

V.Shanmugapriya et al./ Elixir Adv. Math. 110 (2017) 48420-48428 Available online at www.elixirpublishers.com (Elixir International Journal)

Advanced Mathematics

Elixir Adv. Math. 110 (2017) 48420-48428

Level Subset of Bipolar Valued Fuzzy Subsemirings of a Semiring

V.Shanmugapriya, Chet Raj Bhatta and K.Arjunan

Department of Mathematics, H.H.The Rajah's College, Pudukkottai - 622001, Tamilnadu.

ARTICLE INFO	ABSTRACT
Article history: Received: 3 August 2017;	In this paper, we study some of the properties of (α,β) -level subsets of bipolar valued fuzzy subsemiring and prove some results on these.
Received in revised form: 6 September 2017; Accepted: 19 September 2017;	© 2017 Elixir All rights reserved.

Keywords

Bipolar	valued	fuzzy	subset,	
Bipolar	valued		fuzzy	
subsemiring,				
Level subset.				

Introduction

In 1965, Zadeh [15] introduced the notion of a fuzzy subset of a set, fuzzy sets are a kind of useful mathematical structure to represent a collection of objects whose boundary is vague. Since then it has become a vigorous area of research in different domains, there have been a number of generalizations of this fundamental concept such as intuitionistic fuzzy sets, interval valued fuzzy sets, vague sets, soft sets etc [7]. Lee [9] introduced the notion of bipolar valued fuzzy sets. Bipolar valued fuzzy sets are an extension of fuzzy sets whose membership degree range is enlarged from the interval [0, 1] to [-1, 1]. In a bipolar valued fuzzy set, the membership degree 0 means that elements are irrelevant to the corresponding property, the membership degree (0, 1] indicates that elements somewhat satisfy the property and the membership degree [-1, 0) indicates that elements somewhat satisfy the property and the membership degree [-1, 0) indicates that elements somewhat satisfy the property and the membership degree [-1, 0] indicates that elements somewhat satisfy the implicit counter property. Bipolar valued fuzzy sets and intuitionistic fuzzy sets look similar each other. However, they are different each other [9,10]. Anitha.M.S., Muruganantha Prasad & K.Arjunan[1] defined as bipolar valued fuzzy subgroups of a group. We introduce the concept of (α , β)-level subsets of bipolar valued fuzzy subsemirings of a semiring are discussed. Using these concepts, some results are established.

1. PRELIMINARIES:

1.1 Definition:

A bipolar valued fuzzy set (BVFS) An X is defined as an object of the form $A = \{ \langle x, A^+(x), A^-(x) \rangle / x \in X \}$, where $A^+: X \rightarrow [0, 1]$ and $A^-: X \rightarrow [-1, 0]$. The positive membership degree $A^+(x)$ denotes the satisfaction degree of an element x to the property corresponding to a bipolar valued fuzzy set A and the negative membership degree $A^-(x)$ denotes the satisfaction degree of an element x to the property corresponding to a bipolar valued fuzzy set A and the negative membership degree $A^-(x)$ denotes the satisfaction degree of an element x to some implicit counter-property corresponding to a bipolar valued fuzzy set A. If $A^+(x) \neq 0$ and $A^-(x) = 0$, it is the situation that x is regarded as having only positive satisfaction for A and if $A^+(x) = 0$ and $A^-(x) \neq 0$, it is the situation that x does not satisfy the property of A, but somewhat satisfies the counter property of A. It is possible for an element x to be such that $A^+(x) \neq 0$ and $A^-(x) \neq 0$ when the membership function of the property overlaps that of its counter property over some portion of X. **1.2 Example:**

A = { < a, 0.5, -0.3 >, < b, 0.1, -0.7 >, < c, 0.5, -0.4 >} is a bipolar valued fuzzy subset of X = {a, b, c}.

1.3 Definition:

Let R be a semiring. A bipolar valued fuzzy subset A of R is said to be a bipolar valued fuzzy subsemiring of R (BVFSSR) if the following conditions are satisfied,

(i) $A^+(x+y) \ge \min\{A^+(x), A^+(y)\}$

(ii) $A^+(xy) \ge \min\{A^+(x), A^+(y)\}$

(iii) $A^{-}(x+y) \le \max\{A^{-}(x), A^{-}(y)\}$

(iv) $A^{-}(xy) \le \max\{A^{-}(x), A^{-}(y)\}$ for all x and y in R.

1.4 Example:

Let $R = Z_3 = \{0, 1, 2\}$ be a semiring with respect to the ordinary addition and multiplication. Then $A = \{<0, 0.5, -0.6>, <1, 0.4, -0.5>, <2, 0.4, -0.5>\}$ is a bipolar valued fuzzy subsemiring of R. **1.5 Definition:**

Let $A = \langle A^+, A^- \rangle$ be a bipolar valued fuzzy subset of X. For α in [0, 1] and β in [-1, 0], the (α, β) -level subset of A is the set $A_{(\alpha,\beta)} = \{ x \in X: A^+(x) \ge \alpha \text{ and } A^-(x) \le \beta \}.$

Tele: E-mail address: priyaarunnithi@gmail.com

1.6 Example:

Consider the set $X = \{0, 1, 2, 3, 4\}$.

Let A = { (0, 0.5, -0.1), (1, 0.4, -0.3), (2, 0.6, -0.05), (3, 0.45, -0.2), (4, 0.2, -0.5) } be a bipolar valued fuzzy subset of X and $\alpha = 0.4$, $\beta = -0.1$. Then (0.4, -0.1)-level subset of A is A_(0.4, -0.1) = { 0, 1, 3 }.

1.7 Definition:

Let $A = \langle A^+, A^- \rangle$ be a bipolar valued fuzzy subset of X. For α in [0, 1], the A⁺-level α -cut of A is the set $P(A^+, \alpha) = \{ x \in X : A^+(x) \ge \alpha \}$.

1.8 Example:

Consider the set $X = \{0, 1, 2, 3, 4\}$.

Let A = { (0, 0.5, -0.1), (1, 0.4, -0.3), (2, 0.6, -0.05), (3, 0.45, -0.2), (4, 0.2, -0.5) } be a bipolar valued fuzzy subset of X and α = 0.4. Then A⁺-level 0.4-cut of A is P(A⁺, 0.4) = { 0, 1, 2, 3 }.

1.9 Definition:

Let $A = \langle A^+, A^- \rangle$ be a bipolar valued fuzzy subset of X. For β in [-1, 0], the A⁻-level β -cut of A is the set N(A⁻, β) = { $x \in X$: $A^-(x) \le \beta$ }.

1.10 Example:

Consider the set $X = \{0, 1, 2, 3, 4\}$.

Let A = { (0, 0.5, -0.1), (1, 0.4, -0.3), (2, 0.6, -0.05), (3, 0.45, -0.2), (4, 0.2, -0.5) } be a bipolar valued fuzzy subset of X and β = -0.1. Then A⁻-level -0.1-cut of A is N(A⁻, -0.1) = { 0, 1, 3, 4 }.

1.11 Definition:

Let $A = \langle A^+, A^- \rangle$ be a bipolar valued fuzzy subset of X and α in [0, 1– sup { $A^+(x)$ }], β in [–1– inf { $A^-(x)$ }, 0]. Then $T = \langle T^+, T^- \rangle$ is called a bipolar valued fuzzy translation of A if $T^+(x) = T^{+A}_{\alpha_i}(x) = A^+(x) + \alpha$, $T^-(x) = T^{-A}_{\beta}(x) = A^-(x) + \beta$, for all x in X.

1.12 Example:

Consider the set $X = \{0, 1, 2, 3, 4\}$.

Let A = { (0, 0.5, -0.1), (1, 0.4, -0.3), (2, 0.6, -0.05), (3, 0.45, -0.2), (4, 0.2, -0.5) } be a bipolar valued fuzzy subset of X and $\alpha = 0.1$, $\beta = -0.1$. Then the bipolar valued fuzzy translation of A is T = T^A_(0.1, -0.1) = { (0, 0.6, -0.2), (1, 0.5, -0.4), (2, 0.7, -0.15), (3, 0.55, -0.3), (4, 0.3, -0.6) }.

1.13 Definition:

Let X and X' be any two sets. Let $f : X \to X'$ be any function and let A be a bipolar valued fuzzy subset in X, V be a bipolar valued fuzzy subset in f(X) = X', defined by $V^+(y) = \sup_{x \in f^{-1}(y)} A^+(x)$ and $V^-(y) = \inf_{x \in f^{-1}(y)} A^-(x)$, for all x in X and y in X'. A is called

a preimage of V under f and is defined as $A^+(x) = V^+(f(x))$, $A^-(x) = V^-(f(x))$ for all x in X and is denoted by $f^{-1}(V)$. **2. Properties:**

2.1 Theorem: Let R and R^{\dagger} be any two semirings. The homomorphic image of a bipolar valued fuzzy subsemiring of R is a bipolar valued fuzzy subsemiring of R^{\dagger}.

2.2 Theorem: Let R and R^{\dagger} be any two semirings. The homomorphic preimage of a bipolar valued fuzzy subsemiring of R^{\dagger} is a bipolar valued fuzzy subsemiring of R.

2.3 Theorem: Let R and Rⁱ be any two semirings. The antihomomorphic image of a bipolar valued fuzzy subsemiring of R is a bipolar valued fuzzy subsemiring of Rⁱ.

2.4 Theorem: Let R and R' be any two semirings. The antihomomorphic preimage of a bipolar valued fuzzy subsemiring of R' is a bipolar valued fuzzy subsemiring of R.

2.5 Theorem: Let $A = \langle A^+, A^- \rangle$ be a bipolar valued fuzzy subsemiring of a semiring R. Then for α in [0, 1] and β in [-1, 0] such that $\alpha \leq A^+(e)$ and $\beta \geq A^-(e)$, $A_{(\alpha,\beta)}$ is a (α, β)-level subsemiring of R.

Proof: For all x and y in $A_{(\alpha,\beta)}$, we have, $A^+(x) \ge \alpha$ and $A^-(x) \le \beta$ and $A^+(y) \ge \alpha$ and $A^-(y) \le \beta$.

Now $A^+(x+y) \ge \min\{A^+(x), A^+(y)\} \ge \min\{\alpha, \alpha\} = \alpha$, which implies that $A^+(x+y) \ge \alpha$. And $A^+(xy) \ge \min\{A^+(x), A^+(y)\} \ge \min\{\alpha, \alpha\} = \alpha$, which implies that $A^+(xy) \ge \alpha$. Also $A^-(x+y) \le \max\{A^-(x), A^-(y)\} \le \max\{\beta, \beta\} = \beta$, which implies that $A^-(x+y) \le \beta$.

And $A^{-}(xy) \le \max \{ A^{-}(x), A^{-}(y) \} \le \max \{ \beta, \beta \} = \beta$,

which implies that $A^{-}(xy) \leq \beta$.

Therefore x+y, xy in $A_{(\alpha,\beta)}$. Hence $A_{(\alpha,\beta)}$ is a (α,β)-level subsemiring of R.

2.6 Theorem: Let $A = \langle A^+, A^- \rangle$ be a bipolar valued fuzzy subsemiring of a semiring R. Then for α , δ in [0, 1], β , ϕ in [-1, 0], $\alpha \le A^+(e)$, $\delta \le A^+(e)$, $\beta \ge A^-(e)$, $\phi \ge A^-(e)$, $\delta < \alpha$ and $\beta < \phi$, the two (α , β)-level subsemirings $A_{(\alpha,\beta)}$ and $A_{(\delta,\phi)}$ of A are equal if and only if there is no x in R such that $\alpha > A^+(x) > \delta$ and $\beta < A^-(x) < \phi$.

Proof: Assume that $A_{(\alpha,\beta)} = A_{(\delta,\phi)}$.

Suppose there exists x in R such that $\alpha > A^+(x) > \delta$ and $\beta < A^-(x) < \phi$.

48421

V.Shanmugapriya et al./ Elixir Adv. Math. 110 (2017) 48420-48428

Then $A_{(\alpha,\beta)} \subseteq A_{(\delta,\phi)}$ implies x belongs to $A_{(\delta,\phi)}$, but not in $A_{(\alpha,\beta)}$.

This is contradicTon to $A_{(\alpha,\beta)} = A_{(\delta,\phi)}$.

Therefore there is no x in R such that $\alpha > A^+(x) > \delta$ and $\beta < A^-(x) < \phi$.

Conversely, if there is no x in R such that $\alpha > A^+(x) > \delta$ and $\beta < A^-(x) < \phi$.

Then $A_{(\alpha,\beta)} = A_{(\delta,\phi)}$ (By the definition of (α, β) -level subset).

2.7 Theorem: Let $A = \langle A^+, A^- \rangle$ be a bipolar valued fuzzy subsemiring of a semiring R. If any two (α , β)-level subsemirings of A belongs to R, then their intersection is also (α , β)-level subsemiring of A in R.

Proof: Let α , δ in [0, 1], β , ϕ in [-1, 0], $\alpha \le A^+(e)$, $\delta \le A^+(e)$,

 $\beta \ge A^{-}(e), \phi \ge A^{-}(e).$

Case (i): If $\alpha > A^+(x) > \delta$ and $\beta < A^-(x) < \phi$, then $A_{(\alpha,\beta)} \subseteq A_{(\delta,\phi)}$.

Therefore $A_{(\alpha,\beta)} \cap A_{(\delta,\phi)} = A_{(\alpha,\beta)}$, but $A_{(\alpha,\beta)}$ is a (α,β) -level subsemiring of A.

Case (ii): If $\alpha < A^+(x) < \delta$ and $\beta > A^-(x) > \phi$, then $A_{(\delta,\phi)} \subseteq A_{(\alpha,\beta)}$.

Therefore $A_{(\alpha,\beta)} \cap A_{(\delta,\phi)} = A_{(\delta,\phi)}$, but $A_{(\delta,\phi)}$ is a (α,β) -level subsemiring of A.

Case (iii): If $\alpha < A^+(x) < \delta$ and $\beta < A^-(x) < \phi$, then $A_{(\delta,\beta)} \subseteq A_{(\alpha,\phi)}$.

Therefore $A_{(\delta,\beta)} \cap A_{(\alpha,\phi)} = A_{(\delta,\beta)}$, but $A_{(\delta,\beta)}$ is a (α,β) -level subsemiring of A.

Case (iv): If $\alpha > A^+(x) > \delta$ and $\beta > A^-(x) > \phi$, then $A_{(\alpha,\phi)} \subseteq A_{(\delta,\beta)}$.

Therefore $A_{(\alpha,\phi)} \cap A_{(\delta,\beta)} = A_{(\alpha,\phi)}$, but $A_{(\alpha,\phi)}$ is a (α,β) -level subsemiring of A.

Case (v): If $\alpha = \alpha$ and $\beta = \beta$, then $A_{(\alpha,\beta)} = A_{(\delta,\phi)}$

In other cases are true,

So, in all the cases, intersection of any two (α, β) -level subsemirings is a (α, β) -level subsemiring of A.

2.8 Theorem: Let $A = \langle A^+, A^- \rangle$ be a bipolar valued fuzzy subsemiring of a semiring R. The intersection of a collection of (α, β) -level subsemirings of A is also a (α, β) -level subsemiring of A.

2.9 Theorem: Let $A = \langle A^+, A^- \rangle$ be a bipolar valued fuzzy subsemiring of a semiring R. If any two (α , β)-level subsemirings of A belongs to R, then their union is also (α , β)-level subsemiring of A in R.

Proof: Let α , δ in [0, 1], β , ϕ in [-1, 0], $\alpha \le A^+(e)$, $\delta \le A^+(e)$,

 $\beta \geq A^-\!(e), \, \phi \geq A^-\!(e).$

Case (i): If $\alpha > A^+(x) > \delta$ and $\beta < A^-(x) < \phi$, then $A_{(\alpha,\beta)} \subseteq A_{(\delta,\phi)}$

Therefore $A_{(\alpha,\beta)} \cup A_{(\delta,\phi)} = A_{(\delta,\phi)}$, but $A_{(\delta,\phi)}$ is a (α,β) -level subsemiring of A.

Case (ii): If $\alpha < A^+(x) < \delta$ and $\beta > A^-(x) > \phi$, then $A_{(\delta,\phi)} \subseteq A_{(\alpha,\beta)}$.

Therefore $A_{(\alpha,\beta)} \cup A_{(\delta,\phi)} = A_{(\alpha,\beta)}$, but $A_{(\alpha,\beta)}$ is a (α, β) -level subsemiring of A.

Case (iii): If $\alpha < A^+(x) < \delta$ and $\beta < A^-(x) < \phi$, then $A_{(\delta,\beta)} \subseteq A_{(\alpha,\phi)}$.

Therefore $A_{(\delta,\beta)} \cup A_{(\alpha,\phi)} = A_{(\alpha,\phi)}$, but $A_{(\alpha,\phi)}$ is a (α,β) -level subsemiring of A.

Case (iv): If $\alpha > A^+(x) > \delta$ and $\beta > A^-(x) > \phi$, then $A_{(\alpha,\phi)} \subseteq A_{(\delta,\beta)}$.

Therefore $A_{(\alpha,\phi)} \cup A_{(\delta,\beta)} = A_{(\delta,\beta)}$, but $A_{(\delta,\beta)}$ is a (α,β) -level subsemiring of A.

Case (v): If $\alpha = \delta$ and $\beta = \phi$, then $A_{(\alpha,\beta)} = A_{(\delta,\phi)}$.

In other cases are true,

so, in all the cases, union of any two (α, β) -level subsemirings is a (α, β) -level subsemiring of A.

2.10 Theorem: Let $A = \langle A^+, A^- \rangle$ be a bipolar valued fuzzy subsemiring of a semiring R. The union of a collection of (α, β) -level subsemirings of A is also a (α, β) -level subsemiring of A.

2.11 Theorem: The homomorphic image of a (α, β) -level subsemiring of a bipolar valued fuzzy subsemiring of a semiring R is a (α, β) -level subsemiring of a bipolar valued fuzzy subsemiring of a semiring R¹.

Proof: Let V = f(A). Here $A = \langle A^+, A^- \rangle$ is a bipolar valued fuzzy subsemiring of R. By Theorem 2.1, $V = \langle V^+, V^- \rangle$ is a bipolar valued fuzzy subsemiring of R¹. Let x and y in R. Then f(x) and f(y) in R¹.

Let $A_{(\alpha, \beta)}$ be a (α, β) -level subsemiring of A.

That is, $A^+(x) \ge \alpha$ and $A^-(x) \le \beta$; $A^+(y) \ge \alpha$ and $A^-(y) \le \beta$;

 $A^{\scriptscriptstyle +}(x+y) \geq \alpha, \, A^{\scriptscriptstyle -}(x+y) \leq \beta, \, A^{\scriptscriptstyle +}(xy) \geq \alpha, \, A^{\scriptscriptstyle -}(xy) \leq \beta.$

We have to prove that $f(A_{(\alpha, \beta)})$ is a (α, β) -level subsemiring of V.

Now $V^+(f(x)) \ge A^+(x) \ge \alpha$ which implies that $V^+(f(x)) \ge \alpha$;

and $V^+(f(y)) \ge A^+(y) \ge \alpha$ which implies that $V^+(f(y)) \ge \alpha$.

Then $V^+(f(x)+f(y)) = V^+(f(x+y)) \ge A^+(x+y) \ge \alpha$, which implies that $V^+(f(x)+f(y)) \ge \alpha$. And $V^+(f(x)f(y)) = V^+(f(xy)) \ge A^+(xy) \ge \alpha$, which implies that $V^+(f(x)f(y)) \ge \alpha$. And $V^{-}(f(x)) \leq A^{-}(x) \leq \beta$ which implies that $V^{-}(f(x)) \leq \beta$; and V⁻(f(y)) $\leq A^{-}(y) \leq \beta$ which implies that V⁻(f(y)) $\leq \beta$. Then $V^{-}(f(x)+f(y)) = V^{-}(f(x+y)) \le A^{-}(x+y) \le \beta$, which implies that $V^{-}(f(x)+f(y)) \leq \beta$. And $V^{-}(f(x)f(y)) = V^{-}(f(xy)) \le A^{-}(xy) \le \beta$, which implies that $V^{-}(f(x)f(y)) \leq \beta$. Hence $f(A_{(\alpha, \beta)})$ is a (α, β) -level subsemiring of a bipolar valued fuzzy subsemiring V of R¹. **2.12 Theorem:** The homomorphic pre-image of a (α , β)-level subsemiring of a bipolar valued fuzzy subsemiring of a semiring R¹ is a (α, β) -level subsemiring of a bipolar valued fuzzy subsemiring of a semiring R. **Proof:** Let V = f(A). Here $V = \langle V^+, V^- \rangle$ is a bipolar valued fuzzy subsemiring of R¹. By Theorem 2.2, $A = \langle A^+, A^- \rangle$ is a bipolar valued fuzzy subsemiring of R. Let f(x) and f(y) in R¹. Then x and y in R. Let $f(A_{(\alpha, \beta)})$ be a (α, β) -level subsemiring of V. That is $V^{+}(f(x)) \ge \alpha$ and $V^{-}(f(x)) \le \beta$; $V^{+}(f(y)) \ge \alpha$ and $V^{-}(f(y)) \le \beta$; $V^{+}(f(x)+f(y)) \ge \alpha$, $V^{-}(f(x)+f(y)) \le \beta$, $V^{+}(f(x)f(y)) \ge \alpha$, $V^{-}(f(x)f(y)) \leq \beta$. We have to prove that $A_{(\alpha,\beta)}$ is a (α,β) -level subsemiring of A. Now $A^{+}(x) = V^{+}(f(x)) \geq \alpha$ implies that $A^{+}(x) \geq \beta$ α: $A^+(y) = V^+(f(y)) \ge \alpha$ implies that $A^+(y) \ge \alpha$. Then $A^+(x+y) = V^+(f(x+y)) = V^+(f(x)+f(y)) \ge \alpha$, which implies that $A^+(x+y) \ge \alpha$. And $A^+(xy) = V^+(f(xy)) = V^+(f(x)f(y)) \ge \alpha$, which implies that $A^+(xy) \ge \alpha$. And $A^{-}(x) = V^{-}(f(x)) \le \beta$ implies that $A^{-}(x) \le \beta$; $A^{-}(y) = V^{-}(f(y)) \le \beta$ implies that $A^{-}(y) \le \beta$. Also $A^{-}(x+y) = V^{-}(f(x+y)) = V^{-}(f(x)+f(y)) \le \beta$, which implies that $A^{-}(x+y) \leq \beta$. And $A^{-}(xy) = V^{-}(f(xy)) = V^{-}(f(x)f(y)) \le \beta$, which implies that $A^{-}(xy) \leq \beta$. Hence $A_{(\alpha, \beta)}$ is a (α, β) -level subsemiring of bipolar valued fuzzy subsemiring A of R. **2.13 Theorem:** The anti-homomorphic image of a (α , β)-level subsemiring of a bipolar valued fuzzy subsemiring R is a (α, β) -level subsemiring of a bipolar valued fuzzy subsemiring of a semiring R¹. **Proof:** Let V = f(A). Here $A = \langle A^+, A^- \rangle$ is a bipolar valued fuzzy subsemiring of R. By Theorem 2.3, $V = \langle V^+, V^- \rangle$ is a bipolar valued fuzzy subsemiring of R¹. Let x and y in R. Then f(x) and f(y) in R¹. Let $A_{(\alpha, \beta)}$ be a (α, β) -level subsemiring of A. That is $A^+(x) \ge \alpha$ and $A^-(x) \le \beta$; $A^+(y) \ge \alpha$ and $A^-(y) \le \beta$. And $A^+(y+x) \ge \alpha$ and $A^-(y+x) \le \beta$, $A^+(yx) \ge \alpha$ and $A^-(yx) \le \beta$. We have to prove that $f(A_{(\alpha, \beta)})$ is a (α, β) -level subsemiring of V. Now V⁺(f(x)) $\geq A^+(x) \geq \alpha$ which implies that V⁺(f(x)) $\geq \alpha$; and V⁺($f(y) \ge A^+(y) \ge \alpha$ which implies that V⁺($f(y) \ge \alpha$. Also V⁺($f(x)+f(y) = V^+(f(y+x)) \ge A^+(y+x) \ge \alpha$, which implies that $V^+(f(x)+f(y)) \ge \alpha$. And $V^+(f(x)f(y)) = V^+(f(yx)) \ge A^+(yx) \ge \alpha$, which implies that $V^+(f(x)f(y)) \ge \alpha$. And $V^{-}(f(x)) \le A^{-}(x) \le \beta$ which implies that $V^{-}(f(x)) \le \beta$ and $V^{-}(f(y)) \le A^{-}(y) \le \beta$ which implies that $V^{-}(f(y)) \le \beta$. Also V⁻(f(x)+f(y)) = V⁻(f(y+x)) \leq A⁻(y+x) \leq β , which implies that $V^{-}(f(x)+f(y)) \leq \beta$. And $V^{-}(f(x)f(y)) = V^{-}(f(yx)) \le A^{-}(yx) \le \beta$, which implies that $V^{-}(f(x)f(y)) \leq \beta$. Hence $f(A_{(\alpha, \beta)})$ is a (α, β) -level subsemiring of bipolar valued fuzzy subsemiring V of R¹. **2.14 Theorem:** The anti-homomorphic pre-image of a (α , β)-level subsemiring of a bipolar valued fuzzy subsemiring of a semiring R¹ is a (α , β)-level subsemiring of a bipolar valued fuzzy subsemiring of a semiring R. **Proof:** Let V = f(A). Here $V = \langle V^+, V^- \rangle$ is a bipolar valued fuzzy subsemiring of R¹. By Theorem 2.4, $A = \langle A^+, A^- \rangle$ is a bipolar valued fuzzy subsemiring of R. Let f(x) and f(y) in R¹. Then x and y in R. Let $f(A_{(\alpha, \beta)})$ be a (α, β) -level subsemiring of V. That is $V^+(f(x)) \ge \alpha$ and $V^-(f(x)) \le \beta$; $V^+(f(y)) \ge \alpha$ and $V^-(f(y)) \le \beta$; $V^{+}(f(y)+f(x)) \geq \alpha, V^{-}(f(y)+f(x)) \leq \beta, V^{+}(f(y)f(x)) \geq \alpha, V^{-}(f(y)f(x)) \leq \beta.$ We have to prove that $A_{(\alpha, \beta)}$ is a (α, β) -level subsemiring of A. Now $A^+(x) = V^+(f(x)) \ge \alpha$, which implies that $A^+(x) \ge \alpha$; and $A^+(y) = V^+(f(y)) \ge \alpha$, which implies that $A^+(y) \ge \alpha$.

Then $A^+(x+y) = V^+(f(x+y)) = V^+(f(y)+f(x)) \ge \alpha$,

which implies that $A^+(x+y) \ge \alpha$. And $A^+(xy) = V^+(f(xy)) = V^+(f(y)f(x)) \ge \alpha$, which implies that $A^+(xy) \ge \alpha$. And $A^{-}(x) = V^{-}(f(x)) \le \beta$ which implies that $A^{-}(x) \le \beta$ and $A^{-}(y) = V^{-}(f(y)) \le \beta$ which implies that $A^{-}(y) \le \beta$. Also $A^{-}(x+y) = V^{-}(f(x+y)) = V^{-}(f(y)+f(x)) \le \beta$, which implies that $A^{-}(x+y) \leq \beta$. And $A^{-}(xy) = V^{-}(f(xy)) = V^{-}(f(y)f(x)) \le \beta$, which implies that $A^{-}(xy) \leq \beta$. Hence $A_{(\alpha,\beta)}$ is a (α,β) -level subsemiring of bipolar valued fuzzy subsemiring A of R. **2.15 Theorem:** Let A be a bipolar valued fuzzy subsemiring of a semiring R. Then for α in [0, 1], A⁺-level α -cut P(A⁺, α) is a A⁺level α -cut subsemiring of R. **Proof:** For all x and y in $P(A^+, \alpha)$, we have $A^+(x) \ge \alpha$ and $A^+(y) \ge \alpha$. Now $A^+(x+y) \ge \min \{A^+(x), A^+(y)\} \ge \min \{\alpha, \alpha\} = \alpha$, which implies that $A^+(x+y) \ge \alpha$. And $A^+(xy) \ge \min \{A^+(x), A^+(y)\} \ge \min \{\alpha, \alpha\} = \alpha$, which implies that $A^+(xy) \ge \alpha$. Therefore x+y, xy in $P(A^+, \alpha)$. Hence $P(A^+, \alpha)$ is a A^+ -level α -cut subsemiring of R. **2.16 Theorem:** Let A be a bipolar valued fuzzy subsemiring of a semiring R. Then for β in [-1, 0], A⁻-level β -cut N(A⁻, β) is a A⁻-level β -cut subsemiring of R. **Proof:** For all x and y in N(A⁻, β) we have A⁻(x) $\leq \beta$ and A⁻(y) $\leq \beta$. Now $A^{-}(x+y) \le \max \{A^{-}(x), A^{-}(y)\} \le \max \{\beta, \beta\} = \beta$, which implies that $A^{-}(x+y) \leq \beta$. And $A^{-}(xy) \le \max \{ A^{-}(x), A^{-}(y) \} \le \max \{ \beta, \beta \} = \beta$, which implies that $A^{-}(xy) \leq \beta$. Therefore x+y, xy in N(A^- , β). Hence $N(A^{-}, \beta)$ is a A⁻-level β -cut subsemiring of R. **3 - Propertes of Bipolar Valued Fuzzy Translatons:** 3.1 Theorem: If M and N are two bipolar valued fuzzy translations of bipolar valued fuzzy subsemiring A of a semiring R, then their intersection $M \square N$ is also a bipolar valued fuzzy translation of A **Proof:** Let x and y belong to R. Let $M = T^{A}_{(\alpha,\beta)} = \{ \langle \mathbf{x}, \mathbf{A}^{+}(\mathbf{x}) + \alpha, \mathbf{A}^{-}(\mathbf{x}) + \beta \rangle / \mathbf{x} \in \mathbb{R} \}$ and $N = T^{A}_{(x,\delta)} = \{ \langle x, A^{+}(x) + \gamma, A^{-}(x) + \delta \rangle / x \in R \}$ be two bipolar valued fuzzy translations of bipolar valued fuzzy subsemiring A = $\langle A^+, A^- \rangle$ of R. Let $C = M \cap N$ and $C = \{ \langle x, C^+(x), C^-(x) \rangle / x \in R \}$, where $C^{+}(x) = \min \{ A^{+}(x) + \alpha, A^{+}(x) + \gamma \} \text{ and } C^{-}(x) = \max \{ A^{+}(x) + \alpha, A^{+}(x) + \gamma \} \}$ $A^{-}(x) + \beta, A^{-}(x) + \delta$ }. **Case (i):** $\alpha \leq \gamma$ and $\beta \leq \delta$. Now $C^+(x) = \min\{M^+(x), N^+(x)\}$ $= \min\{A^+(x)+\alpha, A^+(x)+\gamma\} = A^+(x)+\alpha = M^+(x)$ for all x in R. And $C^{-}(x) = \max \{ M^{-}(x), N^{-}(x) \}$ = max { $A^{-}(x) + \beta$, $A^{-}(x) + \delta$ }= $A^{-}(x) + \delta = N^{-}(x)$ for all x in R. Therefore C = $T^{A}_{(\alpha,\delta)}$ = { $\langle x, A^{+}(x) + \alpha, A^{-}(x) + \delta \rangle / x \in \mathbb{R}$ } is a bipolar valued fuzzy translation of bipolar valued fuzzy subsemiring A of R. **Case (ii):** $\alpha \ge \gamma$ and $\beta \ge \delta$. Now $C^+(x) = \min \{ M^+(x), N^+(x) \}$ = min { $A^{+}(x) + \alpha$, $A^{+}(x) + \gamma$ } = $A^{+}(x) + \gamma = N^{+}(x)$ for all x in R. And $C^{-}(x) = \max \{ M^{-}(x), N^{-}(x) \}$ = max { $A^{-}(x) + \beta$, $A^{-}(x) + \delta$ } = $A^{-}(x) + \beta = M^{-}(x)$ for all x in R. Therefore $C = T^{A}_{(x,\beta)} = \{ \langle x, A^{+}(x) + \gamma, A^{-}(x) + \beta \rangle / x \in \mathbb{R} \}$ is a bipolar valued fuzzy translation of bipolar valued fuzzy subsemiring A of R. **Case (iii):** $\alpha \leq \gamma$ and $\beta \geq \delta$. Clearly C = $T^{A}_{(\alpha,\beta)}$ = { $\langle x, A^{+}(x) + \alpha, A^{-}(x) + \beta \rangle / x \in \mathbb{R}$ } is a bipolar valued fuzzy translation of bipolar valued fuzzy subsemiring A of R. **Case (iv):** $\alpha \ge \gamma$ and $\beta \le \delta$. Clearly C = $T^{A}_{(\gamma,\delta)}$ = { $\langle x, A^{+}(x) + \gamma, A^{-}(x) + \delta \rangle / x \in \mathbb{R}$ } is a bipolar valued fuzzy translation of bipolar valued fuzzy subs miring A of R.

V.Shanmugapriya et al./ Elixir Adv. Math. 110 (2017) 48420-48428

In other cases are true, so in all the cases, the intersection of any two bipolar valued fuzzy translations of bipolar valued fuzzy subsemiring A of R is a bipolar valued fuzzy translation of A.

3.2 Theorem: The intersection of a family of bipolar valued fuzzy translations of bipolar valued fuzzy subsemiring A of a semiring R is a bipolar valued fuzzy translation of A.

Proof: It is trivial.

3.3 Theorem: Union of any two bipolar valued fuzzy translations of bipolar valued fuzzy subsemiring A of a semiring R is a bipolar valued fuzzy translation of A.

Proof: Let x and y belong to R.

Let $\mathbf{M} = T^{A}_{(\alpha,\beta)} = \{ \langle \mathbf{x}, \mathbf{A}^{+}(\mathbf{x}) + \alpha, \mathbf{A}^{-}(\mathbf{x}) + \beta \rangle / \mathbf{x} \in \mathbf{R} \}$ and

 $N = T^{A}_{(\gamma,\delta)} = \{ \langle x, A^{+}(x) + \gamma, A^{-}(x) + \delta \rangle / x \in \mathbb{R} \}$ be two bipolar valued fuzzy translations of bipolar valued fuzzy subs miring $A = \langle A^{+}, A^{-} \rangle$ of \mathbb{R} . Let $C = M \cup \mathbb{N}$ and $C = \{ \langle x, C^{+}(x), C^{-}(x) \rangle / x \in \mathbb{R} \}$, where $C^{+}(x) = \max \{ A^{+}(x) + \alpha, A^{+}(x) + \gamma \}$ and $C^{-}(x) = Min \{ A^{+}(x) + \alpha, A^{+}(x) + \gamma \}$ and $C^{-}(x) = Min \{ A^{+}(x) + \alpha, A^{+}(x) + \gamma \}$

Let C = MON and $C = \{\langle x, C (A^{-}(x) + \beta, A^{-}(x) + \delta \}$.

Case (i): $\alpha \leq \gamma$ and $\beta \leq \delta$.

Now $C^+(x) = \max \{ M^+(x), N^+(x) \}$

 $= \max\{A^{+}(x)+\alpha, A^{+}(x)+\gamma\} = A^{+}(x)+\gamma = N^{+}(x) \text{ for all } x \text{ and } y \text{ in } R.$ And C⁻(x) = Min { M⁻(x), N⁻(x) }

 $= Min \{ A^{-}(x) + \beta, A^{-}(x) + \delta \} = A^{-}(x) + \beta = M^{-}(x) \text{ for all } x \text{ in } R.$

Therefore $C = T^A_{(\gamma,\beta)} = \{ \langle x, A^+(x) + \gamma, A^-(x) + \beta \rangle / x \in \mathbb{R} \}$ is a bipolar valued fuzzy translation of bipolar valued fuzzy subsemiring A of R.

Case (ii): $\alpha \ge \gamma$ and $\beta \ge \delta$.

Now $C^+(x) = \max \{ M^+(x), N^+(x) \}$

= max { $A^+(x) + \alpha$, $A^+(x) + \gamma$ }= $A^+(x) + \alpha = M^+(x)$ for all x in R.

And $C^{-}(x) = \min\{ M^{-}(x), N^{-}(x) \}$

= min { $A^{-}(x)+\beta$, $A^{-}(x)+\delta$ } = $A^{-}(x)+\delta$ = $N^{-}(x)$ for all x in R.

Therefore $C = T^A_{(\alpha,\delta)} = \{ \langle x, A^+(x) + \alpha, A^-(x) + \delta \rangle / x \in R \}$ is a bipolar valued fuzzy translation of bipolar valued fuzzy subs miring A of R.

Case (iii): $\alpha \leq \gamma$ and $\beta \geq \delta$.

Clearly C = $T^{A}_{(\gamma,\delta)}$ = { $\langle x, A^{+}(x) + \gamma, A^{-}(x) + \delta \rangle / x \in \mathbb{R}$ } is a bipolar valued fuzzy translation of bipolar valued fuzzy subs miring A of R.

Case (iv): $\alpha \ge \gamma$ and $\beta \le \delta$.

Clearly C = $T^{A}_{(\alpha,\beta)}$ = { $\langle x, A^{+}(x) + \alpha, A^{-}(x) + \beta \rangle / x \in \mathbb{R}$ } is a bipolar valued fuzzy translation of bipolar valued fuzzy subs miring A of R

In other cases are true, so in all the cases, union of any two bipolar valued fuzzy translations of bipolar valued fuzzy subs miring A of R is a bipolar valued fuzzy translation of A.

3.4 Theorem:The union of a family of bipolar valued fuzzy translations of bipolar valued fuzzy subsemiring A of a semiring R is a bipolar valued fuzzy translation of A.

Proof: It is trivial.

3.5 Theorem: A bipolar valued fuzzy translation of a bipolar valued fuzzy subsemiring A of a semiring R is a bipolar valued fuzzy subs miring of R.

Proof: Assume that $T = \langle T^+, T^- \rangle$ is a bipolar valued fuzzy translation of a bipolar valued fuzzy subsemiring $A = \langle A^+, A^- \rangle$ of a semiring R.

Let x and y in R.

We have $T^{+}(x+y) = A^{+}(x+y) + \alpha \ge \min\{A^{+}(x), A^{+}(y)\} + \alpha$

 $= \min \{ A^{+}(x) + \alpha, A^{+}(y) + \alpha \} = \min \{ T^{+}(x), T^{+}(y) \}.$

Therefore $T^+(x+y) \ge \min \{ T^+(x), T^+(y) \}$ for all x and y in R.

And $T^{+}(xy) = A^{+}(xy) + \alpha \ge \min\{A^{+}(x), A^{+}(y)\} + \alpha$

 $= \min \{ A^{+}(x) + \alpha, A^{+}(y) + \alpha \} = \min \{ T^{+}(x), T^{+}(y) \}.$

Therefore $T^+(xy) \ge \min \{T^+(x), T^+(y)\}$ for all x and y in R.

Also $T^{-}(x+y) = A^{-}(x+y) + \beta \le \max\{A^{-}(x), A^{-}(y)\} + \beta$

 $= \max \{ A^{-}(x) + \beta, A^{-}(y) + \beta \} = \max \{ T^{-}(x), T^{-}(y) \}.$

Therefore $T^{-}(x+y) \le \max\{T^{-}(x), T^{-}(y)\}$ for all x and y in R.

And $T^{-}(xy) = A^{-}(xy) + \beta \le \max\{A^{-}(x), A^{-}(y)\} + \beta$

 $= \max \{ A^{-}(x) + \beta, A^{-}(y) + \beta \} = \max \{ T^{-}(x), T^{-}(y) \}.$

Therefore $T^{-}(xy) \le \max\{T^{-}(x), T^{-}(y)\}$ for all x and y in R.

Hence T is a bipolar valued fuzzy subsemiring of R.

3.6 Theorem: Let (R, +, .) and $(R^{l}, +, .)$ be any two semirings and f be a homomorphism. Then the homomorphic image of a bipolar valued fuzzy translation of a bipolar valued fuzzy subsemiring A of R is also a bipolar valued fuzzy subsemiring of R^l.

V.Shanmugapriya et al./ Elixir Adv. Math. 110 (2017) 48420-48428

Proof: Let $V = (V^+, V^-) = f(T^A_{(\alpha,\beta)})$, where $T^A_{(\alpha,\beta)}$ is a bipolar valued fuzzy translation of a bipolar valued fuzzy subs miring $A = (A^+, A^-)$ of R.

We have to prove that V is a bipolar valued fuzzy subsemiring of R^1 . For all f(x) and f(y) in R^1 ,

we have $V^{+}[f(x)+f(y)] = V^{+}[f(x+y)] \ge T^{+A}{}_{\alpha} (x+y)$ $= A^{+}(x+y) + \alpha \ge \min\{A^{+}(x), A^{+}(y)\} + \alpha$ $= \min\{A^{+}(x) + \alpha, A^{+}(y) + \alpha\} = \min\{T^{+A}{}_{\alpha}(x), T^{+A}{}_{\alpha}(y)\}$ which implies that $V^{+}[f(x)+f(y)] \ge \min\{V^{+}(f(x)), V^{+}(f(y))\}$ for all f(x) and f(y) in \mathbb{R}^{1} . And $V^{+}[f(x)f(y)] = V^{+}[f(xy)] \ge T^{+A}{}_{\alpha} (xy)$

 $= A^{+}(xy) + \alpha \geq \min\{A^{+}(x), A^{+}(y)\} + \alpha$

 $= \min \{ A^{+}(x) + \alpha, A^{+}(y) + \alpha \} = \min \{ T^{+A}{}_{\alpha} (x), T^{+A}{}_{\alpha} (y) \}$ which implies that V⁺[f(x)f(y)] $\geq \min \{ V^{+}(f(x)), V^{+}(f(y)) \}$ for all f(x) and f(y) in R¹.

Also V⁻[f(x)+f(y)] = V⁻[f(x+y)] $\leq T_{\beta}^{-A}(x+y)$

$$= A^{-}(x+y) + \beta \le \max \{ A^{-}(x), A^{-}(y) \} + \beta$$

max {
$$A^{-}(x)+\beta$$
, $A^{-}(y)+\beta$ } = max { $T_{\beta}^{-A}(x)$, $T_{\beta}^{-A}(y)$ }

which implies that $V^{-}[f(x)+f(y)] \le max \{ V^{-}(f(x)), V^{-}(f(y)) \}$ for all f(x) and f(y) in R^{1} .

And V⁻[f(x)f(y)] = V⁻[f(xy)] $\leq T_{\beta}^{-A}(xy)$

$$= A^{-}(xy) + \beta \le \max \{ A^{-}(x), A^{-}(y) \} + \beta$$
$$= \max \{ A^{-}(x) + \beta, A^{-}(y) + \beta \} = \max \{ T_{\beta}^{-A}(x), T_{\beta}^{-A}(y) \}$$

which implies that $V^{-}[f(x)f(y)] \le \max \{ V^{-}(f(x)), V^{-}(f(y)) \}$ for all f(x) and f(y) in R^{1} . Therefore V is a bipolar valued fuzzy subsemiring of R^{1} .

3.7 Theorem: Let (R, +, .) and $(R^{\dagger}, +, .)$ be any two semirings and f be a homomorphism. Then the homomorphic pre-image of bipolar valued fuzzy translation of a bipolar valued fuzzy subsemiring V of R^{\dagger} is a bipolar valued fuzzy subsemiring of R.

Proof: Let $T = T_{(\alpha,\beta)}^V = f(A)$, where $T_{(\alpha,\beta)}^V$ is a bipolar valued fuzzy translation of bipolar valued fuzzy subs miring $V = (V^+, V^-)$ of R^1 . We have to prove that $A = (A^+, A^-)$ is a bipolar valued fuzzy subsemiring of R.

Let x and y in R. Then $A^+(x+y) = T_{\alpha}^{+V} (f(x+y)) = T_{\alpha}^{+V} (f(x)+f(y))$ $= V^{+}[f(x)+f(y)] + \alpha \ge \min \{ V^{+}(f(x)), V^{+}(f(y)) \} + \alpha$ = min { $V^+(f(x)) + \alpha, V^+(f(y)) + \alpha$ } = min { T_{α}^{+V} (f(x)), T_{α}^{+V} (f(y)) } = min { $A^{+}(x), A^{+}(y)$ } which implies that $A^+(x+y) \ge \min \{ A^+(x), A^+(y) \}$ for all x and y in R. And $A^+(xy) = T^{+V}_{\alpha}$ (f(xy)) = T^{+V}_{α} (f(x)f(y)) $= V^{+}[f(x)f(y)] + \alpha \ge \min \{ V^{+}(f(x)), V^{+}(f(y)) \} + \alpha$ = min { $V^+(f(x)) + \alpha, V^+(f(y)) + \alpha$ } = min { T_{α}^{+V} (f(x)), T_{α}^{+V} (f(y)) } = min { A⁺(x), A⁺(y) } which implies that $A^{+}(xy) \ge Min \{ A^{+}(x), A^{+}(y) \}$ for all x and y in R. Also $A^{-}(x+y) = T_{\beta}^{-V} (f(x+y)) = T_{\beta}^{-V} (f(x)+f(y))$ $= V^{-}[f(x)+f(y)] + \beta \le \max \{ V^{-}(f(x)), V^{-}(f(y)) \} + \beta$ = max { $V^{-}(f(x)) + \beta$, $V^{-}(f(y)) + \beta$ } = max { T_{β}^{-V} (f(x)), T_{β}^{-V} (f(y)) } = max { $A^{-}(x), A^{-}(y)$ } which implies $A^{-}(x+y) \le \max\{A^{-}(x), A^{-}(y)\}$ for all x and y in R. And $A^{-}(xy) = T_{\beta}^{-V}$ (f(xy)) = T_{β}^{-V} (f(x)f(y)) $= V^{-}[f(x)f(y)] + \beta \le \max \{ V^{-}(f(x)), V^{-}(f(y)) \} + \beta$ = max { $V^{-}(f(x)) + \beta$, $V^{-}(f(y)) + \beta$ } $= \max \{ T_{\beta}^{-V} (f(x)), T_{\beta}^{-V} (f(y)) \} = \max \{ A^{-}(x), A^{-}(y) \}$

which implies $A^{-}(xy) \le \max\{A^{-}(x), A^{-}(y)\}$ for all x and y in R. Therefore A is a bipolar valued fuzzy subsemiring of R.

3.8 Theorem: Let (R, +, .) and (R', +, .) be any two semirings and f be a anti-homomorphism. Then the anti-homomorphic image of a bipolar valued fuzzy translation of a bipolar valued fuzzy subsemiring A of R is also a bipolar valued fuzzy subsemiring of R^{1} .

48426

V.Shanmugapriya et al./ Elixir Adv. Math. 110 (2017) 48420-48428

Proof: Let $V = (V^+, V^-) = f(T^A_{(\alpha,\beta)})$, where $T^A_{(\alpha,\beta)}$ is a bipolar valued fuzzy translation of a bipolar valued fuzzy subsemiring $A = (A^+, A^-)$ of R.

We have to prove that V is a bipolar valued fuzzy subsemiring of R^1 . For all f(x) and f(y) in R^1 ,

we have $V^{+}[f(x)+f(y)] = V^{+}[f(y+x)] \ge T^{+A}{}_{\alpha}(y+x)$ = $A^{+}(y+x) + \alpha \ge \min\{A^{+}(y), A^{+}(x)\} + \alpha$

 $= \min \{ A^{+}(x) + \alpha, A^{+}(y) + \alpha \} = \min \{ T^{+A}{}_{\alpha}(x), T^{+A}{}_{\alpha}(y) \}$ which implies that V⁺[f(x)+f(y)] ≥ min { V⁺(f(x)), V⁺(f(y)) } for all f(x) and f(y) in R¹. And V⁺[f(x)f(y)] = V⁺[f(yx)] ≥ T^{+A}{}_{\alpha}(yx) = A⁺(yx) + α ≥ min{ A⁺(y), A⁺(x) } + α

 $= \min \{ A^{+}(x) + \alpha, A^{+}(y) + \alpha \} = \min \{ T^{+A}{}_{\alpha}(x), T^{+A}{}_{\alpha}(y) \}$

which implies that $V^+[f(x)f(y)] \ge \min \{ V^+(f(x)), V^+(f(y)) \}$ for all f(x) and f(y) in \mathbb{R}^1 .

Also V⁻[f(x)+f(y)] = V⁻[f(y+x)] $\leq T_{\beta}^{-A}(y+x)$

$$= A^{-}(y+x) + \beta \leq max \ \{ \ A^{-}(y), \ A^{-}(x) \ \} + \beta$$

= max {
$$A^{-}(x) + \beta$$
, $A^{-}(y) + \beta$ } = max { $T_{\beta}^{-A}(x)$, $T_{\beta}^{-A}(y)$ }

which implies that $V^{-}[f(x)+f(y)] \le max \{ V^{-}(f(x)), V^{-}(f(y)) \}$ for all f(x) and f(y) in R^{1} .

And V⁻[f(x)f(y)] = V⁻[f(yx)] $\leq T_{\beta}^{-A}(yx)$

$$= A^{-}(yx) + \beta \le \max \{ A^{-}(x), A^{-}(y) \} + \beta$$
$$= \max \{ A^{-}(x) + \beta, A^{-}(y) + \beta \} = \max \{ T_{\beta}^{-A}(x), T_{\beta}^{-A}(y) \}$$

which implies that $V^{-}[f(x)f(y)] \le \max \{ V^{-}(f(x)), V^{-}(f(y)) \}$ for all f(x) and f(y) in R^{1} . Therefore V is a bipolar valued fuzzy subsemiring of R^{1} .

3.9 Theorem: Let (R, +, .) and $(R^{1}, +, .)$ be any two semirings and f be an anti-homomorphism. Then the anti-homomorphic preimage of bipolar valued fuzzy translation of a bipolar valued fuzzy subsemiring V of R^{1} is a bipolar valued fuzzy subsemiring of R.

Proof: Let $T = T_{(\alpha,\beta)}^V = f(A)$, where $T_{(\alpha,\beta)}^V$ is a bipolar valued fuzzy translation of bipolar valued fuzzy subs miring $V = (V^+, V^-)$ of $R^!$. We have to prove that $A = (A^+, A^-)$ is a bipolar valued fuzzy subsemiring of R. Let x and y in R.

Then $A^+(x+y) = T_{\alpha}^{+V} (f(x+y)) = T_{\alpha}^{+V} (f(y)+f(x))$ $= V^{+}[f(y)+f(x)] + \alpha \ge \min \{ V^{+}(f(y)), V^{+}(f(x)) \} + \alpha$ = min { $V^+(f(x)) + \alpha$, $V^+(f(y)) + \alpha$ } = min{ T_{α}^{+V} (f(x)), T_{α}^{+V} (f(y))} = min{ $A^{+}(x), A^{+}(y)$ } which implies that $A^{+}(x+y) \ge \min \{ A^{+}(x), A^{+}(y) \}$ for all x and y in R. And $A^{+}(xy) = T_{\alpha}^{+V} (f(xy)) = T_{\alpha}^{+V} (f(y)f(x))$ $= V^{+}[f(y)f(x)] + \alpha \ge \min \{ V^{+}(f(y)), V^{+}(f(x)) \} + \alpha$ = min { $V^+(f(x)) + \alpha$, $V^+(f(y)) + \alpha$ } = min { T_{α}^{+V} (f(x)), T_{α}^{+V} (f(y)) } = min { A⁺(x), A⁺(y) } which implies that $A^+(xy) \ge \min \{ A^+(x), A^+(y) \}$ for all x and y in R. Also $A^{-}(x+y) = T_{\beta}^{-V}(f(x+y)) = T_{\beta}^{-V}(f(y)+f(x))$ $= V^{-}[\ f(y)+f(x)\] +\beta \leq max \ \{ \ V^{-}(\ f(y)\),\ V^{-}(\ f(x))\ \} +\beta$ $= \max \{ V^{-}(f(x)) + \beta, V^{-}(f(y)) + \beta \}$ = max { $T_{\beta}^{-V}(f(x)), T_{\beta}^{-V}(f(y)) \}$ = max { $A^{-}(x), A^{-}(y) \}$ which implies $A^{-}(x+y) \le \max\{A^{-}(x), A^{-}(y)\}$ for all x and y in R. And $A^{-}(xy) = T_{\beta}^{-V}(f(xy)) = T_{\beta}^{-V}(f(y)f(x))$ $= V^{-}[f(y)f(x)] + \beta \le \max \{ V^{-}(f(y)), V^{-}(f(x)) \} + \beta$ = max { $V^{-}(f(x)) + \beta, V^{-}(f(y)) + \beta$ } = max { T_{β}^{-V} (f(x)), T_{β}^{-V} (f(y)) } = max { $A^{-}(x), A^{-}(y)$ } which implies $A^{-}(xy) \le \max\{A^{-}(x), A^{-}(y)\}$ for all x and y in R. Therefore A is a bipolar valued fuzzy subsemiring of R.

References

1. Anitha.M.S., Muruganantha Prasad & K.Arjunan, Notes on Bipolar-valued fuzzy subgroups of a group, Bulletin of Society for Mathematical Services and Standards, Vol. 2 No. 3 (2013), pp. 52-59.

2. Anitha.M.S, K.L.Muruganantha Prasad & K.Arjunan, Homomorphism and anti-homomorphism of Bipolar valued fuzzy subgroups of a group, International Journal of Mathematical Archive-4(12), 2013, 1-4.

3. Anthony.J.M and H.Sherwood, fuzzy groups Redefined, Journal of mathematical analysis and applications, 69(1979),124 -130.

4. Arsham Borumand Saeid, Bipolar-valued fuzzy BCK/BCI-algebras, World Applied Sciences Journal 7 (11) (2009), 1404-1411. 5. Azriel Rosenfeld, fuzzy groups, Journal of mathematical analysis and applications 35(1971), 512-517.

6. F.P.Choudhury, A.B.Chakraborty and S.S.Khare, A note on fuzzy subgroups and fuzzy homomorphism, Journal of mathematical analysis and applications, 131(1988), 537 -553.

7. W.L.Gau and D.J. Buehrer, Vague sets, IEEE Transactons on Systems, Man and Cybernetics, 23(1993), 610-614.

8. Kyoung Ja Lee, Bipolar fuzzy subalgebras and bipolar fuzzy ideals of BCK/BCI-algebras, Bull. Malays.Math. Sci. Soc. (2) 32(3) (2009), 361–373.

9. K.M.Lee, Bipolar-valued fuzzy sets and their operations. Proc. Int. Conf. on Intelligent Technologies, Bangkok, Thailand, (2000),307-312.

10.K.M.Lee, Comparison of interval-valued fuzzy sets, intuitionistic fuzzy sets and bipolarvalued fuzzy sets. J. fuzzy Logic Intelligent Systems, 14 (2) (2004),125-129.

11. Mustafa Akgul, some properties of fuzzy groups, Journal of mathematical analysis and applications, 133(1988), 93 -100.

12. Samit Kumar Majumder, Bipolar valued fuzzy sets in Γ -semigroups, Mathematica Aeterna, Vol. 2, no. 3(2012), 203 – 213.

13. Shanmugapriya. V and Arjunan.K., Some translators in bipolar valued fuzzy subsemiring of a semiring, Bulletin of Mathematics and Statistic Research, Vol.4, Iss.4, 2016, 118-123.

14. Young Bae Jun and Seok Zun Song, Subalgebras and closed ideals of BCH-algebras based on bipolar-valued fuzzy sets, Scientiae Mathematicae Japonicae Online, (2008), 427-437.

15. L.A.Zadeh, fuzzy sets, Inform. And Control, 8(1965), 338-353.