
D.Sathyavani

and D.Sharmila / Elixir Inform. Tech. 108 (2017) 47570-47575 47570

1. Introduction

Data mining is a technique which extracting the data‟s

from the large database. Association Rule Mining is used to

find the interestingness relationship among the items and

generates the association rules. The database DB consists of a

set of transactions. Knowledge Discovery in Databases

(KDD) is the non-trivial process of identifying valid,

previously unknown and potentially useful patterns in data.

These patterns are used to make predictions or classifications

about new data and explains existing data, summarize the

contents of a large database.

The objective of the first step of association rule mining

is to find all frequent itemsets and the the second phase is to

generate the rules based on frequent itemsets. One of the

important tasks in data mining is utility mining which refers

to the discovery of more profitable item. High utility mining

mines the high utility itemset from the transaction database.

When the utility of an item is greater than or equal to user

specified minimum utility threshold, then it is a high utility

item.

For example, assume the frequency of item A is 7, item

B is 6, and itemset AB is 3. The profit of item A is 2, B is 5.

The utility value of A is 7 * 2 = 14, B is 6* 5= 30, and AB is

3 * 2 + 3 * 5 = 21. If the minimum utility threshold is 25, B is

a high utility itemset a number of algorithms have been

proposed for high utility itemset mining namely two phase

[1], TWU mining [2], UMMI algorithm [3].

However, frequency of an itemset alone does not

guarantee of its interestingness. Because it does not contain

information on its itemset of specified utility such as profit.

User-defined utility is based on information not available in

the transaction dataset. It often reflects user preference and

can be represented by an external utility table or utility

function. Utility-based data mining is a wide area that covers

all aspects of economic utility in data mining.

2. Related Work

Utility Mining covers all aspects of “economic” utilities

– utilities that affect a business, and helps in detecting rare

high utility itemsets. High Utility Rare Itemset Mining

(HURI) is very beneficial in several real-life applications. In

[7], Jyothi et al presented a literature survey of the various

approaches and algorithms for high-utility mining and rare

itemset mining. Ashish et al presented a fast and efficient

fuzzy ARM algorithm on very large datasets. The algorithm

was 8 to 19 times faster than traditional fuzzy ARM on very

large standard real-life datasets. In [2], unlike most two-

phased ARM algorithms, the authors presented individual

itemset processing as opposed to simultaneous itemset

processing at each k-level, recording some performance

improvements.

In [18], C. Saravanabhavan et al presented an efficient

tree structure for mining of high utility itemsets. Firstly, the

authors developed a utility frequent-pattern tree structure to

store important information about utility itemsets. Next the

pattern growth methodology was used to mine the entire

utility pattern sets. Two algorithms, UP-Growth (Utility

Pattern Growth) and UP-Tree (Utility Pattern Tree) are

proposed in [14] for mining high utility itemsets. Also a set of

effective strategies are discussed by Sadak Murali et al, for

pruning candidate itemsets.

In [1], Adinarayanareddy B presented a modified UP-

Growth (IUPG) algorithm for high utility itemset mining. The

authors conclude that IUPG algorithm performs better than

UP-Growth algorithm for different support values and also

IUPG algorithm is highly scalable. [13] Ruchi Patel proposed

a parallel and distributed method for mining high utility

patterns from large databases.

The method also prunes the low utility itemsets from

transactions at initial level by using downward closure

property.

Tele:

E-mail address: sathyavani.it@gmail.com

 © 2017 Elixir All rights reserved

ARTICLE INFO

Article history:

Received: 26April 2017;

Received in revised form:

30 June 2017;

Accepted: 8 July 2017;

Keywords

High utility itemset,

Mining algorithm,

Fuzzy Logic.

Mining High Utility Itemsets Using FHUI From Large Database
D.Sathyavani

1
and D.Sharmila

2

1
 Computer Sciences and Engineering, United Institute of Technology, Coimbatore, Tamil Nadu, India.

2
Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India.

ABSTRACT

Utility mining is to discover the itemsets in a transaction database with utility values over

a given threshold. Utility of itemsets are based upon user‟s perception such as cost, profit

or revenue and are of significant importance. Utility-based data mining intends

discovering the itemsets with high total utility is called High Utility Itemset mining. High

Utility itemsets may contain frequent as well as rare itemsets. Classical utility mining

considers items alone as discrete values. In real world applications, such utilities can be

described by fuzzy sets. In this paper, proposed an algorithm, FHUI (Fuzzy High Utility

Itemset) Mining is presented to mine high utility itemsets effectively from large

databases, by fuzzification of utility values. FHUI extracts fuzzy high utility itemsets by

integrating fuzzy logic with high utility itemset mining. This algorithm finds all utility-

frequent itemsets within given threshold value. The experimental result shows that, it
performs efficiently in terms of speed and memory on large databases.

 © 2017 Elixir All rights reserved.

Elixir Inform. Tech. 108 (2017) 47570-47575

Information Technology

Available online at www.elixirpublishers.com (Elixir International Journal)

D.Sathyavani

and D.Sharmila / Elixir Inform. Tech. 108 (2017) 47570-47575 47571

Koh et al proposed a modified Apriori inverse algorithm

to generate rare itemsets of user interest [11]. Yao et al

defined Utility as a measure usefulness or profitability of an

itemset [15] [16]. The authors focused on the measures used

for utility-based itemset mining. Utility based measures use

the utilities of the patterns to reflect the user's goals. The

authors formalize the semantic significance of utility

measures and classify existing measures into one of three

categories: item level, transaction level and cell level. A

unified framework was proposed for incorporating utility

based measures into the data mining process via a unified

utility function.

One of the most essential areas of the application of

fuzzy set theory is Fuzzy rule-based systems [4]. These

knowledge extraction tools discover intrinsic associations

contained in a data base. Fuzzy systems improve the

interpretation and understandability of consumer models. In

[4], Casillas et al presented a new approach for consumer

behavior modeling which is based on fuzzy association rules

(FAS). A behavioral model was presented which centered on

consumer attitude towards Internet and confidence in Internet

shopping.

The contributions of this paper are summarized as

Follows:

(1) We propose a new tree structure named FTN-Tree

(Fuzzy based Tail node Tree) for maintaining important

information related to a transaction dataset.

(2) We also give an algorithm named FT-Mine for

FIM over uncertain transaction datasets based on FT-Tree.

(3) Propose an algorithm that uses TWU with pattern

Growth based on a compact utility pattern tree data structure.

Our algorithm implements a fuzzy tail node tree scheme to

use disk storage when the main memory is inadequate for

dealing with large datasets.

(4) Fuzzy tail node tree based mining the high utility itemsets

with minimum no of tree creation.

3. Terms and Definitions

Let D = {T1, T2… Tn} be an transaction dataset which

contains n transaction itemsets and m distinct items, i.e. I=

{i1, i2… im}. Each transaction itemset is represented as {i1:p1,

i2:p2… iv:pv}, where {i1, i2, …, iv} is a subset of I, and pu

(1≤u≤v) is the existential probability of item iu in a

transaction itemset. The size of dataset D is the number of

transaction itemsets and is denoted as |D|. An itemset X = {i1,

i2… ik}, which contains k distinct items, is called a k-itemset,

and k is the length of the itemset X.

Definition 1: The support number (SN) of an itemset X in a

transaction dataset is defined by the number of transaction

itemsets containing X.

Definition 2: The expected support number (expSN) of an

itemset X in an transaction dataset is denoted as expSN(X) and

is defined by

Definition 3: Given a dataset D, the minimum expected

support threshold η is a predefined percentage of |D|;

correspondingly, the minimum expected support number

(minExpSN) is defined by an itemset

X is called a utility itemset if its expected support number is

not less than the value minExpSN.

Definition 4: The minimum support threshold λ is a

predefined percentage of |D|; correspondingly, the minimum

support number (minSN) in a dataset D is defined by

Definition 5: Fuzzy utility in high utility itemset mining, item

utility is equal to quantity value multiplied by profit. In fuzzy

transaction, the similar procedure to find item utility will

produce false results. For example, item A occurs in different

transaction T1 and T5. If the fuzzy set of (A, T1) = {1/L,

0/M, 1/H} and (A, T5) = {0/L, 0/M, 1/H}. If t heir item

utilities are obtained by multiplying fuzzy quantity with

profit, item utilities of T1 and T5 will be same even though

T5 yields a higher quantity value. The fuzzy utility is defined

as,

Definition 6: Fuzzy quantity The equation to find the fuzzy

quantity value of item ip in transaction Tq is denoted as f

(ip,Tq) which is defined as,

Where fq (ip,Tq, j) is the fuzzy value of fuzzy region j and

weight (j) is a variable parameter defined by the fuzzy

region. If a fuzzy region is low then the weight should be low

when compared to the region middle and high. Special

weights are assigned for region low, medium and high.

Definition 7: Fuzzy transaction utility can be defined as the

sum of the fuzzy utilities of item occurring in the particular

transaction. The equation denoting fuzzy transaction utility is

Definition 8: Fuzzy transaction weighted utility it is the sum

of fuzzy transaction utilities of item occurring in the

particular transaction for an item. The equation denoting

fuzzy transaction weighted utility can be defined as,

4. Proposed Approach

A novel method namely FTNT-HUI (Fuzzy TNT Tree

based high utility itemsets) mine is proposed which can

reflect the quantity information and also profit information. In

this algorithm, itemsets with profit slightly less than the

designated threshold value is also included resulting in new

revenue opportunities. FTNT-HUI-Mine consists of two

Fuzzy high utility itemset mining algorithm is proposed to

provide more information concerning the quantity and profit

information of high utility itemset. FTNT-Mine algorithm is

intended for mining fuzzy high utility itemset by applying

fuzzy theory to high utility itemset. a fuzzy membership

function is defined to represent the quantities in fuzzy sets.

Thus the transaction table is transformed into fuzzy

transaction table. Then fuzzy transaction utility will be

calculated from the fuzzy transaction table and utility table.

Further, Fuzzy transaction weighted utility is produced to

discover the phase I high utility itemset. Phase II calculates

the fuzzy utility for the phase I high utility itemset to yield the

fuzzy high utility itemset

4.1 Fuzzy Transaction-Weighted Utilization Itemset

Fuzzy membership function for quantity is defined to

provide the fuzzy quantity region which is shown in figure 1.

It can transform a quantity value in to fuzzy membership

region and membership value thereby enhancing transaction

database as fuzzy transaction database. The transaction

database is shown in table 1.

The quantity attribute for fuzzy membership function has

three fuzzy regions namely low, middle and high. Thus, fuzzy

D.Sathyavani

and D.Sharmila / Elixir Inform. Tech. 108 (2017) 47570-47575 47572

membership value for the purchased quantity is represented

as fuzzy set in terms of {fuzzy value of low/low, fuzzy value

of middle/middle, and fuzzy value of high/high}. For

example, the quantity value „9‟ is converted in to fuzzy set as

{0.0/L, 0.4/M, 0.6/H}, where „L‟, „M‟ and „H‟ are acronym

of „Low‟, „Middle‟ and „High‟.

Table 1. Transaction database.
 A B C D E

T01 0 3 6 1 4

T02 3 0 10 0 9

T03 7 0 4 0 0

T04 6 1 0 1 0

T05 0 0 8 0 3

T06 0 2 12 1 0

T07 9 0 0 0 7

T08 2 2 0 0 6

To find the sole representing fuzzy quantity from three

fuzzy regions, a maximum value is generated from the fuzzy

set. For example, the sole representation for quantity value

„9‟ is represented as Max (0.0, 0.4, 0.6) =0.6. The sole

representation for the quantity value was done according to

equation (2). Weight parameter was fixed for the three region

as Low=0.1, Middle=0.5, High=1. According to definition

(7), sole representation for quantity „9‟ is 0. 6. The

calculation is preceded as follows. The max value in fuzzy set

is 0.6 which is present in region high. The max value is

multiplied with weight assigned for region high to yield the

sole value for particular quantity. Hence this procedure is

adopted for all quantity in transaction database to reproduce

fuzzy transaction database which is shown in table 2.

Table 2. Fuzzy Transaction database.
 A B C D E

T01 0 0.06 0.5 0.1 0.3

T02 0.06 0 0.8 0 0.6

T03 0.4 0 0.3 0 0

T04 0.5 0.1 0 0.1 0

T05 0 0 0.3 0 0.06

T06 0 0.08 0.9 0.1 0

T07 0.6 0 0 0 0.4

T08 0.08 0.08 0 0 0.5

Table 3. Utility Table.

Item A B C D E

Utility 5 11 3 20 4

After the transformation of fuzzy transaction database

from transaction database, the next step is to find the fuzzy

utility for each and every transaction according to equation

by multiplying fuzzy quantity with profit value in utility table

shown I n table 3. Fuzzy utility for the item „B‟ in transaction

T01 is defined as the quantity value of item „B‟ is 0.06 which

is multiplied by the profit value for „B‟ in the utility table

which is 11 to yield the fuzzy utility as 0.66. Fuzzy utility

values for the corresponding transaction databases are

displayed in table 4.Fuzzy utility calculated was used to find

fuzzy transaction utility Fuzzy according to equation (4) for

each and every transaction. Fuzzy transaction utility table is

displayed in table 5.

Table 4. Utility table.
 A B C D E

T01 0 0.06 1.5 2 1.2

T02 0.3 0 2.4 0 2.4

T03 2 0 0.9 0 0

T04 2.5 1.1 0 2 0

T05 0 0 0.9 0 0.24

T06 0 0.88 2.7 2 0

T07 3 0 0 0 1.6

T08 0.4 0.88 0 0 2

Table 5. Fuzzy transaction utility.

Transaction ID Transaction utility

T01 5.36

T02 5.1

T03 2.9

T04 5.6

T05 1.14

T06 5.58

T07 4.6

T08 3.28

Fuzzy transaction weighted utility itemset was then

found from fuzzy utility. Fuzzy TWU for item „A‟ has been

evaluated.

4.2 Constructing a Global FT-Tree

The proposed algorithm FT-Mine mainly consists of Two

procedures: (1) creating an FT-Tree; (2) mining utility

itemsets from the FT-Tree. The structure of FT-Tree is

designed to efficiently store the related information on tail

nodes. It is constructed by two scans of dataset. In the first

scan, a header table is created to maintain sorted high utility

items.

A global FT-Tree is the first FT-Tree that

maintainsitemset information of the whole dataset. The

construction algorithm is described as follows:

CreateTree(D, η)

INPUT: An uncertain database D consisting of n transaction

itemsets and a predefined minimum expected support

threshold η .

OUTPUT: An FT-Tree T.

Step 1: Calculate the minimum expected support number

minExpSN, i.e. minExpSN =| D|×η ; count the expected

support number and support number of each item by one scan

of dataset.

Step 2: Put those items whose expected support numbers are

not less than minExpSN to a header table, and sort the items

in the header table according to the descending order of their

support numbers; finish the algorithm if the header table is

null.

Step 3: Initially set the root node of the FT-Tree T as null.

Step 4: Remove the items that are not in the header table

from each transaction itemset, and sort the remaining items of

each transaction itemset according to the order of the header

table, and get a sorted itemset X.

Step 5: If the length of itemset X is 0, process the next

transaction itemset; otherwise insert the itemset X into the

FT-Tree T by the following substeps:

Substep 5.1: Store the probability value of each item in item

set X sequentially to a list; save the list to an array (which is

denoted as ProArr); the corresponding sequence number of

the list in the array is denoted as ID.

D.Sathyavani

and D.Sharmila / Elixir Inform. Tech. 108 (2017) 47570-47575 47573

Substep 5.2: If there has not been a tail node for the itemset

X, the length of itemset X, and N.Tail_info.Arr_ind={ID};

otherwise, append the sequence number ID to

N.Tail_info.Arr_ind.

Step 6: Process the next transaction itemset.

4.3 Mining Frequent utility Itemsets from a Global

FTNT-Tree

After an AT-Tree is constructed, the algorithm ATMine

can directly mine frequent itemsets from the tree without

additional scan of dataset. The details of the mining approach

are described below. The algorithm AT-Mine is similar to the

algorithm FP-Growth: it creates and processes sub trees

(prefix trees or conditional trees) recursively. But the

condition of generating frequent itemsets is different from

FPGrowth. Mining (T, H, minExpSN)

INPUT: An AT-Tree T, a header table H, and a minimum

expected support number minExpSN.

OUTPUT: The frequent itemsets (FIs).

Step 1: Process the items in the header table one by one from

the last item by the following steps (denote the currently

processed item as Z).

Step 2: Append item Z to the current base-itemset (which is

initialized as null); each new base-itemset is a frequent

itemset.

Step 3: Let Z.links in the header table H contain k nodes

whose item name is Z; we denote these k nodes as N1, N2, …,

Nk; because item Z is the last one in the header table, all these

k nodes are tail nodes, i.e., each of these nodes contains a

Tail_info.

Substep 3.1: Create a sub header table subH by scanning the

k branches from these k nodes to the root.

Substep 3.2: If the sub header table is null, go to Step 4.

Substep 3.3: Create sub AT-Tree

subTree = CreateSubTree(Z.link, subH).

Substep 3.4: Mining(subTree, subH, minExpSN).

Step 4: Remove item Z from the base-itemset.

Step 5: For each of these k nodes (which we denote as Ni,

1≤i≤k), modify its Tail_info by the following substeps:

Substep 5.1: Alter Ni.Tail_info.len values:

Ni.Tail_info.len = Ni.Tail_info.len -1.

Substep 5.2: Move Ni.Tail_info to the parent of

node Ni.

Step 6: Process the next item of the header table H.

Subroutine: CreateSubTree(link, subH)

INPUT: A list link which records tree nodes with the

same item name, and a header table subH.

OUTPUT: An AT-Tree subT.

Step 1: Initially set the root node of the tree subT as null.

Step 2: Process each node in the list link by the following

steps (denote the currently processed node as N).

Step 3: Get the tail-node-itemset of node N (denote it as

itemset X).

Step 4: Remove those items that are not in the header table

subH from itemset X, and sort the remaining items in itemset

X according to the order of the header table subH.

Step 5: If the length of the sorted itemset (denoted as k) is 0,

process the next node of the list link; otherwise insert the

sorted itemset X into the AT-Tree subT by the following

substeps:

Substep 5.1: Get the original sequential ID of each item

of the itemset X in the corresponding list of

ProArr: item_ind = {d1, d2, .., dk} (k is the length of

of itemset X).

Substep 5.2: Make a copy of N.Tail_info; denote the

copy as nTail_info.

Substep 5.3: Alter nTail_info as the following:

(1) nTail_info.len = k.

(2) nTail_info. Item_ind = item_ind.

(3) if nTail_info.bp is null, set nTail_info.bp[j]

to be the probability of item Z, i.e.

ProArr[nTail_info.Arr_ind[j]]; otherwise,

set nTail_info.bp[j] to be the product of nTail_info.bp[j] and

the probability of item Z (1 ≤ j ≤ bp.size; the array ProArr is

created when the global tree is created in Substep 5.1 in

Section 4.2.1).

5. Experimental Results

In this section, evaluate the performance of the proposed

algorithm FTNT-Mine. UP Growth is the state-of-the-art

algorithm employing the pattern-growth approach and FTNT

is a new proposed algorithm. So compare FTN-Mine with the

algorithms UF-Growth, UP-Mine and FTN on both types of

datasets: the sparse transaction datasets and dense transaction

datasets. All algorithms were written in Java programming

language. The configuration of the testing platform is as

follows: Windows 7 32bit operating system, 4G Memory,

Intel(R) Dual-Core CPU @ 2.60 GHz.

Table 6. Dataset Characteristics.
Dataset |D| T |I| Type

T10I4d100k 300,000 33.8 1000 sparse

mushroom 8,124 23 119 dense

Table 6 shows the characteristics of 4 datasets used in

our experiments. “|D|” represents the total number of

transactions; “|I|” represents the total number of distinct

items; “I” represents the mean length of all transaction

itemsets; “SD” represents the degree of sparsity or density.

The synthetic dataset T10I4d100ks came from the IBM Data

Generator and the datasets and mushroom were obtained from

FIMI Repository. These four datasets originally do not

provide probability values for each item of each.

Table7. Comparison algorithm of using T10I4d100k

Vs No tree created.
 No of Tree

Threshold 0.04 0.05 0.06 0.07 0.08 0.09

Fuzzy Tail Node

Tree

170 62 29 10 6 4

UF-Growth + 369 115 39 17 8 4

UP Growth 410 232 101 52 43 21

0

100

200

300

400

500

0
.0

4

0
.0

5

0
.0

6

0
.0

7

0
.0

8

0
.0

9

Thrreshold

N
o

 o
f

Tr
e

e

Fuzzy Tail
Node Tree

UF-Growth +

UP Growth

Fig 1. Comparison of different threshold value with tree

creation.

D.Sathyavani

and D.Sharmila / Elixir Inform. Tech. 108 (2017) 47570-47575 47574

Fig 1 and Table 7 Show the total number of tree nodes

generated by FTNT-Mine, UF-Growth and UP, respectively,

on the synthetic datasets.

Table 8. High Utility value using T10I4d100k.
 No of High Utility Itemsets

Threshold 0.04 0.05 0.06 0.07 0.08 0.09

Fuzzy Tail Node Tree 73 44 32 23 17 11

UF-Growth + 62 33 28 19 14 8

UP Growth 48 26 22 15 9 2

0

20

40

60

80

0.04 0.05 0.06 0.07 0.08 0.09

Threshold Value

N
o

f
o

f
H

ig
h

 U
ti

lit
y

Fuzzy Tail Node Tree

UF-Growth +

UP Growth

Fig 2. Comparison of different threshold value with high

utility items.

Table 9. Total run time using T10I4d100k.
 No of High Utility

Threshold 0.04 0.05 0.06 0.07 0.08 0.09

Fuzzy Tail

Node Tree

11922 10209 8362 7952 7118 17897

UF-

Growth +

36976 27145 23114 20317 18028 6949

UP Growth 46676 371545 33614 18317 16026 5979

0
100000
200000

300000
400000

0.0
4

0.0
6

0.0
8

Threshold Value

R
u

n
 T

im
e

Fuzzy Tail

Node Tree

UF-Growth +

UP Growth

Fig 3. Run time for Different Threshold Value.

Table 10. Comparison of different algorithm using

mushroom
 No of Tree

Threshold 0.04 0.05 0.06 0.07 0.08 0.09

Fuzzy Tail Node Tree 334 254 150 123 103 83

UF-Growth + 443 345 234 189 132 112

UP Growth 546 434 367 264 212 187

0

100

200

300

400

500

600

0.04 0.05 0.06 0.07 0.08 0.09

Threshold Value

N
o

 o
f

Tr
ee Fuzzy Tail Node Tree

UF-Growth +

UP Growth

Fig 4. Comparison of different threshold value with tree

creation.

Fig 4 and Table 10 Show the total number of tree nodes

generated by FTNT-Mine, UF-Growth and UP, respectively,

on the synthetic datasets.

Table 11. High Utility value using mushroom.
 No of High Utility

Threshold 0.04 0.05 0.06 0.07 0.08 0.09

Fuzzy Tail Node Tree 78 46 34 27 19 13

UF-Growth + 67 38 29 21 17 10

UP Growth 49 31 28 19 10 8

0

20

40

60

80

100

0.04 0.05 0.06 0.07 0.08 0.09

Threshold Value

H
ig

h
U

ti
lit

y
It

em
se

ts

Fuzzy Tail Node

Tree

UF-Growth +

UP Growth

Fig 5. Comparison of different threshold value with high

utility items

Table 12: Total run time using mushroom
 No of High Utility

Threshold 0.04 0.05 0.06 0.07 0.08 0.09

Fuzzy Tail

Node Tree

14622 12249 9372 8982 7228 6327

UF-Growth

+

32956 28155 24164 21327 19048 7349

UP Growth 56576 381845 34684 19367 17126 6179

0

100000

200000

300000

400000

Run Time

0.04 0.05 0.06 0.07 0.08 0.09

Threshold Value

Fuzzy Tail Node Tree

UF-Growth +

UP Growth

Fig 6. Run time for Different Threshold Value.

6. Conclusion

Experiments were performed on sparse and dense

datasets. We compared our proposed algorithm with some

state-of-the-art level-wise and pattern-growth algorithms. The

experimental results show that the proposed algorithm has

better performance on dense datasets and large sparse

datasets, and their time performance is stable on both dense

and sparse datasets along with the decreasing of the minimum

expected support threshold.

References

[1]AlokChoudhary, Ying Liu, Wei- keng Liao, (2005), „A

Fast High Utility Itemsets Mining Algorithm‟, UBDM‟05

Chicago, USA

[2]Bay VO, Huy N guyen, Bac Le (2009) „Mining High

Utility Itemset from Vertical Distributed Database‟, IEEE

Xplore.

[3]Ming-Yen Lin, Tzer-Fu Tu, Sue-chen Hs ueh, „High utility

pattern mining using the maximal itemset property and

lexicographic tree structures, Science Direct, journal of

information sciences 215(2012)1-14.

[4]Tzung-Pei Hong, Kuei-Ying Lin, Shyue-

Liang Wang, „ Fuzzy data mining for interesting gene

ralized association rules‟, Elsevier on fuzzy sets and system

138(2003) 255-269.

[5]R.Agrawal, T.Imielinskl, A. Swami, „Mining Association

rules between sets of items in large databases‟, Proceedings

of the 1993 ACM SIGMOD International Conference in

Management of Data, Washington, DC , 1993, pp. 207 –

 216.

[6]R.Agrawal, R.Srikant, Fast algorithms for mining

association rules, in: Proceedings of 20th International

Conference on Very Large Databases, Santiago, Chile, 1994,

pp. 487 – 499.

D.Sathyavani

and D.Sharmila / Elixir Inform. Tech. 108 (2017) 47570-47575 47575

[7]Alva Erwin,Raj p. Gop alan, N.R.Achunthan (2007), „A

Bottom - Up Projection Based Algorithm For mining High

Utility Itemset‟, Workshop on Integrating AI and Data

Mining (AIDM), Australia ,Vol.84.

[8]Chia-Ming Wang, Shyh-Huei Chen; Yin-Fu Huang , „A

fuzzy approach for mining high utility quantitative itemsets‟,

 Fuzzy Systems, 2009. FUZZ-IEEE 2009.

[9]T.P. Hong, C.Y. Lee, Induction of fuzzy rules and

membership functions from training examples, Fuzzy Sets

and Systems 84 (1996) 33 – 47.

[10]Sandeep Kumar Singh, Mr.Ganesh Wayal, Mr.Niresh

sharma, „A Review: Data Mining with Fuzzy Association

Rule Mining‟, International Journal of Engineering Research

& Technology (IJERT) Vol. 1 Issue 5, July – 2012.

[11]Stergios Papadimitriou Seferina Mavroudi, „The Fuzzy

Frequent Pattern Tree‟.

[12]Karthikeyan T, Samuel Chellathurai A and Praburaj B,

„A study on a novel method of mining fuzzy association using

fuzzy correlation analysis‟, African Journal of Mathematics

and Computer Science Research Vol. 5(2), pp. 28-33, 15

January, 2012.

[13]H. Yao, H.J. Hamilton, „Mining itemset utilities from

transaction databases‟ , Data & Knowledge Engineering 59

(3) (2006) 603 – 626.

[14]Vincent S. Tseng and C. P. Kao, „A Novel Similarity -

based Fuzzy Clustering Algorithm by Integrating PCM and

Mountain Method‟, IEEE Transactions on Fuzzy Systems ,

vol. 15, Issue 6, pp. 1188-1196.

