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Introduction 

  The transport process, attenuation processes may cause movement of the pollutants to different from that of the bulk flowing 

groundwater, for example dispersion, sorption and chemical or biological degradation of the chemicals/contaminants. Transport 

and attenuation processes may cause movement of the pollutants to different from that of the bulk flowing groundwater, for 

example dispersion, sorption and chemical or biological degradation of the chemicals/contaminants. The natural hydrological 

conditions may also affect the behavior of some pollutants. Because, groundwater movement is typically slow and its residence 

time is long. There is potential for interaction between the water and the porous material through which it passes. Groundwater 

flow and transport models are applied to assess the present pollution situation and to predict future situations in order to prevent 

further contamination of subsurface water. Maximum theoretical models are focused on passive pollutants, which mean those, 

which have no influence on the shape of the flow velocity distribution. Solute concentrations can be obtained with a wide variety 

of techniques.  

The models based on the advective-dispersion solute transport equation are developed analytically by [5] in one-dimension 

for point source.  [8] demonstrated  the  influence of initial and boundary conditions on solute concentration in one-dimension. 

They considered the radioactive decay, simple chemical interaction of solute on hydrodynamic dispersion in finite and semi-

infinite domain both. [7] and [15] studied solute transport in stratified aquifer of infinite thickness. They calculated dispersion 

under the assumption that the permeability of each layer is random and the flow is in a direction parallel to the layers. [14] 

obtained analytical solution for reactive solute transport in two-dimensional aquifers. [19] obtained an analytical solution against 

the flow in one-dimension. They considered porous domain of adsorbing nature and seepage velocity unsteady and dispersion 

coefficient proportional to seepage velocity. The advection-dispersion equation has served as the main theoretical framework for 

modeling the fate and transport of solutes in soil/porous media, and for addressing critical environmental issues stemming from 

agricultural practices or waste disposal operations during the last few decades [11]. [4] analyzed the transverse dispersion 

coefficient considering a spatially uniform flow field of a kinetically sorbing compound under periodic temporal fluctuations.[9], 

[12], [20] and  [21] obtained analytical solutions for one and two-dimensional advection–diffusion equation with variable 

coefficients in a longitudinal semi-finite domain, for temporally and spatially dependent dispersion problems. [1] considered the 

inverse problem of identifying a moving source in a linear advection-dispersion-reaction equation. The main application, but not 

the only one, is the identification of an environmental pollution source in a river. [17-18] presented a large number of one- and 

multi-dimensional analytical solutions of the standard equilibrium advection-dispersion equation (ADE) with and   without terms 

accounting for zero-order production and first-order decay in two-part series. 

In this paper, we developed a theoretical model for the dispersion   problem in porous media in which the flow is one-dimensional 

and periodic. The analytical solution is derived for semi-infinite porous medium with appropriate initial and boundary conditions 

involving periodic function. Laplace transform technique is employed to get the solution of the present problem.
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 ABSTRACT 
Analytical solution of advection-dispersion equation (ADE) is obtained for one-dimensional 

semi-infinite porous medium with periodic input boundary and periodic flow velocity. The 

dispersion coefficient is directly proportional to flow velocity. Laplace Transformation 

Technique is employing to get the analytical solution with exponentially increasing function 

of space variable initial condition and periodic input boundary condition. Analytical solution 

is illustrated graphically.                                                                                                                                                                                              
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Mathematical Description of the Problem 

Mass conservation of solutes transported through porous media is described by a second order partial differential equation 

known as advection-dispersion equation (ADE). The governing equation of solute concentration can be expressed by the one-

dimensional ADE as [2], 

                                    (1) 

where c solute concentration is a function of time t and position , D dispersion coefficient, presumably includes the effects of 

both molecular diffusion and mixing in the axial direction i.e., horizontal axis which is direction of flow velocity and vertical axis.     

 However molecular diffusion is negligible due to very low seepage velocity. In Eq. (1), D and u may be constants or functions of 

time/space and  is porosity,  and  are empirical constants of the medium. [13] considered two cases, namely equilibrium 

and non-equilibrium relationship between the concentrations in the two phases. Equilibrium relationship is adopted in the present 

paper. The use of equilibrium isotherms assumes that equilibrium exists at all times between the porous medium and the solute in 

solution. This assumption is generally valid when the adsorption process is fast in relative to the ground-water velocity [3].  

The coefficient of dispersion is considered directly proportional to seepage velocity [22], i.e. 

                                                                       (2) 

Let us write , so that , where  is angular frequency whose dimension is 

inverse of the time variable  and  , 
 
are constant and dimension of  , 

 
 are  ,  respectively. Hence these are 

initial diffusion and velocity coefficient since at ,  and . But  at 
 
 i.e.,  

represents the maximum value of . Similarly  may be interpreted. Eq. (1) becomes,  

                                     (3)  

Or 

                                                      (3a) 

where  is a  retardation factor describing solute sorption and it is dimension less quantity.   

 Let us introduce a new time variable  by using the following transformation [6], 

        

                                                                               (4) 

Or 

                                                                                    (5) 

Now differential Eq. (3a) reduces into constant coefficients as 

                                                                            

or    

                                  (6) 

Analytical Solutions 

The porous domain is semi-finite and initially not solute free initially. Let us assume that the source is exponentially 

increasing function of space variable. Periodic input source is considered at origin of the domain i.e. in the semi-infinite domain 

(0,∞), at x = 0 the input source concentration is   which is periodic in nature. On other, end of the domain flux 

type boundary condition is assumed. Mathematically, initial and boundary conditions can be,  

    ; ,                                               (7) 

    c ; ,                                             (8) 

     ; ,                                                                            (9)  

where   and  are the resident concentrations. To keep the initial concentration in feasible range  is taken less than one 

and its dimension is inverse of space variable. The initial and boundary conditions Eqs. (7 - 9) can be written in new time variable 

 by using Eq. (5), as 

    ; ,                                           (10) 

    ; ,                                              (11) 

     ; ,                                                                          (12) 

Since  , so neglecting second and higher order term from binomial expansions of    . 

Now introducing a transformation, 

                                                (13) 

Eqs. (6) and Eqs.(10– 12) reduced into 

                                                                                          (14) 

      ; ,                               (15) 

; ,                              (16)    
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      ;  ,                                                             (17) 

where   ,  . 

Applying Laplace transformation on Eqs. (14 – 17), we may get 

                                                       (18)  

      ; ,                                             (19)  

      ;   ,                                                            (20) 

Where                                                    (21) 

in which   is the Laplace transformation parameter. Thus the solution of Eq. (18) on using condition Eqs.(19-20), may be written 

as, 

                                                                                                                  (22) 

Taking inverse Laplace transform of Eq. (22), the solution of advection-dispersion solute transport for periodic input 

condition  in terms of , as [10]  

 

 

 

 

 

                                                      (23) 

Where   ,   and  . 

Results and Discussion 

In the obtained analytical solutions given by Eq.(23) the input parameters, value and the ranges of these parameters within 

which they are varied taken either from published literature or empirical relationship.   For example the range of seepage velocity, 

keeping in view the different types of soils, aquifer is lies between 2m/day to 2m/year [16]. The concentration values   are 

evaluated assuming reference concentration as  and , in a finite domain . 

The numerical values of other common parameters are taken as ,  

and . 
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Figure 1. Distribution of dimensionless concentration for different time with fixed retardation  and angular 

frequency . 
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Fig. 1., demonstrates dimensionless concentration profiles at various time  with retardation factor 

  and angular frequency . It reveals that at , the concentration  values are higher for lower time 

and lower for higher time. Concentration at particular time varies with position.  
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Figure  2. Distribution of  dimensionless  concentration  for  different  retardation and  for  fixed  angular  frequency 

and time  

       Fig. 2., demonstrates the effect of retardation factor on concentration profiles computed at various the retardation 

factor  for angular frequency  It reveals that concentration value decreases sharply as 

the retardation factor increases. 
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Figure 3. Distribution of dimensionless concentration for different angular frequency with fixed retardation  and 

time  

Fig.3., Illustrates the effect of angular frequency on concentration behavior computed at 

various   for retardation factor . It may be observed that concentration values at  

are higher for lower angular frequency and lower for higher. At particular position the concentration values are lower for higher 

angular frequency. 

Many practical applications of ADE with initial and boundary condition in a semi-infinite/finite domain need to be considered 

and numerical/analytical solutions are required. Groundwater/surface water interactions in hydro-environments are influenced by 

a number of processes forming complex spatially and temporally variable systems.  

Conclusion 
A solute transport model with time dependent periodic boundary conditions and periodic flow is formulated to predict 

contaminant concentration along transient groundwater flow in a homogeneous semi-infinite aquifer is solved analytically using 

Laplace Transformation Technique. Effect of parameter, periodic boundary conditions and periodic flow on concentration profiles 

are illustrated with numerical solution. The boundary condition (8) seems to have relatively more effect on the results. The 

obtained result may be useful in examining the degradation levels of the surface as well as subsurface, particularly in assessing the 

rehabilitation time period. 
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