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Introduction 

In 1969, Meir and Keeler [5] proved that Banach Contraction Principle remains true for weakly uniformly strict contractions: 

Given ε > 0 there exists a δ > 0 such that  

             ε < d(x, y) < ε + δ implies d(Tx, Ty) < ε. 

The result due to Meir and Keeler [5] has been generalized and extended in various ways and there exists a considerable 

literature for self mappings. To mention a few, we cite [3,5,6,7,8,9]. 

In this paper, we prove a Meir and Keeler [5] type fixed point theorem for single-valued non-self mappings in metrically 

convex spaces by using the ideas of Rhoades [10]. In proving the result, we follow the definitions and conventions of Assad [1]  

and Assad and Kirk [2]. Before formulating our result, for the sake of completeness, we state the following result due to Rhoades 

[10]. 

Theorem 1.1. ([10]) Let (X, d) be a complete metrically convex metric space and K be a nonempty closed convex subset of X. Let 

T : K → X be a mapping satisfying: 

          d(T x, T y) ≤ M (x, y) 

where  M (x, y) = max {1/2 d(x, y), d(x, T x), d(y, T y) ,  d(x, T y) + d(y, T x) }   

                                                                                                                    q 

for all x, y ∈ K,  with x≠ y, where 0 < h < 1, q  ≥ 1 + 2h and T x ∈ K  for each x ∈ δK. Then T has a fixed point in K. 

Definition 1.2.  
Let K be a nonempty subset of a metric space X and the mapping T : K  → X  is said to be (ϵ , δ) contraction  if there  exists a 

function  δ : (0, ∞) → (0, ∞) such that, for any  ϵ  > 0, δ(ϵ ) > ϵ  and 

ϵ ≤ M (x, y) = max { d(x, y), d(x, T x), d(y, T y) ,  d(x, T y) + d(y, T x) } < ϵ (δ)                                        (1.1) 

                                                                                                                   2 

 which implies that  d(T x, T y) < ϵ. 

Definition 1.3. ([2])   

A metric  space (X, d) is said to be metrically  convex if for any x, y ∈ X with x ≠ y there exists a point z ∈ X, x ≠ z ≠ y such 

that 

           d(x, z) + d(z, y) = d(x, y). 

Lemma 1.4. ([2])  

Let K be a nonempty closed subset of a metrically convex metric space X. If x ∈ K and y ∉ K then there exists a point z ∈ δK 

(the boundary of K) such that  

         d(x, z) + d(z, y) = d(x, y). 

2.  Result 

The main result runs as follows. 

 Theorem 2.1.   
Let (X, d) be a complete metrically convex metric space and K be a nonempty closed subset of X. The mapping  

 T : K → X satisfying (1.1) and 

(i) for each x ∈ K, T x ∈ K. 

Then T has a unique fixed point in K. 
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Proof 

Firstly, we proceed to construct two sequences {xn } and {yn } in the following way.  Let x0  ∈ K. Define y1  = T x0. If y1 ∈ K  

set y1  = x1. If y1  ∉  K, then  choose x1  ∈ δK so that 

            d(x0, x1) + d(x1 , y1) = d(x0, y1). 

If y2 ∈ K then  set y2 = x2. If y2 ∉ K, then  choose x2  ∈ δK so that 

            d(x1, x2) + d(x2 , y2 ) = d(x1 , y2). 

Thus, repeating the foregoing arguments, one obtains two sequences {xn } and {yn } such that 

(ii)  yn+1  = T xn, 

(iii)  yn = xn  if yn ∈ K,  

(iv)  if xn ∈ δK then  d(xn−1, xn ) + d(xn , yn ) = d(xn−1 , yn ), where yn ∉ K. 

Here, one obtains two types of sets we denote as follows: 

     P = {xi ∈ {xn } : xi = yi } and Q = {xi  ∈ {xn } : xi≠ yi }. 

One can note that, if xn ∈ Q then xn−1 and xn+1 ∈ P.  We wish to estimate d(xn , xn+1 ). Now, we distinguish the following three 

cases. 

Case 1.  If (xn , xn+1 ) ∈ P, then  d(xn , xn+1 ) = d(T xn−1, T xn ) ≤ M (xn−1, xn ) 

          

          ≤ max{ d(xn−1 , xn), d(xn−1, T xn−1), d(xn , T xn ),   d(xn−1, T xn ) + d(xn , T xn−1 ) 

                                                                                                              2 } 

         ≤ max{ d(xn−1, xn ), d(xn−1 , xn ), d(xn , xn+1 ),  d(xn−1, xn+1 ) + d(xn , xn )    

                                                                                                       2 } 

         ≤ max {d(xn−1, xn ), d(xn , xn+1 )}. 

  

If we suppose that  d(xn−1 , xn ) ≤ d(xn , xn+1 ), then we get d(xn , xn+1 ) ≤ d(xn , xn+1 ), which is a contradiction.   

Otherwise, if d(xn , xn+1 ) ≤ d(xn−1, xn ) then,  one obtains 

        d(xn , xn+1 ) ≤ M (xn−1, xn ) ≤ d(xn−1, xn ). 

Case 2.  If xn ∈ P and xn+1 ∈ Q, then 

         d(xn , xn+1 ) + d(xn+1 , yn+1 ) = d(xn , yn+1 ) 

which in turn  yields  d(xn , xn+1 ) ≤ d(xn , yn+1 ). Now, proceeding as Case 1, we have 

         d(xn , xn+1 ) ≤ M (xn−1, xn ) ≤ d(xn−1, xn ). 

Case 3. If xn ∈ Q and xn+1 ∈ P. Since xn ∈ Q and is a convex linear combination of xn−1 and yn , it follows that 

          d(xn , xn+1 ) ≤ max{d(xn−1 , xn+1 ), d(xn+1 , yn )}.                                                                                                     (2.1) 

Now, if        d(xn−1, xn+1 ) ≤ d(yn , xn+1 ), then  d(xn , xn+1 ) ≤ d(yn , xn+1 ) = d(xn , xn+1 ). 

Proceeding as above, one gets d(xn , xn+1 ) ≤ M (xn−1, xn ) ≤ d(xn−1 , xn ). 

Next, if d(yn , xn+1 ) ≤ d(xn−1, xn+1 ), then 

           d(xn , xn+1 ) ≤ d(xn−1, xn+1 ) = d(T xn−2, T xn ) = M (xn−2, xn ) 

           ≤ max {d(xn−2, xn ), d(xn−2, T xn−2), d(xn , T xn ), d(xn−2, T xn ) + d(xn , T xn−2)  } 

                                                                                                         2 

          ≤ max{d(xn−2, xn ), d(xn−2, xn−1), d(xn , xn+1 ), d(xn−2, xn+1 ) + d(xn , xn−1)}. 

                                                                                                                            2 

Here, three cases are possible, either d(xn−2, xn ), d(xn−2 , xn−1) or d(xn−2, xn+1 ) + d(xn , xn−1) 

                                                                                                                            2 

will be maximum.  

Firstly, we choose d(xn−2, xn ) as maximum  then 

        d(xn , xn+1 ) ≤ d(xn−2 , xn ) ≤ d(xn−2, xn−1) + d(xn−1 , xn ) ≤ max{d(xn−2, xn−1 ), d(xn−1, xn )}. 

When d(xn−2, xn−1) is maximum  then  d(xn , xn+1 ) ≤ d(xn−2, xn−1 ), otherwise 

        d(xn , xn+1 ) ≤ d(xn−1 , xn ). 

Secondly, we choose d(xn−2 , xn−1) as maximum  then  d(xn , xn+1 ) ≤ d(xn−2, xn−1 ). 

Finally, if d(xn−2 ,xn+1 ) + d(xn ,xn−1 ) is maximum,  then 

                                       2 

       d(xn , xn+1 )  ≤   1 {d(xn−2, xn−1 ) + d(xn−1, xn+1 ) + d(xn , xn−1)} 

                                                2      

        ≤  1 {d(xn−2, xn−1 ) + d(xn , xn−1 )} ≤ max{d(xn−2 , xn−1), d(xn , xn−1)}. 

                                2 

Thus in all the cases, we have 

       d(xn , xn+1 ) ≤ max{d(xn−1, xn ), d(xn−2 , xn−1)}. 

  

Hence 

       d(xn , xn+1 ) ≤ M (xn−1 , xn ) ≤ max{d(xn−1, xn ), d(xn−2 , xn−1)}.  

It can be easily shown by induction that for n > 1, we have 

       d(xn , xn+1 ) ≤  max{d(x0 , x1), d(x1, x2 )}. 

Thus d(xn , xn+1 ) is decreasing and tending  to 0 as n → ∞.  Hence d(xn , xn+1 ) converges to t ∈ [0, ∞). If t = 0 then conclusion 

is trivial.  So, suppose that t > 0. Since d(xn , xn+1 ) converges to t, the condition (1.1) yields 
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             t ≤ M (xn−1, xn ) < δ(t). 

Therefore d(Txn−1 , T xn ) = d(xn , xn+1 ) < t, this contradicts the fact.  Thus 

            d(xn , xn+1 ) → 0 as n → ∞                                                                                                                        ( 2.2)     

Now, we show that for every  ϵ  > 0 there exists m, n ≥ N such that 

           ≤ d(xn , xn−1) < δ(ϵ) ⇒ d(Txn , Txn−1) < ϵ. 

Also, (2.2) implies that there exists an integer N such that n ≥ N, d(xn , xn−1) < ᵟ
′/2 . for all n ∈ N  

where  δ′  = min{  ϵ /2 ,  ( δ(ϵ )− ϵ )/2}. 

Let p, q ∈ N, where p = n and q = m − 1, therefore 

           ϵ  ≤ d(xn , xm−1 ) 

           ≤ max {d(xn , xm−1), d(xn , T xn ), d(xm−1, T xm−1 ), d(xn , T xm−1 ) + d(xm−1, T xn )   } 

                                                                                                              2      

          ≤ max { d(xn , xm−1), d(xn , xn+1 ), d(xm−1 , xm ),  d(xn , xm ) + d(xm−1 , xn+1 )   } 

                                                                                                          2 

         ≤   max {d(xp , xq ), d(xp , xq+1 ) + d(xq , xp+1 )    } 

                                                            2      

         ≤ max {d(xp , xq ), d(xp , xq ) + d(xq , xq+1 ) + d(xq , xp ) + d(xp , xp+1 )   } 

                                                                                     2 

                                                              2d(xp , xq ) + d(xq , xq+1 ) + d(xp , xp+1 ) 

                                                  ≤                                2 

                                   d(xq , xq+1 ) + d(xp , xp+1 ) 

          ≤ d(xp , xq ) +          

                                                 2 

         ≤  d(xp , xq )  + ½(δ′/2 + δ′/2) ≤ ϵ + δ′ + δ′/2  < ϵ + 2δ′  < ϵ + 2(δ(ϵ) - ϵ) /2  < δ(ϵ). 

 Therefore 

        ϵ ≤ d(xp , xq ) < δ(ϵ ),  yielding thereby  ϵ  ≤ d(xn , xn−1) < δ(ϵ), which implies that  d(T xn−1, T xn ) ≤  ϵ . 

Now, we show that the sequence {xn } is Cauchy.  If this sequence is not Cauchy then there exists 2ϵ  > 0 such that  

d(xm , xn ) > 2ϵ . 

For any j ∈ [m, n], one gets d(xm , xj ) ≤ d(xm , xj+1 ) + d(xj+1 , xj ), which in turn yields 

         |d(xm , xj ) − d(xm , xj+1 )| ≤ d(xj+1 , xj ) < δ′/2 , and d(xm , xn ) > 2ϵ  =  ϵ + ϵ  ≥  ϵ + δ′, 

which implies that  there exists a j ∈ [m, n]  with d(xm , xj ) ≥ ϵ  + δ′. However, for m and j, we have 

d(xm , xj ) ≤ d(xm , xm+1 ) + d(xm+1 , xj+1 ) + d(xj+1 , xj )  ≤  ϵ  +  δ′/2 + δ′/2 = ϵ  + δ′, 

which is indeed a contradiction, therefore one, may conclude that  the sequence {xn} is Cauchy and it converges to a point z 

in X. 

Now, we assume that there  exists a subsequence {xnk } of {xn } which is contained  in P. Using (1.1), one can write                                                

d(Tz, z) ≤ d(Tz, T xnk ) + d(T xnk , z), 

  

      ≤ max {d(z, xnk ), d(z, T z), d(xnk , T xnk ),d(z, Txnk ) + d(xnk , Tz)  } + d(T xnk , z). 

                                                                                     2         

On letting k → ∞, one obtains d(T z, z) ≤ d(T z, z), which is a contradiction, implies that  T z = z. This shows that z is a fixed 

point of T .  

        To prove the uniqueness of the fixed point z, let z0  be the another  fixed point of T, then    

       d(z, z0 ) = d(Tz, Tz0) ≤ max {d(z, z0), d(z, T z), d(z0, T z0), d(z, Tz0) + d(z0, Tz)  }  ≤ d(z, z0)   

                                                                                                  2 

 implying there by z = z0. This completes the proof. 

Remark 2.2.   

By setting  K  = X  in the Theorem  2.1, then  we deduce a theorem due to Meir and Keeler [5]. 

Remark 2.3.   

By setting  K  = X  in the  Theorem  2.1, then  we deduce a partial generalization  of theorem due to Rhoades [10]     Finally, 

an example is furnish to establish  the existence of the result. 

Example 2.4.  

Let X = R with Euclidean metric and let K = { −1/4 } ∪ [0,  1/2 ]. Define the mapping T : K → X as 

T x = x
2
  − 1/4 ,  if  0 ≤ x ≤ ½ and Tx  = -1/4, if x = -1/4. 

Since δK (the boundary  of K )  = {-1/4, 0, 1/2}. Also 

 x = -1/4 implies that T(-1/4) = -1/4 ∈ K, x = 0 implies that T(0) = -1/4 ∈ K and 
x = ½ implies that T(1/2) = 0 ∈ K.                                                              
This shows that  x ∈ δK implies that  T x ∈ K. 

Moreover, if for x, y ∈ [0, ½], then                               

       d(T x, T y) = |x
2
  − y

2
|  ≤  max { d(x, y), d(x, T x),  d(y, T y), d(x,T y) + d(y,T x)  } 

                                                                                                                         2      

Next, if x ∈ [0, 1/2] and y = −1/4, then  

      d(T x, T y) = x
2
  = d(y, T x) ≤ max {d(x, y), d(x, T x), (y, T y),  d(x,T y) + d(y,T x)   } 

                                                                                                                       2      

 Finally, if y ∈ [0, 1/2] and x = −1/4, then 
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       d(T x, T y) = y
2
 = d(x, T y)  ≤  max{ d(x, y), d(x, T x), (y, T y),  d(x,T y) + d(y,T x) } 

                                                                                                                                                 2      

This shows that the contraction condition (1.1) is satisfied for every x, y ∈ K. Thus all the conditions of the Theorem 2.1 are 

satisfied and (-1/4) is a fixed point of T. 
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