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1. Introduction 

Data mining is a technique which extracting the data‟s 

from the large database. Association Rule Mining is used to 

find the interestingness relationship among the items and 

generates the association rules. The database DB consists of a 

set of transactions. Knowledge Discovery in Databases 

(KDD) is the non-trivial process of identifying valid, 

previously unknown and potentially useful patterns in data. 

These patterns are used to make predictions or classifications 

about new data and explains existing data, summarize the 

contents of a large database. 

The objective of the first step of association rule mining 

is to find all frequent itemsets and the the second phase is to 

generate the rules based on frequent itemsets. One of the 

important tasks in data mining is utility mining which refers 

to the discovery of more profitable item. High utility mining 

mines the high utility itemset from the transaction database. 

When the utility of an item is greater than or equal to user 

specified minimum utility threshold, then it is a high utility 

item.  

For example, assume the frequency of item A is 7, item 

B is 6, and itemset AB is 3. The profit of item A is 2, B is 5. 

The utility value of A is 7 * 2 = 14, B is 6* 5= 30, and AB is 

3 * 2 + 3 * 5 = 21. If the minimum utility threshold is 25, B is 

a high utility itemset a number of algorithms have been 

proposed for high utility itemset mining namely two phase 

[1], TWU mining [2], UMMI algorithm [3]. 

However, frequency of an itemset alone does not 

guarantee of its interestingness. Because it does not contain 

information on its itemset of specified utility such as profit. 

User-defined utility is based on information not available in 

the transaction dataset. It often reflects user preference and 

can be represented by an external utility table or utility 

function. Utility-based data mining is a wide area that covers 

all aspects of economic utility in data mining.  

2. Related Work 

Utility Mining covers all aspects of “economic” utilities 

– utilities that affect a business, and helps in detecting rare 

high utility itemsets. High Utility Rare Itemset Mining 

(HURI) is very beneficial in several real-life applications. In 

[7], Jyothi et al presented a literature survey of the various 

approaches and algorithms for high-utility mining and rare 

itemset mining. Ashish et al presented a fast and efficient 

fuzzy ARM algorithm on very large datasets. The algorithm 

was 8 to 19 times faster than traditional fuzzy ARM on very 

large standard real-life datasets. In [2], unlike most two-

phased ARM algorithms, the authors presented individual 

itemset processing as opposed to simultaneous itemset 

processing at each k-level, recording some performance 

improvements. 

In [18], C. Saravanabhavan et al presented an efficient 

tree structure for mining of high utility itemsets. Firstly, the 

authors developed a utility frequent-pattern tree structure to 

store important information about utility itemsets. Next the 

pattern growth methodology was used to mine the entire 

utility pattern sets. Two algorithms, UP-Growth (Utility 

Pattern Growth) and UP-Tree (Utility Pattern Tree) are 

proposed in [14] for mining high utility itemsets. Also a set of 

effective strategies are discussed by Sadak Murali et al, for 

pruning candidate itemsets. 

In [1], Adinarayanareddy B presented a modified UP-

Growth (IUPG) algorithm for high utility itemset mining. The 

authors conclude that IUPG algorithm performs better than 

UP-Growth algorithm for different support values and also 

IUPG algorithm is highly scalable. [13] Ruchi Patel proposed 

a parallel and distributed method for mining high utility 

patterns from large databases.  

The method also prunes the low utility itemsets from 

transactions at initial level by using downward closure 

property.
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ABSTRACT 

Utility mining is to discover the itemsets in a transaction database with utility values over 

a given threshold. Utility of itemsets are based upon user‟s perception such as cost, profit 

or revenue and are of significant importance. Utility-based data mining intends 

discovering the itemsets with high total utility is called High Utility Itemset mining. High 

Utility itemsets may contain frequent as well as rare itemsets. Classical utility mining 

considers items alone as discrete values. In real world applications, such utilities can be 

described by fuzzy sets. In this paper, proposed an algorithm, FHUI (Fuzzy High Utility 

Itemset) Mining is presented to mine high utility itemsets effectively from large 

databases, by fuzzification of utility values. FHUI extracts fuzzy high utility itemsets by 

integrating fuzzy logic with high utility itemset mining. This algorithm finds all utility-

frequent itemsets within given threshold value. The experimental result shows that, it 
performs efficiently in terms of speed and memory on large databases.   
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Koh et al proposed a modified Apriori inverse algorithm 

to generate rare itemsets of user interest [11]. Yao et al 

defined Utility as a measure usefulness or profitability of an 

itemset [15] [16]. The authors focused on the measures used 

for utility-based itemset mining. Utility based measures use 

the utilities of the patterns to reflect the user's goals. The 

authors formalize the semantic significance of utility 

measures and classify existing measures into one of three 

categories: item level, transaction level and cell level. A 

unified framework was proposed for incorporating utility 

based measures into the data mining process via a unified 

utility function. 

One of the most essential areas of the application of 

fuzzy set theory is Fuzzy rule-based systems [4]. These 

knowledge extraction tools discover intrinsic associations 

contained in a data base. Fuzzy systems improve the 

interpretation and understandability of consumer models. In 

[4], Casillas et al presented a new approach for consumer 

behavior modeling which is based on fuzzy association rules 

(FAS). A behavioral model was presented which centered on 

consumer attitude towards Internet and confidence in Internet 

shopping. 

The contributions of this paper are summarized as 

Follows: 

(1) We propose a new tree structure named FTN-Tree 

(Fuzzy based Tail node Tree) for maintaining important 

information related to a transaction dataset. 

(2) We also give an algorithm named FT-Mine for 

FIM over uncertain transaction datasets based on FT-Tree. 

(3) Propose an algorithm that uses TWU with pattern 

Growth based on a compact utility pattern tree data structure. 

Our algorithm implements a fuzzy tail node tree scheme to 

use disk storage when the main memory is inadequate for 

dealing with large datasets. 

(4) Fuzzy tail node tree based mining the high utility itemsets 

with minimum no of tree creation. 

3. Terms and Definitions 

Let D = {T1, T2… Tn} be an transaction dataset which 

contains n transaction itemsets and m distinct items, i.e. I= 

{i1, i2… im}. Each transaction itemset is represented as {i1:p1, 

i2:p2… iv:pv}, where {i1, i2, …, iv} is a subset of I, and pu 

(1≤u≤v) is the existential probability of item iu in a 

transaction itemset. The size of dataset D is the number of 

transaction itemsets and is denoted as |D|. An itemset X = {i1, 

i2… ik}, which contains k distinct items, is called a k-itemset, 

and k is the length of the itemset X. 

Definition 1: The support number (SN) of an itemset X in a 

transaction dataset is defined by the number of transaction 

itemsets containing X. 

Definition 2: The expected support number (expSN) of an 

itemset X in an transaction dataset is denoted as expSN(X) and 

is defined by 
 

Definition 3: Given a dataset D, the minimum expected 

support threshold η is a predefined percentage of |D|; 

correspondingly, the minimum expected support number 

(minExpSN) is defined by  an itemset 

X is called a utility itemset if its expected support number is 

not less than the value minExpSN.  

Definition 4: The minimum support threshold λ is a 

predefined percentage of |D|; correspondingly, the minimum 

support number (minSN) in a dataset D is defined by 

 

Definition 5: Fuzzy utility in high utility itemset mining, item 

utility is equal to quantity value multiplied by profit. In fuzzy 

transaction, the similar procedure to find item utility will 

produce false results. For example, item A occurs in different 

transaction T1 and T5. If the fuzzy set of (A, T1) = {1/L, 

0/M, 1/H} and (A, T5) = {0/L, 0/M, 1/H}. If t heir item 

utilities are obtained by multiplying fuzzy quantity with 

profit, item utilities of T1 and T5 will be same even though 

T5 yields a higher quantity value. The fuzzy utility is defined 

as, 

 

Definition 6: Fuzzy quantity The equation to find the fuzzy 

quantity value of item ip in transaction Tq is denoted as  f 

(ip,Tq) which is defined as,  
 

Where fq (ip,Tq,  j ) is the fuzzy value of fuzzy region j and  

weight (j)  is a variable parameter defined by the fuzzy 

region. If a fuzzy region is low then the weight should be low 

when compared to the region middle and high. Special 

weights are assigned for region low, medium and high.  

Definition 7: Fuzzy transaction utility can be defined as the 

sum of the fuzzy utilities of item occurring in the particular 

transaction. The equation denoting fuzzy transaction utility is 
 

Definition 8: Fuzzy transaction weighted utility it is the sum 

of fuzzy transaction utilities of item occurring in the 

particular transaction for an item. The equation denoting 

fuzzy transaction weighted utility can be defined as, 
 

4. Proposed Approach 

A novel method namely FTNT-HUI (Fuzzy TNT Tree 

based high utility itemsets) mine is proposed which can 

reflect the quantity information and also profit information. In 

this algorithm, itemsets with profit slightly less than the 

designated threshold value is also included resulting in new 

revenue opportunities. FTNT-HUI-Mine consists of two 

Fuzzy high utility itemset mining algorithm is proposed to 

provide more information concerning the quantity and profit 

information of high utility itemset. FTNT-Mine algorithm is 

intended for mining fuzzy high utility itemset by applying 

fuzzy theory to high utility itemset. a fuzzy membership 

function is defined to represent the quantities in fuzzy sets. 

Thus the transaction table is transformed into fuzzy 

transaction table. Then fuzzy transaction utility will be 

calculated from the fuzzy transaction table and utility table. 

Further, Fuzzy transaction weighted utility is produced to 

discover the phase I high utility itemset. Phase II calculates 

the fuzzy utility for the phase I high utility itemset to yield the 

fuzzy high utility itemset 

4.1 Fuzzy Transaction-Weighted Utilization Itemset 

Fuzzy membership function for quantity is defined to 

provide the fuzzy quantity region which is shown in figure 1. 

It can transform a quantity value in to fuzzy membership 

region and membership value thereby enhancing transaction 

database as fuzzy transaction database. The transaction 

database is shown in table 1. 

The quantity attribute for fuzzy membership function has 

three fuzzy regions namely low, middle and high. Thus, fuzzy 



D.Sathyavani
 
and D.Sharmila / Elixir Inform. Tech. 108 (2017) 47570-47575 47572 

membership value for the purchased quantity is represented 

as fuzzy set in terms of {fuzzy value of low/low, fuzzy value 

of middle/middle, and fuzzy value of high/high}. For 

example, the quantity value  „9‟ is converted in to fuzzy set as 

{0.0/L, 0.4/M, 0.6/H}, where „L‟, „M‟ and „H‟ are acronym 

of „Low‟, „Middle‟ and „High‟.  

Table 1. Transaction database. 
 A B C D E 

T01 0 3 6 1 4 

T02 3 0 10 0 9 

T03 7 0 4 0 0 

T04 6 1 0 1 0  

T05 0 0 8 0 3 

T06 0 2 12 1 0 

T07 9 0 0 0 7 

T08 2 2 0 0 6 

To find the sole representing fuzzy quantity from three 

fuzzy regions, a maximum value is generated from the fuzzy 

set. For example, the sole representation for quantity value 

„9‟ is represented as Max (0.0, 0.4, 0.6) =0.6. The sole 

representation for the quantity value was done according to 

equation (2). Weight parameter was fixed for the three region 

as Low=0.1, Middle=0.5, High=1. According to definition 

(7), sole representation for quantity „9‟ is 0. 6. The 

calculation is preceded as follows. The max value in fuzzy set 

is 0.6 which is present in region high. The max value is 

multiplied with weight assigned for region high to yield the 

sole value for particular quantity. Hence this procedure is 

adopted for all quantity in transaction database to reproduce 

fuzzy transaction database which is shown in table 2. 

Table 2. Fuzzy Transaction database. 
 A B C D E 

T01 0 0.06 0.5 0.1 0.3 

T02 0.06 0 0.8 0 0.6 

T03 0.4 0 0.3 0 0 

T04 0.5 0.1 0 0.1 0 

T05 0 0 0.3 0 0.06 

T06 0 0.08 0.9 0.1 0 

T07 0.6 0 0 0 0.4 

T08 0.08 0.08 0 0 0.5 

Table 3. Utility Table. 

Item A B C D E 

Utility 5 11 3 20 4 

 

After the transformation of fuzzy transaction database 

from transaction database, the next step is to find the fuzzy 

utility for each and every transaction according to equation  

by multiplying fuzzy quantity with profit value in utility table 

shown I n table 3. Fuzzy utility for the item „B‟ in transaction 

T01 is defined as  the quantity value of item „B‟ is 0.06 which 

is multiplied by the profit value for „B‟ in the utility table 

which is 11 to yield the fuzzy utility as 0.66. Fuzzy utility 

values for the corresponding transaction databases are 

displayed in table 4.Fuzzy utility calculated was used to find 

fuzzy transaction utility Fuzzy according to equation (4) for 

each and every transaction. Fuzzy transaction utility table is 

displayed in table 5. 

 

 

 

 

 

 

 

 

Table 4. Utility table. 
 A B C D E 

T01 0 0.06 1.5 2 1.2 

T02 0.3 0 2.4 0 2.4 

T03 2 0 0.9 0 0 

T04 2.5 1.1 0 2 0 

T05 0 0 0.9 0 0.24 

T06 0 0.88 2.7 2 0 

T07 3 0 0 0 1.6 

T08 0.4 0.88 0 0 2 

Table 5. Fuzzy transaction utility. 

Transaction ID Transaction utility 

T01 5.36 

T02 5.1 

T03 2.9 

T04 5.6 

T05 1.14 

T06 5.58 

T07 4.6 

T08 3.28 

Fuzzy transaction weighted utility itemset was then 

found from fuzzy utility. Fuzzy TWU for item „A‟ has been 

evaluated. 

4.2 Constructing a Global FT-Tree 

The proposed algorithm FT-Mine mainly consists of Two 

procedures: (1) creating an FT-Tree; (2) mining utility 

itemsets from the FT-Tree. The structure of FT-Tree is 

designed to efficiently store the related information on tail 

nodes. It is constructed by two scans of dataset. In the first 

scan, a header table is created to maintain sorted high utility 

items. 

A global FT-Tree is the first FT-Tree that 

maintainsitemset information of the whole dataset. The 

construction algorithm is described as follows: 

CreateTree(D, η ) 

INPUT: An uncertain database D consisting of n transaction 

itemsets and a predefined minimum  expected support 

threshold η . 

OUTPUT: An FT-Tree T. 

Step 1: Calculate the minimum expected support number 

minExpSN, i.e. minExpSN =| D|×η ; count the expected 

support number and support number of each item by one scan 

of dataset. 

Step 2: Put those items whose expected support numbers are 

not less than minExpSN to a header table, and sort the items 

in the header table according to the descending order of their 

support numbers; finish the algorithm if the header table is 

null. 

Step 3: Initially set the root node of the FT-Tree T as null.  

Step 4: Remove the items that are not in the header table 

from each transaction itemset, and sort the remaining items of 

each transaction itemset  according to the order of the header 

table, and get a sorted itemset X. 

Step 5: If the length of itemset X is 0, process the next 

transaction itemset; otherwise insert the itemset X into the 

FT-Tree T by the following substeps: 

Substep 5.1: Store the probability value of each item in item 

set X sequentially to a list; save the list to an array (which is 

denoted as ProArr); the corresponding sequence number of 

the list in the array is denoted as ID. 
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Substep 5.2: If there has not been a tail node for the itemset 

X, the length of itemset X, and  N.Tail_info.Arr_ind={ID}; 

otherwise, append the sequence number ID to 

N.Tail_info.Arr_ind. 

Step 6: Process the next transaction itemset. 

4.3 Mining Frequent utility Itemsets from a Global 

FTNT-Tree 

After an AT-Tree is constructed, the algorithm ATMine 

can directly mine frequent itemsets from the tree without 

additional scan of dataset. The details of the mining approach 

are described below. The algorithm AT-Mine is similar to the 

algorithm FP-Growth: it creates and processes sub trees 

(prefix trees or conditional trees) recursively. But the 

condition of generating frequent itemsets is different from 

FPGrowth. Mining (T, H, minExpSN) 

INPUT: An AT-Tree T, a header table H, and a minimum 

expected support number minExpSN. 

OUTPUT: The frequent itemsets (FIs). 

Step 1: Process the items in the header table one by one from 

the last item by the following steps (denote the currently 

processed item as Z). 

Step 2: Append item Z to the current base-itemset (which is 

initialized as null); each new base-itemset is a frequent 

itemset. 

Step 3: Let Z.links in the header table H contain k nodes 

whose item name is Z; we denote these k nodes as N1, N2, …, 

Nk; because item Z is the last one in the header table, all these 

k nodes are tail nodes, i.e., each of these nodes contains a 

Tail_info. 

Substep 3.1: Create a sub header table subH by scanning the 

k branches from these k nodes to the root. 

Substep 3.2: If the sub header table is null, go to Step 4. 

Substep 3.3: Create sub AT-Tree  

subTree = CreateSubTree(Z.link, subH). 

Substep 3.4: Mining(subTree, subH, minExpSN). 

Step 4: Remove item Z from the base-itemset. 

Step 5: For each of these k nodes (which we denote as Ni, 

1≤i≤k), modify its Tail_info by the following substeps: 

Substep 5.1: Alter Ni.Tail_info.len values: 

Ni.Tail_info.len = Ni.Tail_info.len -1. 

Substep 5.2: Move Ni.Tail_info to the parent of 

node Ni. 

Step 6: Process the next item of the header table H. 

Subroutine: CreateSubTree(link, subH) 

INPUT: A list link which records tree nodes with the 

same item name, and a header table subH. 

OUTPUT: An AT-Tree subT. 

Step 1: Initially set the root node of the tree subT as null. 

Step 2: Process each node in the list link by the following 

steps (denote the currently processed node as N). 

Step 3: Get the tail-node-itemset of node N (denote it as 

itemset X). 

Step 4: Remove those items that are not in the header table 

subH from itemset X, and sort the remaining items in itemset 

X according to the order of the header table subH. 

Step 5: If the length of the sorted itemset (denoted as k) is 0, 

process the next node of the list link; otherwise insert the 

sorted itemset X into the AT-Tree subT by the following 

substeps: 

Substep 5.1: Get the original sequential ID of each item 

of the itemset X in the corresponding list of 

ProArr: item_ind = {d1, d2, .., dk} (k is the length of  

of itemset X). 

Substep 5.2: Make a copy of N.Tail_info; denote the 

copy as nTail_info. 

Substep 5.3: Alter nTail_info as the following: 

(1) nTail_info.len = k. 

(2) nTail_info. Item_ind = item_ind. 

(3) if nTail_info.bp is null, set nTail_info.bp[j] 

to be the probability of item Z, i.e. 

ProArr[nTail_info.Arr_ind[j]]; otherwise, 

set nTail_info.bp[j] to be the product of nTail_info.bp[j] and 

the probability of item Z (1 ≤ j ≤ bp.size; the array ProArr is 

created when the global tree is created in Substep 5.1 in 

Section 4.2.1). 

5. Experimental Results 

In this section, evaluate the performance of the proposed 

algorithm FTNT-Mine. UP Growth is the state-of-the-art 

algorithm employing the pattern-growth approach and FTNT 

is a new proposed algorithm. So compare FTN-Mine with the 

algorithms UF-Growth, UP-Mine and FTN on both types of 

datasets: the sparse transaction datasets and dense transaction 

datasets. All algorithms were written in Java programming 

language. The configuration of the testing platform is as 

follows: Windows 7 32bit operating system, 4G Memory, 

Intel(R) Dual-Core CPU @ 2.60 GHz.  

 

Table 6. Dataset Characteristics. 
Dataset |D| T |I| Type 

T10I4d100k 300,000 33.8 1000 sparse 

mushroom 8,124 23 119 dense 

 

Table 6 shows the characteristics of 4 datasets used in 

our experiments. “|D|” represents the total number of 

transactions; “|I|” represents the total number of distinct 

items; “I” represents the mean length of all transaction 

itemsets; “SD” represents the degree of sparsity or density. 

The synthetic dataset T10I4d100ks came from the IBM Data 

Generator and the datasets and mushroom were obtained from 

FIMI Repository. These four datasets originally do not 

provide probability values for each item of each. 

 

Table7. Comparison algorithm of using T10I4d100k 

Vs No tree created. 
 No of Tree 

Threshold 0.04 0.05 0.06 0.07 0.08 0.09 

Fuzzy Tail Node 

Tree 

170 62 29 10 6 4 

UF-Growth + 369 115 39 17 8 4 

UP Growth 410 232 101 52 43 21 
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Fig 1. Comparison of different threshold value with tree 

creation. 
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Fig 1 and Table 7 Show the total number of tree nodes 

generated by FTNT-Mine, UF-Growth and UP, respectively, 

on the synthetic datasets. 

Table 8. High Utility value using T10I4d100k. 
 No of High Utility Itemsets 

Threshold 0.04 0.05 0.06 0.07 0.08 0.09 

Fuzzy Tail Node Tree 73 44 32 23 17 11 

UF-Growth + 62 33 28 19 14 8 

UP Growth 48 26 22 15 9 2 
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Fig 2. Comparison of different threshold value with high 

utility items. 

Table 9. Total run time using T10I4d100k. 
 No of High Utility 

Threshold 0.04 0.05 0.06 0.07 0.08 0.09 

Fuzzy Tail 

Node Tree 

11922 10209 8362 7952 7118 17897 

UF-

Growth + 

36976 27145 23114 20317 18028 6949 

UP Growth 46676 371545 33614 18317 16026 5979 

 

0
100000
200000

300000
400000

0.0
4

0.0
6

0.0
8

Threshold Value

R
u

n
 T

im
e

Fuzzy Tail

Node Tree

UF-Growth +

UP Growth

 

Fig 3. Run time for Different Threshold Value. 

Table 10. Comparison of different algorithm using 

mushroom 
 No of Tree 

Threshold 0.04 0.05 0.06 0.07 0.08 0.09 

Fuzzy Tail Node Tree 334 254 150 123 103 83 

UF-Growth + 443 345 234 189 132 112 

UP Growth 546 434 367 264 212 187 
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Fig 4. Comparison of different threshold value with tree 

creation. 

Fig 4 and Table 10 Show the total number of tree nodes 

generated by FTNT-Mine, UF-Growth and UP, respectively, 

on the synthetic datasets. 

Table 11. High Utility value using mushroom. 
 No of High Utility 

Threshold 0.04 0.05 0.06 0.07 0.08 0.09 

Fuzzy Tail Node Tree 78 46 34 27 19 13 

UF-Growth + 67 38 29 21 17 10 

UP Growth 49 31 28 19 10 8 
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Fig 5. Comparison of different threshold value with high 

utility items 

Table 12: Total run time using mushroom 
 No of High Utility 

Threshold 0.04 0.05 0.06 0.07 0.08 0.09 

Fuzzy Tail 

Node Tree 

14622 12249 9372 8982 7228 6327 

UF-Growth 

+ 

32956 28155 24164 21327 19048 7349 

UP Growth 56576 381845 34684 19367 17126 6179 
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Fig 6. Run time for Different Threshold Value. 

6. Conclusion 

Experiments were performed on sparse and dense 

datasets. We compared our proposed algorithm with some 

state-of-the-art level-wise and pattern-growth algorithms. The 

experimental results show that the proposed algorithm has 

better performance on dense datasets and large sparse 

datasets, and their time performance is stable on both dense 

and sparse datasets along with the decreasing of the minimum 

expected support threshold.  
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