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Introduction 

  A major challenge faced by natural products chemists in the 

process of drug development is elucidation of the structure of 

isolated compounds. Sesquiterpenes are formed from 

countless biogenetic pathways and therefore produce several 

types of carbon skeletons [1,2]. This makes elucidation of 

their structures very challenging. Eudesmane-type compounds 

are one of the most representative skeletons of sesquiterpenes. 

Emerenciano and co-workers have developed and applied the 

expert system, SISTEMAT (based on artificial intelligence 

programs) in the elucidation of structures of several classes of 

compounds including sesquiterpenes [3,4], lactone 

sesquiterpenes[5], diterpenes [6] and triterpenes [7]. Oliveira 

and co workers [4] demonstrated the use of SISTEMAT in 

obtaining useful rules of 
13

C spectral analysis and its use as an 

auxiliary tool in the process of structure elucidation for 

eudesmanes. The same work presented a review on the 
13

C 

NMR data of eudesmanes. Part of the 
13

C NMR chemical shift 

data used in our previous studies and the current one are 

obtained from this publication. The structure of any natural 

product is conventionally divisible into three sub-units: the 

skeletal atoms, heteroatoms directly bonded to the skeletal 

atoms or unsaturations between them and secondary carbon 

atoms, usually bonded to a skeletal atom through an ester or 

other linkages [5]. The skeletal structure common to all 

Eudesmane compounds is shown in Fig.1.  

 
Fig 1. Eudesmane skeleton. 

Typical substituents found in Eudesmane compounds are 

presented in Fig. 2. 

Our Contribution 

In a previous study [8], we have shown that when 

Generalized Regression Neural Network (GRNN), is trained 

using the 
13

C chemical shift values for each of the 15 positions 

on the eudesmane skeleton as input and the various possible 

substituents as the target, GRNN  could identify the 

substituents in each position on the Eudesmane skeleton of 

unknown compounds (when the 
13

C values for each position 

on the Eudesmane skeleton of the each unknown eudesmane is 

supplied to the system). We have also applied scatter plot as a 

tool to determine the 
13

C chemical shift ranges (for each of the 

15 carbon positions on the Eudesmane skeleton) over which 

different substituent types may exist allowing the 

determination all the possible structures consistent with a 

particular set of spectroscopic data [9]. However, full 

elucidation of structures of unknown compounds using the 

described procedures could not be carried out since the studies 

were based on the premise that the 
13

C skeletal data of the 

compounds whose substituents were being determined are 

known. In the present work, we predict the 
13

C chemical shift 

values on the skeleton (C1-C15) of novel eudesmane skeleton 

using GRNN. We thereafter proceeded to utilize the predicted 

skeletal values to determine the substituent types in each 

position on the eudesmane skeleton employing the principles 

demonstrated in the previous works. The degree of accuracy 

of GRNN and scatter plots in determining the substituents on 

each position of the skeleton of the test compounds were 

compared. In utilizing the GRNN and scatter plots in 

predicting the substituent types, the original data set utilized in 

our previous publications were expanded in order to 

accommodate new substituent types encountered in the 

compounds employed in skeletal data prediction. 
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 ABSTRACT 

This study seeks to achieve a complete elucidation of structures of unknown Eudesmane 

sesquiterpenes from their 
13

C values. The 
13

C values for each of the fifteen (15) positions 

of the skeletons of the Eudesmane compounds were predicted using Generalized 

Regression Neural Network (GRNN). From the predicted 
13

C values, GRNN and Scatter 

Plot methods were used to predict the substituents attached to each position on the 

skeleton of the Eudesmane compounds. Recognition of the test compounds ranged 

between 40 and 100%. GRNN and Scatter plots demonstrated great potential for use in 

the structural elucidation of unknown compounds from 
13

C values.                                                                                  
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Artificial Neural Networks 

Artificial Neural Networks are computational models 

whose structures are derived from a simplified concept of the 

brain in which a number of nodes called neurons, are 

interconnected in a network-like structure [11]. Neural 

networks are non-linear processes that perform learning and 

classification. ANNs consist of a large number of 

interconnected processing elements known as neurons that act 

as microprocessors. Each neuron accepts a weighted set of 

inputs and responds with an output. Figure 2a depicts a single 

neuron model. In general, neural networks are adjusted/ 

trained to reach from a particular input a specific target output 

until the network output matches the target. Hence the neural 

network can learn the system. The learning ability of a neural 

network depends on its architecture and applied algorithmic 

method during the training. Training procedure ceases if the 

difference between the network output and desired/actual 

output is less than a certain tolerance value. Thereafter, the 

network is ready to produce outputs based on the new input 

parameters that are not used during the learning procedure. 

A GRNN (an architecture of ANN) consists of four 

layers: input layer, pattern layer, summation layer and output 

layer as shown in Fig. 2b. The number of input units in the 

input layer depends on the total number of the observation 

parameters. The first layer is connected to the pattern layer 

and in this layer each neuron presents a training pattern and its 

output. The pattern layer is connected to the summation layer. 

The summation layer has two different types of summation, 

which are a single division unit and summation units. The 

theory of GRNN has been described elsewhere [12, 13]. 

 
Fig 2.  Common Substituents found in Eudesmane 

Compounds [10]. 

 
Fig 2a: A Single Neuron model [11]. 

 
Fig 2b: General Structure of GRNN [12]. 

 

 

ANNs have been applied in the identification, distribution 

and recognition of patterns of chemical shifts from 
1
HNMR 

spectra [14, 15] and identification of chemical classes through 
13

C-NMR spectra [16]. 

Methodology 

The 
13

C spectral data for eudesmane sesquiterpenes used 

for the current study were extracted from structures of 

Eudesmane compounds published by [17]. Three Excel 

worksheets containing coded information on the input and 

target data for the training and test compounds were prepared. 

On the first row of the first sheet, the compounds were 

assigned codes 1-86. All the 
13

C values for each compound 

were recorded in ascending order. In order to ensure equal 

number of entry for all the compounds, the difference in 
13

C 

data was made up with zero for deficient compounds. This 

was used as the input data. The second sheet contains the 

target data and follows the format for the input data except 

that in the first column, the positions of each carbon atoms on 

the skeleton (as shown in Figure 1) were coded as 1-15 and 

the 
13

C chemical shift data for each Carbon at each of the 15 

positions was recorded for each compound. The third excel 

sheet contains the test compounds. The design follows that of 

the first sheet except that thirty-three (33) test compounds 

were utilized (coded 1-33). Owing to space limitations, only 

the 
13

C chemical shift data of ten of the test compounds are 

given in Table 1. A list of these (ten) compounds 

(subsequently assigned codes 1-10) is provided in Appendix 

A. 

The first step was to determine if there were discernable 

differences between the distribution of the 
13

C data of whole 

compounds and those of their skeletons. This is to determine if 

there are specific ranges of 
13

C chemical shift for eudesmane 

skeletons thereby allowing quick elimination of the 
13

C data 

due to the substituents. To ascertain this, 3D-surface plots of 

the data on Excel Sheets 1 and 2 were carried out and 

compared (Figs 4a&b). It was observed from the plots that the 
13

C data of the substituents are closely related to those of the 

eudesmane skeletons making the distinction between both sets 

of values difficult. This led to the exploration of artificial 

intelligence methods in the prediction of possible 
13

C values 

for each of the 15 positions of the eudesmane skeleton. GRRN 

has been previously employed successfully by the authors to 

predict the substituents on the eudesmane skeleton [8]. It was 

therefore used in the current study.  The data were transferred 

into the Neural Network toolbox of MATLAB 7.8.0 [18]. 

From the command window, the  „nntool‟ command was used 

to designate the imported data appropriately as „input‟ or 

„target‟ and to select the appropriate network for training. 

GeneralizedRegression Neural networks (GRNN) was selected 

for the training and subsequent simulation of the test 

compounds. Least deviation of 
13

C values from those of the 

test compounds was obtained at a spread constant of 8.0. The 

results obtained at this stage were used in the predicting the 

substituent on the eudesmane skeletons for the test 

compounds. 

Since compounds used in the prediction of the 
13

C 

chemical shift values for each of the positions on the 

Eudesmane skeletons possess some groups that are foreign to 

the dataset used in [8], the original dataset used in training was 

expanded from 291 to 377 (by adding the skeletal data of 86 

compounds used in the current to the 291 used in previous 

study). 
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Additional codes were also introduced to accommodate 

the new substituent types discovered in the compounds 

adopted for the first portion of the current study (Appendix B). 

The scatter plots of codes of substituents against chemical 

shifts were re-plotted.  

In predicting the substituents on the thirty-three (33) test 

compounds using GRNN, the expanded dataset (
13

C skeletal 

chemical shift values of the 377 compounds) were used as 

input to the system. The corresponding substituent codes at the 

different position on the eudesmane skeletons (of the 377 

compounds) were used as the target data. The 
13

C values 

predicted for each position on the eudesmane skeleton of the 

33 test compound (at the first stage of this study) were 

simulated at different spread constant values. The best results 

were observed at a spread constant of 7.0. Furthermore, the 

results obtained using GRNN were compared with those got 

using the chemical shift ranges for each substituent type 

generated using scatter plots. In the Scatter plots method, the 

most likely substituent type (over the possible Carbon ranges 

for each of the 15 positions on the Eudesmane skeleton) was 

selected.  Finally, the percentage recognition of each of the 

compounds using these procedures were determined from the 

number of correctly predicted points relative to the total 

number of positions on each compound.  

Results and Discussion 

A major key to a successful utilization of the previously 

described procedures [8, 9] (Alawode and Alawode, 2014 ; 

Alawode and Alawode, 2015) in achieving a complete 

structural elucidation is to be able to separate 
13

C data due to 

the substituents from those due to the skeleton.  

It is also necessary to identify specifically the 
13

C due to 

each position on the skeleton. A cursory glance at the 3D plots 

of whole eudesmanes and their skeletons (Fig. 3a and 3b) 

shows that the 
13

C values for whole eudesmane  compounds 

and the skeletal 
13

C values fall within the same general ranges 

(0-50, 50-100, 100-150, 150-200 and 200-250) making it 

difficult to satisfy these conditions. Owing to the complexity 

of the problem, it was subjected to Artificial Neural Network 

procedures.  ANNs are employed in pattern recognition 

problems, especially those associated with prediction, 

classification or control.  In the current study, GRNN, an 

architecture of ANN was utilized in the prediction of 
13

C 

values on the different positions of the eudesmane skeleton. 

Compared to other ANN models, the GRNN is able to 

converge to the underlying function of the data with only few 

training samples available [19] (Sun et al.,2008).  

 

 
Fig 3a. 3D plot of 13C skeletal data.
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Table 1. 
13

C Chemical Shift Values of Test Compounds. 
1 2 3 4 5 6 7 8 9 10 

10.9 11.6 12.4 17.7 14.7 12.1 12.2 14.9 13.4 20.7 

12.5 12.5 19.7 22.4 20.6 14.4 14.5 20.7 14.1 21.4 

23.3 23.0 22.6 25.1 20.6 19.5 15.9 20.8 16.1 21.8 

25.3 31.2 23.6 28.8 21.2 20.8 24.4 21.3 18.6 25.5 

39.3 33.5 34.2 29.3 21.8 26.7 27.8 24.7 20.6 26.7 

41.2 36.0 40.4 31.9 24.6 33.2 38.1 28.7 24.5 30.3 

41.7 41.2 46.2 39.2 28.5 41.8 41.9 28.8 29.5 44.1 

54.0 42.8 52.3 48.9 28.7 42.8 43.5 39.1 38.2 50.1 

81.5 52.3 54.6 57.7 39.1 51.8 53.2 41.4 40.1 54.1 

125.9 52.5 69.9 72.0 41.3 66.5 57.1 41.6 40.3 67.7 

128.4 78.2 79.4 73.4 41.4 77.7 66.2 49.9 43.6 69.2 

151.5 79.3 125.3 75.4 49.5 77.9 71.3 55.3 59.4 70.2 

155.1 110.3 162.0 143.2 55.1 120.9 76.5 69.8 59.8 72.3 

177.4 142.8 178.2 145.4 69.7 126.8 78.5 71.2 68.2 72.6 

186.0 179.4 201.2 201.3 71.1 128.1 120.6 80.4 71.2 77.3 

0 0 0 0 80.2 128.5 128.0 118.3 71.4 84.8 

0 0 0 0 172.3 134.0 133.2 128.3 71.8 91.7 

0 0 0 0 0 138.2 138.5 128.3 75.0 128.2 

0 0 0 0 0 167.1 167.1 128.9 125.0 128.2 

0 0 0 0 0 169.4 168.9 128.9 125.8 128.3 

0 0 0 0 0 0 0 130.6 134.6 128.3 

0 0 0 0 0 0 0 134.3 142.6 129.3 

0 0 0 0 0 0 0 145.3 166.5 129.4 

0 0 0 0 0 0 0 168.2 168.2 129.6 

0 0 0 0 0 0 0 0 168.6 129.6 

0 0 0 0 0 0 0 0 0 130.2 

0 0 0 0 0 0 0 0 0 130.2 

0 0 0 0 0 0 0 0 0 133.1 

0 0 0 0 0 0 0 0 0 133.4 

0 0 0 0 0 0 0 0 0 164.8 

0 0 0 0 0 0 0 0 0 165.7 

0 0 0 0 0 0 0 0 0 170.0 

     0 0 0 0 170.0 
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    Fig 3b. 3D plot of 13C Full Eudesmane Compounds. 

Furthermore, since the task of determining the best values 

for the several network parameters is difficult and often involves 

some trial and error methods, GRNN models require only one 

parameter (the spread constant) to be adjusted experimentally. 

This makes GRNN a very useful tool to perform predictions and 

comparisons of system performance in practice. Previous works 

relating the predictive capability of GRNN to backpropagation 

neural network and other nonlinear regression techniques 

highlighted the advantages of GRNN to include excellent 

approximation ability, fast training time, and exceptional 

stability during the prediction stage [20, 21](Mahesh et al., 

2014; Schneider and Wrede, 1998). GRNN was able to predict 

the 
13

C chemical shift values for the different positions with 

sufficient accuracy with values falling within ranges already 

determined from the previous study using scatter plots [8, 9] 

(Alawode and Alawode, 2015). Since neural networks generally 

learn by examples, the quality or accuracy of their predictions 

will increase with increase in representation of the substitution 

patterns of the test compounds in the 
13

C chemical shift values 

used for the training of the network. Predictions generally would 

likely improve as 
13

C data available for training increase (as 

substitution patterns in the compounds would certainly become 

more diverse). Least deviation of 
13

C values from those of the 

test compounds was obtained at a spread constant of 8.0. The 

actual and predicted 
13

C chemical shift values for each of the 

fifteen (15) carbon positions on the Eudesmane skeleton for ten 

(10) of the test compounds are presented in Table 2. The 
13

C 

values for all the carbon atoms (comprising both the skeletal and 

substituent carbon atoms) in each of the ten compounds have 

been presented in Table 1. 

In using the Scatter plots and GRNN approaches to predict 

whether or not substituents are attached to each position of the 

eudesmane skeleton (and the nature of the substituents), the 

original dataset (used for the previous study) was expanded. The 

new substituent types were coded as described previously [9] 

(Alawode and Alawode, 2015). For the scatter plots approach, 

the graphs of codes of substituents against 
13

C chemical shift 

values were re-plotted for each position (plots not shown). 

Significant changes in the pattern of the plots (previously 

published in [9]Alawode and Alawode (2015)) were observed at 

C5, C12 and C15. The new ranges were taken into consideration in 

predicting the substituents on each position. Specifically, the 

range within which the predicted 
13

C chemical shifts values falls 

for each position were identified and the most probable 

substituent for that range selected for the position. 
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Table 2. Actual (A) 
13

C Data  of Test Compounds Versus the Predicted (P) 

Values. 
 1 2 3 4 5 

 (A) (P) (A) (P) (A) (P) (A) (P) (A) (P) 

C1 155.1 155.0 78.2 77.9 201.2 201.9 31.9 32 80.2 77.5 

C2 125.9 126.0 31.2 31.3 125.3 125.1 25.1 25.8 28.5 28.3 

C3 186.0 186.1 33.5 34.2 162 151.6 75.4 73.3 41.3 40.0 

C4 128.4 128.8 142.8 143.7 69.9 69.5 73.4 72.1 71.1 71.6 

C5 151.5 151.9 52.5 52.7 54.5 53.7 48.9 49.0 55.1 53.0 

C6 81.5 80.8 79.3 77.4 79.4 79.3 143.2 143.5 69.7 68.0 

C7 54.0 49.5 52.3 50.0 52.3 52.2 145.4 144.8 49.5 49.7 

C8 23.3 20.3 23.0 25.2 22.6 22.6 201.3 201.5 20.6 24.6 

C9 39.3 38.2 36.0 36.1 34.2 33.8 57.7 57.7 41.4 39.7 

C10 41.7 41.5 42.8 41.9 46.2 46.2 39.2 39.2 39.1 40.1 

C11 41.2 38.2 41.2 41.1 40.4 40.3 72.0 72.0 28.7 32.4 

C12 12.5 9.9 12.5 14.0 12.4 12.4 29.3 29.3 20.6 22.0 

C13 177.4 178.3 179.4 175.7 178.2 178.4 28.8 28.8 21.2 20.9 

C14 25.3 25.2 11.6 11.8 23.6 23.0 17.7 17.7 14.7 13.9 

C15 10.9 11.0 110.3 109.6 19.7 22.2 22.4 22.3 24.6 20.5 

Table 2. (continues). Actual (A) 13C Data  of Test Compounds Versus the 

Predicted (P) Values. 
6 7 8 9 10 

(A) (P) (A) (P) (A) (P) (A) (P) (A) (P) 

77.7 75.6 76.8 75.3 80.4 84.5 71.4 71.7 72.6 76.5 

26.7 32.6 27.8 30.7 28.7 23.4 24.5 24.7 67.7 200.5 

33.2 118.3 38.1 33.3 41.6 42.7 38.2 38.4 44.1 54.7 

128.5 133.3 71.3 142.0 71.2 82.4 71.2 71.2 70.2 74.1 

126.8 51.3 57.1 52.0 55.3 57.2 43.6 43.6 91.7 91.3 

77.9 77.4 78.5 78.4 69.8 69.5 75.0 75.4 69.2 69.4 

51.8 53.5 53.2 53.3 49.9 49.9 40.1 40.6 54.1 53.9 

66.5 66.0 66.2 66.0 20.8 23.2 68.2 68.3 77.3 77.1 

42.8 39.2 43.5 40.3 41.4 33.0 71.8 72.4 72.3 72.1 

41.8 40.7 41.9 42.6 39.1 48.3 40.3 40.7 50.1 51.9 

134.0 134.2 133.2 134.4 28.8 29.3 134.6 135 84.8 85.8 

120.9 119.2 120.5 119.4 21.3 21.6 125 124.7 26.7 26.5 

169.4 169.9 168.9 169.9 20.7 20.6 168.6 168.7 30.3 30.3 

19.5 12.7 15.9 13.5 14.9 17.3 14.1 14.7 20.7 19.9 

20.8 26.4 24.4 110.6 24.7 22.5 29.5 29.7 25.5 25.0 
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Table 3. Comparison of  % Recognition (A and B) of Test Compounds Using GRNN (GR) and Scatter Plot (SP) Methods. 
 

POSITION 

1 2 3 

TEST GR SP TEST GR SP TEST GR SP 

C1 Δ1 Δ1 Δ1 β-OH β-OH β-OH Oxo Oxo ** 

C2 - - - - - - Δ2 Δ2 - 

C3 Oxo Oxo Oxo - - - - - Δ3 

C4 Δ4 Δ4 Δ4 Δ4(15) Δ4(15) Δ4 α-OH β-OH β-OH 

C5 - - - - - - - ONic - 

C6 α-Oxy α-Oxy α-OAc α-Oxy α-Oxy α-OAc α-Oxy α-Oxy α-OAc 

C7 - - - - - - - - - 

C8 - - - - - - - - - 

C9 - - - - - - - - - 

C10 - - - - - - - - - 

C11 β β β β β β β - β 

C12 Oxo,6 αOxy Oxo,6 αOxy ** Oxo,6αOxy OFuc(OAc)3 Oxo,OMe Oxo,6αOxy Oxo,6αOxy ** 

C13 α β ** α O-trans-Cou - α α ** 

C14 β β β β β β β β β 

C15 - - β - - ** β α β 

     A (%)  93.33 73.33  86.67 66.67  73.33 53.33 

     B (%)  100.00 80.00  86.67 73.33  93.33 60.00 

                              A-With Stereochemistry, B-Without Stereochemistry, **outside all possible ranges for the position 

Table 3. Comparison of % Recognition (A and B) of Test Compounds Using GRNN (GR) and Scatter Plot (SP) Methods. 
 

POSITION 

4 5 6 

TEST GR SP TEST GR SP TEST GR SP 

C1 - - - OH, α-H OCin β-OH β-OH β-OH β-OH 

C2 - - - - - - - - - 

C3 α-OH α-OiBu β-OAng - - - - Δ3 Δ3 

C4 α-OH OCin β-OH α-OH β-OH β-OH Δ4 - Δ4 

C5 α-H β-Oxy - - - - - α-H - 

C6 Δ6 Δ6 Δ6 β-OAc β-OAc β-OAc 6αOxy αOxy α-OAc 

C7 - - - - - - - - - 

C8 Oxo Oxo Oxo α - - β-OAng OAng α-OAc/β-OBzt 

C9 - - - - - - - - - 

C10 - - - - - - - - - 

C11 OH OH Oxy,α β α β Δ11 Δ11 Δ11,β 

C12 - - - - - - Oxo, 6αOxy Oxo, 6αOxy Oxo,OMe 

C13 - - - - - - - - - 

C14 β β β β - β β β β 

C15 β β β β α β - - β 

     A (%)  80.00 73.33  60.00 80.00  73.33 60.00 

     B (%)  80.00 86.67  93.33 100  80.00 73.33 

                         A-With Stereochemistry, B-Without Stereochemistry, **outside all possible ranges for the position 

Table 3. Comparison of % Recognition (A and B) of Test Compounds Using GRNN (GR) and Scatter Plot (SP) Methods. 
 

POSITION 

7 8 9 

TEST GR SP TEST GR SP TEST GR SP 

C1 β-OH β-OH β-OH β-OH β-O(α-OH-iVa) β-OH β-OH β-OH β-OH 

C2 - - - - - - - - - 

C3 - - - - - - - - - 

C4 α-OH Δ4(15) Δ4 β-OH β-O(α-OH-iVa) β-OH β-OH β-OH β-OH 

C5 - α-H - - - - - - - 

C6 6αOxy αOxy α-OAc β-

OCin 

O2MeBu-

(2‟OAc,3‟OH) 

α-

OAc 

β-Oxy β-Oxy α OAc 

C7 - - - - - - - - - 

C8 β-OAng β-OAng α-OAc/β-

OBzt 

- - - β-

OEpang 

β-

OEpang 

α OAc/ β-

OBzt 

C9 - - - - - - α-OAng α-OAng β-OBzt 

C10 - - - - - - - - - 

C11 Δ11 Δ11 Δ11,β β α β Δ11 Δ11 Δ11,β 

C12 Oxo, 

6αOxy 

Oxo, 

6αOxy 

Oxo, OMe - - - Oxo, 

 6 βOxy 

Oxo, 

 6 βOxy 

Oxo, 

OMe  

C13 - - - - - - - - - 

C14 β β β β β β β β - 

C15 β - ** α β β α α - 

     A (%)  80.00 60.00  66.67 86.67  100.00 53.33 

     B (%)  93.33 66.67  80.00 93.33  100.00 66.67 

A-With Stereochemistry, B-Without Stereochemistry, **outside all possible ranges for the position
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Table 3. Comparison of % Recognition (A and B) of Test 

Compounds Using GRNN (GR) and Scatter Plot (SP) 

Methods. 
 

POSITION 

10 

TEST GR SP 

C1 β-OAc β-OAc β-OH 

C2 β-OH Oxo Oxo 

C3 - - - 

C4 α-OH α-OH β-OH 

C5 αOxy, 11α αOxy αOxy 

C6 α OAc α OAc α OAc 

C7 - - - 

C8 α-OBzt α-OBzt α OAc/ β-OBzt 

C9 α-OBzt α-OBzt β-OBzt 

C10 - - - 

C11 α βOxy, βOH ** 

C12 β α - 

C13 α α - 

C14 β β β 

C15 β β β 

     A (%)  73.33 40.00 

     B (%)  80.00 86.67 

A-With Stereochemistry, B-Without Stereochemistry, **outside 

all possible ranges for the position. 

The scatter plot approach gives all the possible substituents 

for each position with their corresponding likelihood of 

occupying the position. The most likely substituent has been 

selected in this study for the sake of simplicity and to create a 

basis for comparison with the GRNN method. The substituents 

predicted by both methods for the ten (10) compounds are 

shown in Table 3. It is quite possible that the actual substituent 

for a particular position (within a specified range on the table) 

has a lesser likelihood of occupying the position. This may 

affect the accuracy of prediction given by the scatter plot 

method in this study. Also, a study of the table indicated 

positions on the eudesmane skeleton of some of the compounds 

under study where predicted values fall outside all the possible 

ranges for such positions as shown on the Table (indicated by 

**). This is due to the fact that the chemical shift ranges for each 

position were obtained from a plot of codes of  

substituents against chemical shift values for specific 

eudesmane compounds while the values being compared with 

the ranges are predicted values.  Unlike the scatter plot method, 

GRNN predicted substituents for all the 15 position for all the 

test compounds. The degree of recognition of the test 

compounds (from both methods) ranged between 40 and 100%. 

Again, as indicated earlier, the quality of prediction would likely 

increase as more training data become available. Percentage 

recognition generally increased when the stereochemistry (α or 

β) of the substituents were not considered. The GRNN method 

showed a slightly better result than the scatter plot method 

(subject to the limitation that the most likely substituent for the 

specified range for each position is the actual substituent). 

This procedure may be very useful in elucidating structures 

of unknown eudesmane compounds. 
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Appendix A: List of Test Compounds 

Code Compound 

1 α-Santonin 

2 11β,13-Dihydroreynosin 

3 Vulgarin 

4 Plucheinol 

5 1β, 4α-dihydroxy-6β-acetoxy eudesmane 

6 1β-Hydroxy-8β-Tigloxy-4(11)(13)-eudesmadien-6α, 12-olide 

7 1β, 4α-Dihydroxy-8β-Tigloxy-11(13)-Eudesmen-6α, 12-olide 

8 6β-Cinnamoyloxy-1β,4β-Dihydroxy eudesmane 

9 9α-Angeloxycalostephanolide-8-O-[2S, 3S-Epoxy-2-

methylbutyrate] 

10 Triptofordin C-2 

 

 

 

 

Appendix B: Newly Encountered Substituents types and their 

assigned Codes 
Substituent Codes Substituent  Codes 

Oxo,8Oxy 216 11β, 6 αOxy  246 

Oxo,8αOxy 217 11β, 6 βOxy  247 

Oxo, 8β-Oxy 219 αH, OAc 248 

Oxo, 6Oxy 220 11β, 11βOxy, 12α,12βOxy 252 

Oxo,6αOxy 221 1αOxy, 4αOxy 253 

Oxo, 6β-Oxy 222 OBz, 4‟-OMe 254 

15-Oxy, 6Oxy 223 αOBz, 4‟-OMe 255 

15-Oxy, 6αOxy 224 βOBz, 4‟-OMe 256 

15-Oxy, 6 βOxy 225 OCinn, 4‟OH 257 

15 αOxy, 6Oxy 226 αOCinn, 4‟OH 258 

15 βOxy, 6Oxy 227 βOCinn, 4‟OH 259 

15 αOxy, 6αOxy 228 OEt 260 

15 βOxy, 6 βOxy  229 αOEt 261 

1αOxy, 2αOxy 230 βOEt 262 

3 αOxy, 4αOxy 231 11Oxy, 5Oxy 263 

11-NCS, 11α 232 11αOxy, 5αOxy 264 

11-NCS, 11β 233 11αOxy, 5βOxy 265 

αOxy,  αOH 234 11 βOxy, 5αOxy  266 

αOxy, βOH 235 11 βOxy, 5αOxy 267 

βOxy, αOH 236 αH, αOH 268 

βOxy, βOH  237 αH, βOH 269 

4-Oxy,5-Oxy 238 βH, αOH 270 

5-Oxy,6-Oxy 239 βH, βOH 271 

8-Oxy, 12-Oxy 240 Δ8, 8Oxy 272 

11α, 6αOxy 244 Δ8, 8αOxy 273 

11α, 6βOxy 245 Δ8, 8βOxy 274 

 


