
V.G. Gupta and Ajay jain /Elixir Appl. Math. 110 (2017) 48131-48142 48131 

Introduction

Fig. 1(a). Geometry of the problem. 

Hydromagnetic viscous incompressible fluid flow through a porous medium has been the subject of intensive studies in recent 

years because of its wide applications in engineering and scientific technology such as in the petroleum technology to study the 

movement of natural gas, oil and water through the oil reservoirs, filtration and purification process etc.. The study of viscous 

flow near stationary or rotating discs has significant relevance to many applications for industrial devices. Many important 

applications have motivated studies involving complex geometries often with flow and heat transfer, for example, cooling a gas 

turbine, turbo machinery, boundary layer control, cooling of turbine blades, cooling the skins of high speed aircraft designs, 

computer disk drives and gas turbine rotors etc.. Further, the flow and heat transfer in any electrically conducting fluid flow 

system may be controlled by the application of an external magnetic field. Probably for the first time, the flow due to an infinite 

plane disk, rotating with constant angular velocity was discussed by Karman [1], Cochran [2] integrated numerically the equations 

obtained by Karman and compared his results with that of Karman. 
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ABSTRACT 

Modeling of steady magnetohydrodynamic viscous incompressible fluid flow 

through a porous medium between two disks rotating with same angular velocity 

about two non-coincident axes has been discussed taking into account the 

injection/suction, radiation and temperature dependent variable thermal 

conductivity. An exact solution of the governing equations has been obtained in a 

closed form by using perturbation along with dsolve Mat lab software tool to attain 

an analytical result for the velocity and the temperature profile. Analysis of the 

flow characteristics has been performed graphically by varying Hartmann number 

(𝐌), injection /suction parameter (𝛌), permeability parameter (𝐤𝐩), rotation 

parameter (𝛀), Prandtl number (𝐩𝐫), radiation parameter (𝐌) and the variable 

thermal conductivity (ε). The Skin friction coefficients are presented in pictorial 

from (11) to (15), and discussed in detail.  
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Batchelor [3] and Stewartson [4] applied these equations to the problem of steady flow between two finite parallel plane 

discs, rotating at a finite distance apart. The flow due to a rotating disk of infinite radius with uniform suction at the disc has been 

discussed by Stuart [5]. Sparrow and Gregg [6] carried out the steady state heat transfer from a rotating disk maintained at a 

constant temperature to fluids at Prandtl number. Steady viscous flow between two rotating naturally permeable discs had been 

discussed by Chauhan and Gupta [7].  In the recent few years, it is generally admitted that the force due to the earth’s rotation has 

a strong effect on the hydromagnetic flow in the earth’s liquid force. MHD boundary layer flow is of great significance in 

understanding a variety of geophysical, astrophysical, and engineering problems that takes place at the core-mantle interface of the 

earth. Purohit and Bansal [8] considered the MHD flow of a viscous incompressible electrically conducting fluid between a 

rotating and a stationary naturally permeable disk. Due to the many applications of rotating disk flows with magnetic field, many 

researchers Arial [9] Turkyilmazoglu [10] and Anjali Devi and Uma Devi [11] reported results on MHD rotating disk flow with 

various flows conditions and configurations.  The flow of a viscous incompressible fluid confined between two parallel rotating 

with same angular velocity about non-coaxial axis explained by Berker [12] and Abott and Walters [13]. Erdogan [14, 15] worked 

on the flow due to parallel disks rotating about non-coincident axis with one of the disk or both the disks oscillating in its own 

plane. Mohanty [16] investigated the hydromagnetic flow between two rotating disks with non-coincident parallel axis of rotation. 

Kanch and Jana [17] explored the Hall effects on hydromagnetic flow between two rotating disk with non-coincident parallel axis 

of rotation. Maji et al. [18] explained the effect of rotation on unsteady MHD flow between disks, rotating with same angular 

velocity about two different axes. Das et al. [19] showed the Hall current on unsteady MHD flow between disks with non- 

coincident parallel axis of rotation. Jana et al. [20] discussed the effect of permeability and rotation on hydrodynamic flow 

between two non-coincident rotating disks. Srivastava [21] analyzed MHD flow of the micro polar fluid between eccentrically 

rotating disks. 

The present work studies the effect of porosity, injection/suction on MHD flow of fluid between two permeable rotating disks 

with same angular velocity about two different axes at a distance d apart. Important aspects of variable thermal conductivity, 

thermal radiation effects are taken in consideration. The impact of dimensionless parameters on the velocity, temperature, skin 

friction coefficient is examined through the plots. 

Mathematical Analysis 

We consider the steady MHD flow of an incompressible, viscous and electrically conducting fluid passes between two 

permeable parallel disks embedded in a porous medium rotating with uniform angular velocity Ω about two different axis at a 

distance a apart. Let, the disks are in x, y plane and z axis is normal to it. The applied magnetic field    along the z axis in the 

presence of constant injection /suction velocity    is at one lower disk z=0. The electrical field owing to the polarization of 

charges and Hall current is taken negligible. The axis of rotation of the disk z=h lies to the right and that of the disk z =0 lies to the 

left of the z axis and the z axis is taken middle of both of the disks. We choose a system of cylindrical polar coordinates (r, θ, z) 

with axis normal to disk as situated symmetrically between two axis of rotation. Under these assumptions, the continuity, 

momentum and energy equations are governed by the following. 

(a) Equation of continuity 
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(b) Equation of momentum 
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Where,        (constant) is the velocity in the direction of      and   respectively. The parameters,  ,  ,  , and  ̅ are the 

fluid pressure, density of the fluid, the fluid kinematic viscosity and the permeability of the porous medium respectively. 

(c) Equation of Energy 
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Where, 
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The corresponding boundary conditions are 

   
 

 
               

 

 
              ,  ̅     at     

  
 

 
               

 

 
             ,  ̅     at          (7) 

 

We assume the velocity components according to above boundaries expression as 

                     
                        and                                                                               (8)  

Using the above assumption, the equations (2), (3) and (4) become 



V.G. Gupta and Ajay jain /Elixir Appl. Math. 110 (2017) 48131-48142 48133 

  (   (z)      +   (z)     )        –   (  (z)      –   (z)     ) =    

   
 +   (    (z)      +    (z) sin θ)  

 
   

 

 
                      

 

 ̅ 
                     )     (9) 

   (   (z)      +   (z)      ) +   (  (z)      +   (z)      ) =    (    (z)          (z)     )  
   

 

 
       

           –            
 

 ̅ 
                 –           )     (10) 

 
  

   
 

 

 ̅ 
              (11)    

Where, prime denotes differentiation           

Eliminating   from the equation (9) - (11), we get 
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This implies, 
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The boundary conditions from the equation (7) using the expression given in equation (8), we get 
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Now the equations (15), (16) and (5) can be written in a non- dimensional form as 
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Where, 
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(Cogley et al. [22]) 

   is the rotation parameter,   is the Hartmann number,    is the permeability parameter, λ the suction/ injection parameter,    

is the thermal radiation,    is the Prandtl number,    is the heat absorption parameter,    temperature of lower 

disk,  temptreture of upper disk. Arunachalam and Rajappa [23] expressed the linear relation between thermal diffusivity and 

temperature as  ̅ =            where     is a parameter which depends on the nature of the fluid and   is the thermal 

diffusivity.   is the dimensionless temperature of the of fluid at any point. 

The corresponding boundaries 
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Solution of the Problem 

Integrating the above (18) and (19)       η, we get 
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Now, we combining the equations (22) and (23), we get 
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Where,  

 =f + i ,   =      ,  

The corresponding boundary conditions become 
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We may choose to symmetric flow i.e,    =0 and the equation (24) become 
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The solution of the equation (26) subject to boundary condition (25), can be found by using Mat Lab dsolve software tool in 

the following form 
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Imaginary part 
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Now, the solution of energy equation (20) subject to boundary condition (25) using regular perturbation technique along with 

dsolve Mat Lab software tool is 

Let,  

  =    +   +O (             (30) 

Here,  <<1 the small variable thermal conductivity parameter. 
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Constants are left for the sake of brevity. 

(5.4) Skin Friction Coefficient 

The shear stress or the Skin-friction due to primary and secondary velocity at the lower and upper disk can be found  such as  

The shear stress due to primary velocity at the lower disk is 
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The shear stress due to primary velocity at the upper disk is 
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The shear stress due to secondary velocity at the lower disk is 
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The shear stress due to secondary velocity at the lower disk is 
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Torque 

The torque exerted by the fluid to control the transverse shearing stress on a disk of radius , such as; Torque 

= ∫ ∫      
 

 

 

 
       

Result and Discussion 

In order to have a physical insight of the problem, the variation of the velocity, temperature, Skin friction and torque are 

evaluated numerically for the different sets of values of suction /injection parameter , rotation parameter   , porosity parameter 

  , Magnetic parameter  , radiation parameter   , thermal conductivity parameter    (Prandtl number) and variable thermal 

conductivity ε . Further, it is assumed that the temperature difference is small enough so that the density changes of the fluid in the 

system will be small. When the injection/suction parameter  is positive, fluid is injected through the hot disk at   =0 while 

suction phenomenon occurs in case of  negative. The influence of various physical parameters on the velocity flow field (fig. 1-

10), temperature distribution (fig. 18-21), Skin friction (fig. 11-15) and the torque (fig 16 (a)-17) are presented graphically and 

then analyzed in detail. We fix the value of parameters, namely,   =5, ,   =.5,   =.2, =0.1 for primary and secondary velocity 

profile, whereas =  1,   =2,   =7, ε=0.1 for a temperature distribution profile to assess the effect of changing  each parameter  

one by one. 

Taking   =0 and λ=0 in Figure (1) illustrates that the primary and secondary velocity f and    respectively, rise with an 

increase in rotation parameter   to the left of the z-axis and both of the velocities decrease with an increase in    to the right of 

the z-axis. Again, taking   =0 and λ=0 in Figure (2) displays that the primary velocity   decreases with an increase in    to the 

left of z axis and it increases with growing    to the right of z axis whereas the secondary velocity   increases with increasing 

   to the left of the z axis and it becomes reverse to the right of z axis. Both the figures have explained good agreement with the 

results and the figures of Jana et al. [20]. Figure (3) shows that the primary velocity f decreases with an increase in   to the left of 

the z-axis and it shows the opposite consequences to the right of z-axis. On the other hand, the secondary velocity   increases 

with an increase in   to the left of the  -axis and it becomes reverse to the right of the z-axis as shown in figure (7). Figure (4) 

displays that the primary velocity f increases with an increase in rotation parameter    to the left of the  -axis and it decreases 

with an increase in    to the right of the  -axis while the same consequence is observed in figure (8) for secondary velocity  . 

Figure (5) illustrates that the primary velocity f increases with an increase in Hartmann number    in the left of the  -axis and it 

decreases with an increase in   to the right of the   – axis whereas reverse consequence is observed in figure (9) for secondary 

velocity . Figure (6) demonstrates that the primary velocity f decreases when increasing the injection parameter while by 

increasing the suction increases the primary velocity. Again, from figure (10), we get the reversal phenomenon in the case of 

secondary velocity in comparison to the figure (6). The influences of porosity parameter     rotation parameter   and 

injection/suction λ on Skin friction coefficient against Hartman number  due to primary and secondary velocity at the lower and 

upper disks are depicted in figures from (11) to (15). The Skin friction coefficient (  (0)) increases at lower disk ( =0) with 

increasing values of   or   due to primary velocity while it shows the decreasing impact with increasing    or λ. The Skin 

friction coefficient (  (0)) increases at the lower disk ( =0) for increasing values of   ,    or λ due to secondary velocity, but it 

reduces due to growing  . Increasing values of   or   enhances the Skin friction coefficient (  (1)) at the upper disk ( =1) 
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due to primary velocity while the reverse effect shows for increasing value of   . The Skin friction (  (1)) increases with 

growing    or     at the upper disk ( =1) due to the secondary velocity whereas reverse phenomenon occurs in case of  . The 

variation in torque against   with   and   at the disk  =0 is shown in figures (16 a) to 17  It is seen from these figures that the 

torque on the disk increases with an increase in either   or rotation parameter   whereas reverses the effect by increasing 

    Figure (18) reveals that injection/suction parameter  is negative; fluid temperature is sucked out at lower hot plate. It is also 

observed in figure (18) that an increase in the negative value of suction  falls the temperature of the flow at lower hot plate while 

reversal result is observed in case of injection . It is due to injecting hot fluid particles, the temperature of fluid increases. It is 

therefore, concluded that by increasing   from a negative value to a positive value the temperature of the flow between rotating 

disks enhances. Figure (19) shows that an increase in variable thermal conductivity ε increases the temperature of the fluid. From 

figure (20), it is observed that decreasing the Prandtl number (  ) increases the thermal conductivity and therefore, heat is able to 

diffuse away from the disk more swiftly than the higher value   resulting in high temperature profile. The effects of radiation 

parameters ( ) on the temperature distribution are demonstrated in figure (21). It is viewed that as the value of   decreases, the 

temperature profile increases. This result can be explained by the fact that a decrease in the Radiation parameter , decreases in 

the Rosseland radiation absorption (  ) at the disk (  is proportional to    . It is concluded that the divergence of radiative heat 

flux 
   

  
 increases as    decreases and this means that the rate of radiative heat transferred to the fluid increases consequently, the 

fluid temperature increases.  

 
Fig. 1. variation of primary velocity f and secondary velocity g for Kp=0.2, M=0, λ=0. 

                                                                   
 

Fig. 2. Variations of primary velocity f and secondary velocity g for k2=5, M=0, λ=0. 
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Fig.3. primary velocity against distance η. 

 
Fig. 4. primary velocity against distance η. 

 
Fig. 5. primary velocity against distance η. 

 
Fig. 6. primary velocity f against distance η. 

 

 

 
Fig. 7. Secondary velocity against distance η. 
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Fig. 8. secondary velocity against distance η. 

 
Fig. 9. Secondary velocity against distance η. 

 
Fig. 10. secondary velocity against η. 

 
Fig. 11. shear stress against M at η =0. 
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Fig. 12. shear stress at η =1. 

 
Fig.13. shear stress at η =0. 

 
Fig.14. shear stress at η =1. 

 
Fig. 15. shearstress at η =0. 
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Fig. 16(a). Torque against rotation parameter k. 

 
Fig. 17. Variation of Torque. 

 
Fig 18. temperature against distance η. 

 
Fig 19. temperature against distance n. 
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Fig .20. temperature against distance η. 

 

 
Fig. 21. temperature aginst distance η. 

Conclusions 

The following results are concluded. 

It is explained that the primary velocity   increases with the increasing   or   to the left of the z- axis and the result is 

reversed to the right of   – axis whereas the growing    reverses the consequences. The secondary velocity   increases with the 

increase of     or    to the left of the z axis and the result is reversed to the right of z axis while growing   reverses the 

consequences. The primary velocity increases with increasing of suction (λ<0) while it is decreased by increasing the injection 

(λ>0). Again, the secondary velocity reverses the results for injection/suction in comparison to primary flow. The Skin-friction 

coefficient increases at lower disk with increasing   or   due to primary velocity while it shows the decreasing impact with 

increasing    or λ. The Skin-friction coefficient increases at the lower disk with the increase of   ,    or λ due to secondary 

velocity while an increase in   reduces the Skin-friction. With increasing   or   enhances the Skin-friction coefficient at upper 

disk due to primary velocity while the reverse effect shows by increasing  . The Skin-friction coefficient increases at the upper 

disk with growing  ,    due to the secondary velocity while the reverse phenomenon occurs in case of  . It is found that with 

increasing  ,    or λ<0 (at lower hot disk   =0) decreases the temperature of fluid, but reversal phenomenon occurs by growing  

ε or (λ>0). 
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