrm{K}$. Then T has a fixed point in K .

Definition 1.2.

Let K be a nonempty subset of a metric space X and the mapping $\mathrm{T}: \mathrm{K} \rightarrow \mathrm{X}$ is said to be (ϵ, δ) contraction if there exists a function $\delta:(0, \infty) \rightarrow(0, \infty)$ such that, for any $\epsilon>0, \delta(\epsilon)>\epsilon$ and

$$
\begin{equation*}
\epsilon \leq M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)\}}{2}<\epsilon(\delta)\right. \tag{1.1}
\end{equation*}
$$

which implies that $\mathrm{d}(\mathrm{Tx}, \mathrm{Ty})<\epsilon$.
Definition 1.3. ([2])
A metric space (X, d) is said to be metrically convex if for any $x, y \in X$ with $x \neq y$ there exists a point $z \in X, x \neq z \neq y$ such that

$$
\mathrm{d}(\mathrm{x}, \mathrm{z})+\mathrm{d}(\mathrm{z}, \mathrm{y})=\mathrm{d}(\mathrm{x}, \mathrm{y}) .
$$

Lemma 1.4. ([2])
Let K be a nonempty closed subset of a metrically convex metric space X. If $x \in K$ and $y \notin K$ then there exists a point $z \in \delta K$ (the boundary of K) such that

$$
\mathrm{d}(\mathrm{x}, \mathrm{z})+\mathrm{d}(\mathrm{z}, \mathrm{y})=\mathrm{d}(\mathrm{x}, \mathrm{y})
$$

2. Result

The main result runs as follows.

Theorem 2.1.

Let (X, d) be a complete metrically convex metric space and K be a nonempty closed subset of X . The mapping $\mathrm{T}: \mathrm{K} \rightarrow \mathrm{X}$ satisfying (1.1) and
(i) for each $\mathrm{x} \in \mathrm{K}, \mathrm{T} \mathrm{x} \in \mathrm{K}$.

Then T has a unique fixed point in K .

Proof

Firstly, we proceed to construct two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in the following way. Let $x_{0} \in K$. Define $y_{1}=T x_{0}$. If $y_{1} \in K$ set $y_{1}=x_{1}$. If $y_{1} \notin K$, then choose $x_{1} \in \delta K$ so that

$$
\mathrm{d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)+\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=\mathrm{d}\left(\mathrm{x}_{0}, \mathrm{y}_{1}\right) .
$$

If $y_{2} \in K$ then set $y_{2}=x_{2}$. If $y_{2} \notin K$, then choose $x_{2} \in \delta K$ so that

$$
\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)+\mathrm{d}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{y}_{2}\right) .
$$

Thus, repeating the foregoing arguments, one obtains two sequences $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ such that
(ii) $\mathrm{y}_{\mathrm{n}+1}=\mathrm{T} \mathrm{x}_{\mathrm{n}}$,
(iii) $y_{n}=x_{n}$ if $y_{n} \in K$,
(iv) if $x_{n} \in \delta K$ then $d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, y_{n}\right)=d\left(x_{n-1}, y_{n}\right)$, where $y_{n} \notin K$.

Here, one obtains two types of sets we denote as follows:

$$
P=\left\{x_{i} \in\left\{x_{n}\right\}: x_{i}=y_{i}\right\} \text { and } Q=\left\{x_{i} \in\left\{x_{n}\right\}: x_{i} \neq y_{i}\right\}
$$

One can note that, if $x_{n} \in Q$ then x_{n-1} and $x_{n+1} \in P$. We wish to estimate $d\left(x_{n}, x_{n+1}\right)$. Now, we distinguish the following three cases.
Case 1. If $\left(x_{n}, x_{n+1}\right) \in P$, then $d\left(x_{n}, x_{n+1}\right)=d\left(T x_{n-1}, T x_{n}\right) \leq M\left(x_{n-1}, x_{n}\right)$

$$
\left.\begin{array}{l}
\leq \max \left\{\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{~T} \mathrm{x}_{\mathrm{n}-1}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{~T} \mathrm{x}_{\mathrm{n}}\right), \frac{\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{~T} \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{~T} \mathrm{x}_{\mathrm{n}-1}\right)}{2}\right\} \\
\leq \max \left\{\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1,} \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right)\right. \\
\end{array}\right\}
$$

If we suppose that $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right) \leq \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)$, then we get $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)$, which is a contradiction.
Otherwise, if $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)$ then, one obtains
$\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \mathrm{M}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right) \leq \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)$.
Case 2. If $x_{n} \in P$ and $x_{n+1} \in Q$, then

$$
\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{y}_{\mathrm{n}+1}\right)=\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)
$$

which in turn yields $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)$. Now, proceeding as Case 1, we have

$$
\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \mathrm{M}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right) \leq \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right) .
$$

Case 3. If $x_{n} \in Q$ and $x_{n+1} \in P$. Since $x_{n} \in Q$ and is a convex linear combination of x_{n-1} and y_{n}, it follows that $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \max \left\{\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}+1}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{y}_{\mathrm{n}}\right)\right\}$.
Now, if $\quad d\left(x_{n-1}, x_{n+1}\right) \leq d\left(y_{n}, x_{n+1}\right)$, then $d\left(x_{n}, x_{n+1}\right) \leq d\left(y_{n}, x_{n+1}\right)=d\left(x_{n}, x_{n+1}\right)$.
Proceeding as above, one gets $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \mathrm{M}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right) \leq \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)$.
Next, if $d\left(y_{n}, x_{n+1}\right) \leq d\left(x_{n-1}, x_{n+1}\right)$, then

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}+1}\right)=\mathrm{d}\left(\mathrm{~T}_{\mathrm{n}-2}, \mathrm{~T}_{\mathrm{x}}\right)=\mathrm{M}\left(\mathrm{x}_{\mathrm{n}-2}, \mathrm{x}_{\mathrm{n}}\right) \\
& \leq \max \left\{d\left(x_{n-2}, x_{n}\right), d\left(x_{n-2}, T x_{n-2}\right), d\left(x_{n}, T x_{n}\right), d\left(x_{n-2}, T x_{n}\right)+d\left(x_{n}, T x_{n-2}\right)\right\} \\
& \leq \max \left\{\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-2}, \mathrm{x}_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-2}, \mathrm{x}_{\mathrm{n}-1}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right), \underline{\left.\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-2}, \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{d}\left(\mathrm{x}_{\underline{n}}, \mathrm{x}_{\underline{n}-1}\right)\right\} .}\right.
\end{aligned}
$$

Here, three cases are possible, either $d\left(x_{n-2}, x_{n}\right), d\left(x_{n-2}, x_{n-1}\right)$ or $\left.\frac{d\left(x_{n-2}\right.}{\underline{n}} \frac{x_{n+1}}{} \frac{)+d\left(x_{\underline{n}}\right.}{2}, x_{\underline{n}-1}\right)$
will be maximum.
Firstly, we choose $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-2}, \mathrm{x}_{\mathrm{n}}\right)$ as maximum then
$\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-2}, \mathrm{x}_{\mathrm{n}}\right) \leq \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-2}, \mathrm{x}_{\mathrm{n}-1}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right) \leq \max \left\{\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-2}, \mathrm{x}_{\mathrm{n}-1}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)\right\}$.
When $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-2}, \mathrm{x}_{\mathrm{n}-1}\right)$ is maximum then $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-2}, \mathrm{x}_{\mathrm{n}-1}\right)$, otherwise

$$
\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)
$$

Secondly, we choose $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-2}, \mathrm{x}_{\mathrm{n}-1}\right)$ as maximum then $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-2}, \mathrm{x}_{\mathrm{n}-1}\right)$.
Finally, if $\left.\underline{d\left(x_{n-2}, x_{n+1}\right.} \frac{)+d\left(x_{n}, x_{n-1}\right)}{2}\right)$ is maximum, then

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq 1 \frac{\left\{\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}-2}, \mathrm{x}_{\mathrm{n}-1}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}-1}\right)\right\}}{2} \\
& \leq 1 \frac{\left.1 \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}-2}, \mathrm{x}_{\mathrm{n}-1}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-2} \mathrm{x}_{\mathrm{n}-1}\right)\right\} \leq \max \left\{\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-2}, \mathrm{x}_{\mathrm{n}-1}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}-1}\right)\right\} .}{2} .
\end{aligned}
$$

Thus in all the cases, we have

$$
\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \max \left\{\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-2}, \mathrm{x}_{\mathrm{n}-1}\right)\right\} .
$$

Hence

$\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \mathrm{M}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right) \leq \max \left\{\mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-2}, \mathrm{x}_{\mathrm{n}-1}\right)\right\}$.
It can be easily shown by induction that for $\mathrm{n}>1$, we have
$\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \max \left\{\mathrm{d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right), \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right\}$.
Thus $d\left(x_{n}, x_{n+1}\right)$ is decreasing and tending to 0 as $n \rightarrow \infty$. Hence $d\left(x_{n}, x_{n+1}\right)$ converges to $t \in[0, \infty)$. If $t=0$ then conclusion is trivial. So, suppose that $t>0$. Since $d\left(x_{n}, x_{n+1}\right)$ converges to t, the condition (1.1) yields

$$
\mathrm{t} \leq \mathrm{M}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)<\delta(\mathrm{t}) .
$$

Therefore $\mathrm{d}\left(\mathrm{Tx}_{\mathrm{n}-1}, \mathrm{~T} \mathrm{x}_{\mathrm{n}}\right)=\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)<\mathrm{t}$, this contradicts the fact. Thus

$$
\begin{equation*}
\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty \tag{2.2}
\end{equation*}
$$

Now, we show that for every $\epsilon>0$ there exists $m, n \geq N$ such that $\leq \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}-1}\right)<\delta(\epsilon) \Rightarrow \mathrm{d}\left(\mathrm{Tx}_{\mathrm{n}}, \mathrm{Tx}_{\mathrm{n}-1}\right)<\epsilon$.
Also, (2.2) implies that there exists an integer N such that $\mathrm{n} \geq \mathrm{N}, \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}-1}\right)<\delta^{\prime / 2}$. for all $\mathrm{n} \in \mathrm{N}$
where $\delta^{\prime}=\min \{\epsilon / 2,(\delta(\epsilon)-\epsilon) / 2\}$.
Let $\mathrm{p}, \mathrm{q} \in \mathrm{N}$, where $\mathrm{p}=\mathrm{n}$ and $\mathrm{q}=\mathrm{m}-1$, therefore

$$
\begin{aligned}
& \epsilon \leq \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}-1}\right) \\
& \leq \max \left\{\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}-1}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{~T} \mathrm{x}_{\mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{m}-1}, \mathrm{~T} \mathrm{x}_{\mathrm{m}-1}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{~T} \mathrm{x}_{\mathrm{m}-1}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{m}-1}, \mathrm{~T} \mathrm{x}_{\mathrm{n}}\right)\right\} \\
& \leq \max \left\{\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}-1}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{m}-1}, \mathrm{x}_{\mathrm{m}}\right), \frac{\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{m}-1}, \mathrm{x}_{\mathrm{n}+1}\right)}{2}\right\} \\
& \leq \max \left\{\mathrm{d}\left(\mathrm{x}_{\mathrm{p}}, \mathrm{x}_{\mathrm{q}}\right), \mathrm{d}\left(\frac{\left.\mathrm{x}_{\mathrm{p}}, \mathrm{x}_{\mathrm{q}+1}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{q}}, \mathrm{x}_{\mathrm{p}+1}\right) \frac{1}{2}}{2}\right.\right. \\
& \leq \max \left\{\mathrm{d}\left(\mathrm{x}_{\mathrm{p}}, \mathrm{x}_{\mathrm{q}}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{p}}, \mathrm{x}_{\mathrm{q}}\right)+\frac{\left.\mathrm{d}\left(\mathrm{x}_{\mathrm{q}}, \mathrm{x}_{\mathrm{q}+1}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{q}}, \mathrm{x}_{\mathrm{p}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{p}}, \mathrm{x}_{\mathrm{p}+1}\right)\right\}}{2}\right. \\
& \leq \frac{2 \mathrm{~d}\left(\mathrm{x}_{\mathrm{p}}, \mathrm{x}_{\mathrm{q}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{q}}, \mathrm{x}_{\mathrm{q}+1}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{p}}, \mathrm{x}_{\mathrm{p}+1}\right)}{2} \\
& \leq \mathrm{d}\left(\mathrm{x}_{\mathrm{p}}, \mathrm{x}_{\mathrm{q}}\right)+\frac{\mathrm{d}\left(\mathrm{x}_{\mathrm{q}}, \mathrm{x}_{\mathrm{q}+1}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{p}}, \mathrm{x}_{\mathrm{p}+1}\right)}{2} \\
& \leq \mathrm{d}\left(\mathrm{x}_{\mathrm{p}}, \mathrm{x}_{\mathrm{q}}\right)+1 / 2\left(\delta^{\prime} / 2+\delta^{\prime} / 2\right) \leq \epsilon+\delta^{\prime}+\delta^{\prime} / 2<\epsilon+2 \delta^{\prime}<\epsilon+2(\delta(\epsilon)-\epsilon) / 2<\delta(\epsilon) .
\end{aligned}
$$

Therefore

$$
\epsilon \leq \mathrm{d}\left(\mathrm{x}_{\mathrm{p}}, \mathrm{x}_{\mathrm{q}}\right)<\delta(\epsilon) \text {, yielding thereby } \epsilon \leq \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}-1}\right)<\delta(\epsilon) \text {, which implies that } \mathrm{d}\left(\mathrm{~T}_{\mathrm{n}-1}, \mathrm{~T}_{\mathrm{n}}\right) \leq \epsilon
$$

Now, we show that the sequence $\left\{x_{n}\right\}$ is Cauchy. If this sequence is not Cauchy then there exists $2 \epsilon>0$ such that
$\mathrm{d}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{n}}\right)>2 \epsilon$.
For any $\mathrm{j} \in[\mathrm{m}, \mathrm{n}]$, one gets $\mathrm{d}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{j}}\right) \leq \mathrm{d}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{j}+1}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{j}+1}, \mathrm{x}_{\mathrm{j}}\right)$, which in turn yields
$\left|\mathrm{d}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{j}}\right)-\mathrm{d}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{j}+1}\right)\right| \leq \mathrm{d}\left(\mathrm{x}_{\mathrm{j}+1}, \mathrm{x}_{\mathrm{j}}\right)<\delta^{\prime} / 2$, and $\mathrm{d}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{n}}\right)>2 \epsilon=\epsilon+\epsilon \geq \epsilon+\delta^{\prime}$,
which implies that there exists a $\mathrm{j} \in[\mathrm{m}, \mathrm{n}]$ with $\mathrm{d}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{j}}\right) \geq \epsilon+\delta^{\prime}$. However, for m and j , we have
$\mathrm{d}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{j}}\right) \leq \mathrm{d}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{m}+1}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{m}+1}, \mathrm{x}_{\mathrm{j}+1}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{j}+1}, \mathrm{x}_{\mathrm{j}}\right) \leq \epsilon+\delta^{\prime} / 2+\delta^{\prime} / 2=\epsilon+\delta^{\prime}$,
which is indeed a contradiction, therefore one, may conclude that the sequence $\left\{x_{n}\right\}$ is Cauchy and it converges to a point z in X .

Now, we assume that there exists a subsequence $\left\{\mathrm{X}_{\mathrm{nk}}\right\}$ of $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ which is contained in P . Using (1.1), one can write
$\mathrm{d}(\mathrm{Tz}, \mathrm{z}) \leq \mathrm{d}\left(\mathrm{Tz}, \mathrm{T} \mathrm{x}_{\mathrm{nk}}\right)+\mathrm{d}\left(\mathrm{T}_{\mathrm{n} k}, \mathrm{z}\right)$,
$\leq \max \left\{\mathrm{d}\left(\mathrm{z}, \mathrm{x}_{\mathrm{nk}}\right), \mathrm{d}\left(\mathrm{z}, \mathrm{T}_{\mathrm{z}}\right), \mathrm{d}\left(\mathrm{X}_{\mathrm{nk}}, \mathrm{T}_{\mathrm{xnk}}\right), \mathrm{d}\left(\frac{\left.\mathrm{z}, \mathrm{Tx}_{\mathrm{nk}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{nk}}, \mathrm{T}_{\mathrm{z}}\right)}{2}\right\}+\mathrm{d}\left(\mathrm{T}_{\mathrm{n}} \mathrm{nk}, \mathrm{z}\right)\right.$.
On letting $\mathrm{k} \rightarrow \infty$, one obtains $\mathrm{d}(\mathrm{T} \mathrm{z}, \mathrm{z}) \leq \mathrm{d}(\mathrm{T} \mathrm{z}, \mathrm{z})$, which is a contradiction, implies that $\mathrm{T} \mathrm{z}=\mathrm{z}$. This shows that z is a fixed point of T.

To prove the uniqueness of the fixed point z , let z_{0} be the another fixed point of T , then
$\mathrm{d}\left(\mathrm{z}, \mathrm{z}_{0}\right)=\mathrm{d}(\mathrm{Tz}, \mathrm{Tz} 0) \leq \max \left\{\mathrm{d}\left(\mathrm{z}, \mathrm{z}_{0}\right), \mathrm{d}(\mathrm{z}, \mathrm{T} \mathrm{z}), \frac{\mathrm{d}\left(\mathrm{z}_{0}, \mathrm{~T} \mathrm{z}_{0}\right), \mathrm{d}\left(\mathrm{z}, \mathrm{Tz}_{0}\right)}{2}+\mathrm{d}\left(\mathrm{z}_{0}, \mathrm{Tz}\right)\right\} \leq \mathrm{d}\left(\mathrm{z}, \mathrm{z}_{0}\right)$
implying there by $\mathrm{z}=\mathrm{z}_{0}$. This completes the proof.

Remark 2.2.

By setting $K=X$ in the Theorem 2.1, then we deduce a theorem due to Meir and Keeler [5].

Remark 2.3.

By setting $\mathrm{K}=\mathrm{X}$ in the Theorem 2.1, then we deduce a partial generalization of theorem due to Rhoades [10] Finally, an example is furnish to establish the existence of the result.

Example 2.4.

Let $\mathrm{X}=\mathrm{R}$ with Euclidean metric and let $\mathrm{K}=\{-1 / 4\} \cup[0,1 / 2]$. Define the mapping $\mathrm{T}: \mathrm{K} \rightarrow \mathrm{X}$ as
$T \mathrm{x}=\mathrm{x}^{2}-1 / 4$, if $0 \leq \mathrm{x} \leq 1 / 2$ and $\mathrm{Tx}=-1 / 4$, if $\mathrm{x}=-1 / 4$.
Since δK (the boundary of K) $=\{-1 / 4,0,1 / 2\}$. Also
$x=-1 / 4$ implies that $T(-1 / 4)=-1 / 4 \in K, x=0$ implies that $T(0)=-1 / 4 \in K$ and
$x=1 / 2$ implies that $T(1 / 2)=0 \in K$.
This shows that $x \in \delta K$ implies that $T x \in K$.
Moreover, if for $\mathrm{x}, \mathrm{y} \in[0,1 / 2]$, then

$$
\mathrm{d}(\mathrm{~T} x, T \mathrm{y})=\left|\mathrm{x}^{2}-\mathrm{y}^{2}\right| \leq \max \left\{\mathrm{d}(\mathrm{x}, \mathrm{y}), \mathrm{d}(\mathrm{x}, \mathrm{~T} x), \mathrm{d}(\mathrm{y}, \mathrm{~T} y), \frac{\mathrm{d}(\mathrm{x}, \mathrm{~T} \mathrm{y})+\mathrm{d}(\mathrm{y}, \mathrm{Tx})\}}{2}\right.
$$

Next, if $x \in[0,1 / 2]$ and $y=-1 / 4$, then

$$
\mathrm{d}(\mathrm{Tx}, \mathrm{~T} y)=\mathrm{x}^{2}=\mathrm{d}(\mathrm{y}, \mathrm{~T} x) \leq \max \left\{\mathrm{d}(\mathrm{x}, \mathrm{y}), \mathrm{d}(\mathrm{x}, \mathrm{~T} x),(\mathrm{y}, \mathrm{~T} y), \frac{\mathrm{d}(\mathrm{x}, \mathrm{~T} y)+\mathrm{d}(\mathrm{y}, \mathrm{Tx})\}}{2}\right.
$$

Finally, if $y \in[0,1 / 2]$ and $x=-1 / 4$, then
$d(T x, T y)=y^{2}=d(x, T y) \leq \max \left\{d(x, y), d(x, T x),(y, T y), \underline{d(x, T y)+d(y, T x)\}}{ }_{2}\right.$
This shows that the contraction condition (1.1) is satisfied for every $x, y \in K$. Thus all the conditions of the Theorem 2.1 are satisfied and $(-1 / 4)$ is a fixed point of T.

References

1. N. A. Assad, Fixed point theorems for set-valued transformations on compact set, Boll. Un. Math. Ital. 4(1973), 1-7.
2. N. A. Assad and W. A. Kirk, Fixed point theorems for set-valued mappings of contractive type, Pacific J. Math. 43(3)(1972), 553-562.
3. Y. J. Cho, P. P. Murthy and G. Jungck, A theorem of Meir and Keeler type revisited, Internat. J. Math. Math. Sci. 23(7)(2000), 507-511.
4. L. Khan and M. Imdad, Meir and Keeler type fixed point theorem for set-valued generalized contractions in metrically convex spaces, Thai Journal of Mathematics, 10(3)(2012), 473-480.
5. A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 28(1969), 326-329.
6. R. P. Pant, A Meir-Keeler type fixed point theorem, Indian J. Pure Appl.Math. 32(6)(2001), 779-787.
7. R. P. Pant, A new common fixed point principle, Soochow Journal of Mathematics, 27(3)(2001), 287 - 297.
8. S. Park and B. E. Rhoades, Meir and Keeler type contractive conditions, Math. Japonica, 26(1)(1981), 13 - 20.
9. I. H. N. Rao and K. P. R. Rao, Generalizations of fixed point theorems of Meir and Keeler type, Indian J. Pure Appl. Math. 16(11)(1985), 1249-1262.
10. B. E. Rhoades, A fixed point theorem for some nonself mappings, Math. Japonica, 23(4)(1978), 457-459.
