Quantum Chemical Studies on Decyl Heptadecanoate $\left(\mathrm{C}_{27} \mathrm{H}_{54} \mathrm{O}_{2}\right)$ Detected In Ethyl Acetae Leaf Extract of Chrysophyllum albidium

Ushie O.A ${ }^{1}$, Etim, E.E ${ }^{1}$, Adamu ${ }^{2}$, H.M. Chindo ${ }^{2}$, I.Y.Andrew ${ }^{1}$, C and Khanal, G.P. ${ }^{3}$
${ }^{1}$ Department of Chemical Science, Federal University, Wukari Nigeria.
${ }^{2}$ Chemistry Programme, Abubakar Tafawa Balewa University Bauchi, Nigeria.
${ }^{3}$ Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore.

ARTICLE INFO

Article history:

Received: 24 September 2017; Received in revised form: 14 October 2017; Accepted: 25 October 2017;

Keywords

Decyl Heptadecanoate,
Spectroscopy,
Extraction,
Chrysophyllum albidum, Quantum Chemical Calculations,
$\mathrm{C}_{27} \mathrm{H}_{54} \mathrm{O}_{2}$.

Abstract

Cold extraction method was used extract the crude solvent extracts of leaf of Chrysophyllum albidum. The structural elucidation by spectroscopic methods (1 H and 13C NMR) of a fraction of ethyl acetae extract of C. albidum yielded a new compound characterized as decyl heptadecanoate, C 27 H 54 O 2 .

A similar compound Decyl-8-hydroxyl heptadecanoate has also been isolated from Chrysophyllum albidum leaves and has been synthesized via utilization of microwave energy using available starting compounds. Quantum chemical calculations have been carried out on the isolated compounds. Optimized geometry, IR frequencies, bond distances, bond angles and other parameters have been computationally determined for the isolated compound from the quantum chemical calculations using the GAUSSIAN 09 suite of programs. The experimentally measured and the computationally obtained IR frequencies are in good agreement.
© 2017 Elixir All rights reserved.

Introduction

Historically, plants have provided a source of inspiration for novel drug compounds as plants derived medicines have made large contributions to human health and well-being [1]. According to the World Health Organization (WHO), nearly 20,000 medicinal plants exist in 91 countries including 12 mega biodiversity countries [2]. It is observed that in Nigeria, 70% to 80% of the populations rely on plants for their primary health care needs [3]. The research on medicinal plants is gradually gaining due to increasing number people relying on the use of different parts of these materials for various ailments [4]. Only a small fraction of the world's biodiversity has been explored for bioactivity to date.
Most of the claims are made by traditional medical practitioner themselves and may not have been exhaustively investigated scientifically [5]. For this reasons therefore, it could be argued that further research into this medicinal plant is needed. The leaves of Chrysophyllum albidum is used by the rural inhabitants and traditional medicine practitioners in Calabar municipality Government of Cross River State for the treatment of malaria, yellow fever, diarrhea, vaginal and dermatological infections.

Few workers have revealed the presence of certain secondary metabolites in this plant (C. albidum) but to the best of my knowledge no specific chemical constituent has been isolated and reported to be responsible for these activities in this part of the world. From available literature there is no work which has been done on the plant Chrysophyllum albidum leaves, in Calabar Muncipality, Local Government Area, of Cross River State Nigeria. The present work is designed to carry out the characterization and identification of bioactive compounds from C. albidum leaf extracts. In addition, quantum chemical calculations are employed to further give insights about the isolated compounds.

Materials and Methods

Sample Collection and Preparation

Chrysophyllum albidum leaves were collected from their natural habitat of plain sandy soil of coastal plain sands in Calabar Municipality ($04^{\circ} 15^{\circ} \mathrm{N} ; 08^{\circ} 25^{\circ} \mathrm{E}$), Nigeria. The sample were air-dried for two weeks and then milled into fine powder using a milling machine.

Method of Extraction

The method of cold maceration was used in the extraction by serial exhaustive extraction method which

[^0]involves successive extraction with solvents of increasing polarity from a non polar (hexane) to a more polar solvent (methanol) to ensure that a wide polarity range of compound could be extracted. The extracts of the leaves was prepared by soaking 100 g of each in 250 ml hexane for four days with frequent agitation until soluble matter is dissolved.. The resulting mixture was filtered by gravity filtration and the filtrate was concentrated by evaporation using rotatory evaporator and weighed. The procedure was repeated on the residue using the following solvents: chloroform, ethyl acetate, acetone and methanol sequentially in order of polarity. The extracts were in a refrigerator under argon condition until required for testing.

Isolation (Purification) of Active Components for the Antimicrobial Activities

The procedures that were used for isolation and purification of the components were thin layer chromatography and column chromatography. Thin layer chromatography was performed by the method described by [6]. Mixture of solvents was used to develop the plates on which the various extracts were applied on. The solvents composition (hexane and chloroform) with a composition of 7:3 and 3:7. After development, the zones of the various coloured bands were outlined in pencil. The distances of different spots traveled from the initial point of the original spotting were measured. The solvent front distance that was marked was also measured.

The distance moved by the solvent from the base line was calculated as
Rf
$=\frac{\text { distance from the sample spot to the centre of the band }}{\text { distance travelled by the solvent front }}$
Column chromatography was performed on the various extracts by the method described by Pavia et al. 1996. The materials used for the packing of the column were wad of glass wool, silica gel and the solvent. Before the extracts were loaded into the column they were first filtered using cealite diatomic earth and the filtrate were loaded into the column as semi purified. The solvent used for the packing end elution depended on the extract which was determined by the thin layer chromatography that was performed. Fractions were collected at regular interval and each fraction was monitored by TLC analysis. The procedure was repeated on the other extracts with solvent mixture as indicated above used for the thin layer chromatography.

Structural Elucidation

The structural elucidation was done by spectroscopic methods (IR, ${ }^{1} \mathrm{HNMR}$, and ${ }^{13} \mathrm{CNMR}$). The spectroscopic measurements were done on the isolates from the ethyl acetate extracts of the leaf of chrysophyllum albidum. The spectroscopic measurements were infrared spectroscopy (IR) and nuclear magnetic resonance NMR measurements. Electronic absorption spectra were recorded on IR spectrometer and were recorded in 10nm path cuvette. An infrared spectrophotometer model Brunker IFS 66 V/S was used to record infra-red measurements. NMR spectra were obtained with a Brunker AVANCE $400\left(400 \mathrm{MH}_{\mathrm{z}}\right)$ Fourier transform NMR spectrometer with chemical shifts reported in parts per million (ppm) with respect to TMS.

Quantum Chemical Calculations:

The recent advances in theoretical and computational methods have made it possible to study systems, reactions and predict parameters which would have been either impossible or very difficult to study experimentally. The GAUSSIAN 09 suite of programs was used for all the quantum chemical calculations reported in this work. The molecule was optimized at the M06-2X level of theory with the $6-31 \mathrm{~g}(\mathrm{~d}, \mathrm{p}) 6-31+\mathrm{G}^{*}$ basis set. The M06-2X functional is a high-nonlocality functional with double the amount of nonlocal exchange (2 X). The optimized structure was found to be stable with no imaginary (all positive) frequency as shown from the frequency calculations [12-20].

Result and Discussions

Result of the qualitative TLC of the C. albidum leaf

 ExtractsTable 1 presents the result of the qualitative TLC performed on the ethyl acetate crude extracts of leaf of Chrysophyllum albidum There two spots detected on the TLC plates which implies that there are two different components in each of the extracts. Result of the qualitative TLC of the isolated component of the C. albidum leaf extracts is presented in Table 2. The result shows one spot each which implies one compound in each of the extracts.
Table 1.Result of Qualitative TLC of Leaf ethyl acetate extract of Chrsophyllum albidum.

Extracts	No. of Spots	$\mathbf{R}_{\mathbf{f}}$
LEAE	1	0.766
	2	0.432

LEAE - Leaf ethyl acetate extract

Table 2. Thin Layer Chromatography Result of the Purified Components of the Chrysophyllum albidum Leaf Ethyl acetate extract.

Fractions	\mathbf{R}_{f} values
LEAEF	0.766

LEAEF- Leaves ethyl acetate fraction
Optimized Geometry:
Figure 1 displays the optimized geometry of decyl heptadecanoate isolated from Chrysophyllum albidium with the ethyl acetate. Figure 2 shows the Van-Der-Waals sphere of decyl heptadecanoate obtained from it optimized geometry.

Figure 1. Optimized geometry of Decyl heptadecanoate obtained at the M062x/6-31g(d,p) level of theory.
The Van-Der-Waals sphere is an abstract representation of that molecule illustrating where a surface might reside for the molecule based on the hard cutoffs of Van-Der-Waals radii for the individual atoms making up the molecule.

Figure 2. Van-Der-Waals sphere for Decyl heptadecanoate obtained at the $\operatorname{M062x} / 6-31 \mathrm{~g}(\mathrm{~d}, \mathrm{p})$ level of theory.

Result of Structural Elucidation

The result of structural elucidation by the structures were elucidated by spectroscopic methods (IR, UV on addition of shift reagents, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ and NMR) an the result are as follows;

FTIR Spectra Data for Isolated Ethyl Acetate Fraction

The FTIR spectrum displayed $\mathrm{C}=\mathrm{O}$ asymmetric stretching in Carbonyl (ester) at 1750, C-H assymetric stretching in $-\mathrm{CH}_{3}$ at $2925 \mathrm{~cm}^{-1}$, C-H stretching frequencies in $-\mathrm{CH}_{2}$ - It also displayed $\mathrm{C}-\mathrm{H}$ bending in CH_{3} at $1400 \mathrm{~cm}^{-1}$ and C-O-C in acetates at 1250 . The FTIR analysis of isolated ethyl acetate component of C. albidum leaves extract is presented in Table 3 below. Figure 3 pictures the IR spectrum of Decyl heptadecanoate computationally obtained at the M062x/6-31g(d,p) level.

Table 3.The FTIR Spectral Data and Interpretation of Isolated Ethyl Acetate Fraction .

Frequency range cm	Vibrational mode	Remarks
1750	$\mathrm{C}=\mathrm{O}$ Stretching	Carbonyl (Ester)
2925	C-H Asymmetric stretching	$-\mathrm{CH}_{3}$
2900	C-H Stretching frequencies	$-\mathrm{CH}_{2}$
1400	C-H Bending	$-\mathrm{CH}_{2}$
1250	C-O-C Stretching	Acetates

All the major peaks obtained experimentally are in good agreement with those obtained computationally at the M062x/6-31g(d,p) level. This further validates both the experimental and computational results. The frequency from $8 \mathrm{~cm}^{-1}$ to $3902 \mathrm{~cm}^{-1}$ and the corresponding intensity for the IR spectrum of decyl heptadecanoate obtained at the M062x/6-31g(d,p) level are presented in Table 1A of the supporting information. With respective to microwave (or rotational) spectroscopy, this molecule is microwave active with a dipole moment of 1.815 Debye obtained at the M062x/6-31g(d,p) level. Thus, it microwave spectrum can be obtained measured. As an asymmetric top molecule with three different moments of inertia corresponding to the three principal axes, this molecule will be expected to have three different rotational constants. At the M062x/6-31g(d,p) level, the rotational constants obtained for the molecule are $0.15368,0.05295$ and 0.04522 GHz corresponding to the A, B and C rotational constants respectively.

Figure 3. IR spectrum of Decyl heptadecanoate obtained at the M062x/6-31g(d,p) level of theory. ${ }^{1}$ HNMR and ${ }^{13}$ CNMR Spectra Interpretation for Ethyl Acetae Fraction (EAF)

In the ${ }^{1} \mathrm{HNMR}$ the signal at $\delta 0.85$ is due to methyl group. The δ at $1.25 \& 1.67$ are due to long chain methylene protons. The δ at 2.31 is due to the methylene group adjacent to a carbonyl group. The signal at $\delta 4.07$ is due to a methylene proton attached to the oxygen functional group. The result is presented in Table 4 below. The ${ }^{1} \mathrm{HNMR}$ are confirmed by the ${ }^{13} \mathrm{CNMR}$ spectral data. The signal δ at 174.07 indicates the presence of an ester carbonyl group. The signal δ at 14.13 suggests the presence of methyl group. The signal at $\delta 64.42$ shows the presence of a carbon under the oxygen function. The signals at $\delta 22.70,25.04,25.95,28.66$, $29.17,29.28,29.37,29.49,29.71,31.94,34.43$ are due to long chain methylene groups.
Table 4: The ${ }^{13}$ CNMR and ${ }^{1}$ HNMR Spectral Data of Isolated Ethyl acetate Fraction

C-Positions	Carbon type or group	Carbon Signal (δ)	Proton Signal (δ)
C-1	CH_{3}	14.13	0.85s
C-2	CH_{2}	22.70	1.43 s
C-3	CH_{2}	32.08	1.25 s
C-4	CH_{2}	29.85	1.25 s
C-5	CH_{2}	29.82	1.25 s
C-6	CH_{2}	29.82	1.25 s
C-7	CH_{2}	29.82	1.25 s
C-8	CH_{2}	29.82	1.25 s
C-9	CH_{2}	29.85	1.67 s
C-10	CH_{2}	29.11	4. 07
C-11	C-O	64.42	-
C-12	$\mathrm{C}=\mathrm{O}$	174.07	-
C-13	CH_{2}	33.98	1.61 m
C-14	CH_{2}	25.84	2.31 s
C-15	CH_{2}	29.82	1.25 s
C-16	CH_{2}	29.82	1.25 s
C-17	CH_{2}	29.82	1.25 s
C-18	CH_{2}	29.82	1.25 s
C-19	CH_{2}	29.82	1.25 s
C-20	CH_{2}	29.82	1.25 s
C-21	CH_{2}	29.82	1.25 s
C-22	CH_{2}	29.82	1.25 s
C-23	CH_{2}	29.82	1.25 s
C-24	CH_{2}	29.82	1.25 s
C-25	CH_{2}	32..08	1.25 s
C-26	CH_{2}	22.85	1.43 s
C-27	CH_{3}	14.13	0.85s

Bond Distance and Bond Angle:
In figure 4, the optimized geometry of Decyl heptadecanoate is shown with the atoms in numbers. The numbers help in determining the distance between two atoms (say atoms 2 and 4) and the angles between atoms. Table A2
of the supporting information contains the complete bonds distances (in Angstrom) and bond angles (in degrees).

Figure 4. Optimized structure of Decyl heptadecanoate, obtained at the M062x/6-31g(d,p) level of theory, showing the numbering of atoms .

Discussion

TLC provides an easy and rapid way to study plants extract profiles and partially identify compounds [7]. The TLC result of that the extract revealed two spots for the ranging from 0.429 to 0.768 . The TLC result for the methanol gave an R_{f} of 0.766 . Nuclear magnetic resonance (NMR) is a spectroscopic method that is more important to organic chemists. The combination of Infrared (IR) and NMR data is often sufficient to determine the structure of an unknown molecule [8]. The structural elucidation was done by spectroscopic methods (IR, ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{CNMR}$) and was carried on the purified extract. The results revealed one novel compound characterized decyl heptadecanoate IR, ${ }^{1}$ HNMR and ${ }^{13}$ CNMR.

Decyl heptadecanoate is a purified component from the ethyl acetate extract. TLC and column chromatography were used for purification that was performed on the ethyl acetate extract. The IR spectra showed the presence of a carbonyl group by exhibiting an absorption band at $1734 \mathrm{~cm}^{-1}$, C-H group by exhibiting absorption bands at 2918 (stretching frequency and at 1463 and $1384 \mathrm{~cm}^{-1}$ (bending frequencies) and C-O group by exhibiting a band at $1179 \mathrm{~cm}^{-1}$.
In the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ the signal at $\delta 0.85$ is due to methyl group, the broad singlet at $\delta 1.25$ and the multiplet at 1.61 are due to long chain methylene protons. The multiplet at $\delta 2.37$ is due to the methylene group adjacent to a carbonyl group and the signal at $\delta 4.07$ is due to a methylene group under the oxygen function. The above assignments are confirmed by the ${ }^{13} \mathrm{C}$ NMR spectral data. The signal at $\delta 174.07$ indicates the presence of an ester carbonyl group.

Decylheptadecanoate
The signal at $\delta 14.13$ suggests the presence of methyl group. The signal at $\delta 64.42$ shows the presence of a carbon under the oxygen function. The remaining signals at $\delta 22.70,25.04$, $25.95,28.66,29.17,29.28,29.37,29.49,29.71,31.94,34.43$ are due to long chain methylene groups. Based on the above data the compound may be assigned as a long chain fatty
ester decyl heptadecanoate. A similar compound Decyl -8hydroxyl heptadecanoate has also been isolated from Ziziphus mauritiana leaves [9] and has been synthesized via utilization of microwave energy using available starting compounds [10].

Conclusion

It can be concluded that the structural elucidation by spectroscopic methods (IR, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ and NMR) of ethyl acetate extract of C. albidum yielded one new compound characterized as decyl heptadecanoate, using IR, ${ }^{1}$ HNMR and ${ }^{13}$ CNMR. Quantum chemical calculations have been employed to further gain understanding about the newly characterized molecule, $\left(\mathrm{C}_{27} \mathrm{H}_{54} \mathrm{O}_{2}\right)$. The IR frequencies obtained experimentally are in good agreement with those obtained computationally. Bond distances, bond angles, dipole moments, rotational constants and other parameters of interest have been determined computationally for the newly isolated molecule.

Acknowledgement:

The authors acknowledge the Indian Institute of Science, Bangalore for computational facilities.

References

1.Achan, M., Ndaalio, G., Weevers, H. \& Sawhey, A. (1980). Studies on Medicinal plants forantibacterialactivity.Plant medica (Suppl) 91-97
2.Sasidharan, S, Y., Chen, D., Saravanan, K. M. Sundram, \& Yoga, L. (2010). Extraction, Isolation and Characterization of Bioactive Compounds from Plants' Extracts African Journal of Traditional Complementary Alternative Medicine. 8(1): 110.
3.Mathew, A.O. (1996). Conservation of useful plants in Nigeria, proceedings of national workshop on Medicinal plants, Abuja Horticultural Society, National Park Board and towers, Nigeria, 33-43.
4.Adeshina, G. O., Onujagbe \& Onaolapo, J. (2010). Comparative antibacterial studies on the root, stem bark and leaf extracts of Parkia Clappertoniana. The Internet Journal of Alternative Medicine. 8(2), 1-7
5.Soforowa, A. (1982): Medicinal plants and traditional medicine in Africa 11: 128. 142, 146. Pitman Press Ltd.
6.Pavia, L.K. (1976). A contemporary approach, Introduction to organic laboratory techniques, N.B. Saunders company Canada, 46, 50, 358, 599-605.
7.Vázquez, L. H., Javier, P. \& Arturo, N. (2012). The Pentacyclic Triterpenes -amyrins: A Review of Sources and Biological Activities, Phytochemicals - A Global Perspective of Their Role in Nutrition and Health, Dr Venketeshwer Rao (Ed.),InTech,Availablefrom:http://www.intechopen.com/boo $\mathrm{ks} /$ phytochemicals-a-global-perspective-oftheirroleinnutrition and health/the-pentacyclic-triterpenes-amyrins-a-review of-sources-and-biological-activities. Downloaded 12/08/2013
8.Lampman, G. A., Pavia, D. L., Kriz, G. S \& Vyvyan, J. R (2012). Spectroscopy. International Edition $4^{\text {th }}$ edition. Cengage Learning Media Private Limited. 4,8, F.I.E Patparganji, Delhi, India.
9.Agarwal, S. K., Singh, S. S., Verma, S \& Kumar, S. (2000). Two new compounds from leaves of Zizipus mauritiana. Indian Journal of Chemistry 39B, 872-874.
10.Singh, S. A., M.L, Jasvinder Singh (2010). Total synthesis of three natural products: Decyl-8- hydroxy heptadecanoate, Undecyl hexadecanoate and 2,3-dihydroxypropyl hexadecanoate. India Journal of Chemistry 49:1648-1652.
11.Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A.: Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford (2009).
12.E. E Etim, and E. Arunan, Rotational Spectroscopy and Interstellar Molecules, Planex News letter, 2015, 5 (2), 16-21.
13.Emmanuel E. Etim, Prsanta Gorai, Ankan Das, Sandip Charabati and E. Arunan, Systematic TheoreticalStudy on theInterstellarCarbonChainMolecules,TheAstrophysicalJourn al,2016,832,144.Doi:10.3847/0004637X/832/2/144
14.Emmanuel E. Etim, Prsanta Gorai, Ankan Das, and E. Arunan, $\mathrm{C}_{5} \mathrm{H}_{9}$ NIsomers:PointerstoPossibleBranchedChainInte rstellarMolecules,EuropeanPhysicalJournalD,2017,71:86.
DOI: 10.1140/epjd/e2017-70611-3
15.Prasanta Gorai, Ankan Das, Amaresh Das, Bhalamurugan Sivaraman ,EmmanuelE.Etim,SandipK.Chakrabarti,ASearchf orInterstellar Monohydric Thiols, The Astrophysical Journal, 2017, 836, 70. DOI 10.3847/1538-4357/836/1/70
16.Emmanuel E. Etim and E. Arunan, Accurate Rotational Constants for linear Interstellar Carbon Chains:Achieving Experimental Accuracy, AstrophysSpaceSci(2017)362:4.DOI 10.1007/s10509-016-2979-6

17 Emmanuel E. Etim and E. Arunan, Partition Function and Astronomical Observation of Interstellar Isomers: Is there a link? Advances in Space Research, 2017, 59(4), 1161-1171. http://dx.doi.org/10.1016/j.asr.2016.11.021
18.Emmanuel E. Etim and E. Arunan, Interstellar Isomeric Species: Energy, tabilitandAbundanceRelationship,European Physical Journal Plus, 2016,131:448.DOI10.1140/epjp/i2016-16448-0
19.Emmanuel E. Etim, Prsanta Gorai, Ankan Das, and E. Arunan,InterstellarProtonatedMolecularSpecies,AdvancesinS paceScience,2017.https://doi.org/10.1016/j.asr.2017.04.003

Supporting Information

Table A1.IR frequency and intensity for decyl
heptadecanoate obtained at the $\operatorname{M06-2x} / 6-31 \mathrm{~g}(\mathrm{~d}, \mathrm{p})$ level.

Frequency $\left(\mathrm{cm}^{1}{ }^{1}\right)$	Intensity $(\mathbf{k m} / \mathbf{m o l})$
8.25	0.02
13.00	0.06
14.32	0.01
19.46	0.02
21.60	0.23
37.24	0.04
37.62	0.00
41.59	0.01
48.48	0.10
58.30	0.13
63.21	0.17
71.00	0.09
73.75	0.66
96.84	0.01
99.38	2.51
113.84	2.29
119.50	0.09
125.67	0.38
128.80	0.11
133.77	0.16
142.62	1.45
163.24	0.02
182.62	0.08
183.95	0.74
201.61	0.24
211.69	0.11
217.49	0.13
231.12	0.64

239.37	1.20
245.93	0.03
257.30	0.05
269.16	0.06
281.22	0.25
288.84	0.13
292.45	0.83
299.40	1.32
302.52	1.29
312.72	2.22
319.51	0.52
335.19	0.36
348.92	20.81
369.69	97.03
384.30	7.20
390.06	11.28
405.86	1.15
425.49	15.91
443.37	7.57
463.57	2.47
475.93	0.39
509.92	2.78
524.69	0.46
532.16	0.87
552.60	0.61
564.78	0.99
608.67	6.83
673.06	9.10
713.65	2.22
732.26	2.36
733.15	5.44
739.17	5.36
752.87	3.32
760.72	8.32
771.48	1.57
781.88	34.63
791.69	0.99
792.31	1.14
800.86	2.26
814.74	1.80
834.06	2.75
841.54	2.65
851.30	0.05
858.85	6.11
871.16	2.28
879.21	2.12
888.30	1.64
892.79	1.76
903.18	1.45
914.08	1.26
917.81	2.17
931.98	4.46
947.77	1.47
961.08	4.87
964.17	3.71
976.81	3.21
997.90	1.15
1002.62	0.31
1006.54	1.86
1010.99	5.93
1025.41	5.44
1037.77	0.33
1043.41	0.31
1056.87	0.40
1063.23	6.71
1068.31	1.34
1085.64	30.06
1091.81	0.33

1092.34	4.41
1095.88	4.75
1106.24	4.59
1109.50	0.33
1110.98	1.26
1116.48	7.30
1122.82	0.37
1128.01	4.36
1129.16	6.00
1141.72	1.79
1148.93	3.79
1153.65	8.84
1155.43	0.50
1169.10	3.62
1173.67	3.06
1185.96	68.53
1190.26	21.71
1193.74	43.36
1215.70	10.08
1220.69	9.77
1244.61	7.53
1247.51	2.20
1250.09	0.78
1258.93	5.45
1277.23	11.14
1287.59	3.17
1289.52	0.91
1291.42	3.41
1298.03	5.99
1304.81	2.66
1306.48	4.26
1311.18	0.83
1321.91	18.12
1324.32	1.55
1327.17	58.59
1328.78	0.95
1329.73	1.18
1335.44	0.22
1336.72	2.77
1339.24	1.19
1344.26	7.33
1348.60	1.19
1354.00	6.63
1356.78	1.33
1362.45	4.54
1369.70	2.06
1375.24	44.39
1384.17	3.61
1384.87	5.20
1388.28	43.51
1391.31	7.79
1397.63	12.28
1398.16	64.84
1403.48	0.80
1410.13	0.04
1413.75	1.19
1415.58	3.16
1419.60	2.80
1422.58	3.42
1424.40	3.78
1427.12	3.21
1427.27	6.24
1430.77	4.21
1431.34	0.56
1447.51	25.54
1486.38	2.10
1487.11	1.82
1491.02	1.90

1493.35	1.17
1494.80	4.69
1496.92	4.63
1497.93	0.63
1499.63	4.18
1499.83	5.52
1502.20	3.82
1502.75	2.73
1503.70	1.51
1504.27	5.54
1506.46	20.87
1508.86	9.66
1509.76	1.18
1509.85	1.32
1510.84	11.07
1514.87	5.78
1515.13	6.59
1516.81	9.78
1516.98	2.33
1520.27	3.09
1522.85	4.88
1522.94	0.98
1527.82	7.97
1529.46	2.69
1802.71	317.15
3014.23	37.36
3036.74	20.67
3038.22	6.49
3041.23	2.62
3042.31	7.39
3044.33	1.40
3046.69	49.26
3047.15	2.48
3048.24	4.30
3049.40	0.93
3051.39	59.03
3052.45	82.39
3052.64	41.17
3055.35	21.90
3056.90	6.81
3057.68	54.36
3058.30	42.22
3061.69	8.95
3063.11	19.24
3063.38	4.47
3063.48	32.06
3064.02	21.19
3068.47	9.30
3069.36	23.21
3079.22	9.95
3080.55	1.26
3082.39	15.80
3086.31	38.50
3087.14	32.84
3088.33	4.77
3089.56	18.60
3091.42	23.32
3095.25	5.60
3095.33	29.09
3098.05	24.47
3098.86	24.94
3101.73	100.63
3102.66	37.54
3103.24	12.69
3107.37	79.64
3107.98	63.00
3110.63	31.62
3114.49	88.18

3118.70	32.37
3119.32	42.36
3122.94	62.99
3124.11	58.26
3140.63	39.47
3146.08	36.14
3152.54	28.12
3152.88	39.15
3156.98	16.34
3223.84	5.10
3902.05	51.61

Table A2.Bond distance ((\AA) and bond angles $\left({ }^{\circ}\right)$ for decyl heptadecanoate obtained at the M06-2x/6-31g(d,p) .

$\mathrm{R}(1-2)$	1.529
$\mathrm{R}(1-3)$	1.539
$\mathrm{R}(1-78)$	1.097
$\mathrm{R}(1-79)$	1.095
$\mathrm{R}(2-80)$	1.094
$\mathrm{R}(2-81)$	1.095
$\mathrm{R}(2-82)$	1.094
$\mathrm{R}(3-4)$	1.533
$\mathrm{R}(3-77)$	1.096
$\mathrm{R}(3-83)$	1.099
$\mathrm{R}(4-5)$	1.537
$\mathrm{R}(4-75)$	1.096
$\mathrm{R}(4-76)$	1.098
$\mathrm{R}(5-6)$	1.537
$\mathrm{R}(5-73)$	1.097
$\mathrm{R}(5-74)$	1.098
$\mathrm{R}(6-7)$	1.532
$\mathrm{R}(6-71)$	1.095
$\mathrm{R}(6-72)$	1.098
$\mathrm{R}(7-8)$	1.529
$\mathrm{R}(7-69)$	1.098
$\mathrm{R}(7-70)$	1.099
$\mathrm{R}(8-9)$	1.532
$\mathrm{R}(8-67)$	1.099
$\mathrm{R}(8-68)$	1.098
$\mathrm{R}(9-10)$	1.532
$\mathrm{R}(9-65)$	1.098
$\mathrm{R}(9-66)$	1.098
$\mathrm{R}(10-11)$	1.530
$\mathrm{R}(10-63)$	1.098
$\mathrm{R}(10-64)$	1.096
$\mathrm{R}(11-12)$	1.531
$\mathrm{R}(11-61)$	1.098
$\mathrm{R}(11-62)$	1.100
$\mathrm{R}(12-13)$	1.533
$\mathrm{R}(12-59)$	1.097
$\mathrm{R}(12-60)$	1.097
$\mathrm{R}(13-14)$	1.538
$\mathrm{R}(13-57)$	1.098
$\mathrm{R}(13-58)$	1.097
$\mathrm{R}(14-15)$	1.540
$\mathrm{R}(14-55)$	1.096
$\mathrm{R}(14-56)$	1.098
$\mathrm{R}(15-16)$	1.503
$\mathrm{R}(15-53)$	1.102
$\mathrm{R}(15-54)$	1.096
$\mathrm{R}(16-17)$	1.338
$\mathrm{R}(16-52)$	1.084
$\mathrm{R}(17-28)$	1.348
$\mathrm{R}(17-29)$	1.360
1.522	
R$)$	1.431
	1.093

R(19-47)	1.099
R(19-48)	1.096
R (20-21)	1.530
R(20-45)	1.097
R(20-46)	1.098
R(21-22)	1.528
R(21-43)	1.099
R(21-44)	1.097
R(22-23)	1.528
$\mathrm{R}(22-41)$	1.100
R(22-42)	1.096
R (23-24)	1.530
R(23-39)	1.098
R(23-40)	1.099
R(24-25)	1.530
R(24-37)	1.098
R(24-38)	1.098
R(25-26)	1.530
R(25-35)	1.098
$\mathrm{R}(25-36)$	1.098
R(26-27)	1.528
$\mathrm{R}(26-33)$	1.098
R(26-34)	1.096
$\mathrm{R}(27-30)$	1.095
R(27-31)	1.093
$\mathrm{R}(27-32)$	1.094
$\mathrm{R}(29-51)$	0.964
A(2-1-3)	113.2
$\mathrm{A}(2-1-78)$	110.3
A(2-1-79)	108.2
A(1-2-80)	111.7
A(1-2-81)	110.2
A(1-2-82)	111.8
A(3-1-78)	109.5
A(3-1-79)	109.6
A(1-3-4)	115.9
A(1-3-77)	109.4
A(1-3-83)	108.9
A(78-1-79)	105.7
A(80-2-81)	107.8
A(80-2-82)	107.9
A(81-2-82)	107.2
A(4-3-77)	107.4
A(4-3-83)	108.9
A(3-4-5)	116.7
A(3-4-75)	107.5
A(3-4-76)	108.8
$\mathrm{A}(77-3-83)$	105.9
A(5-4-75)	108.1
A(5-4-76)	109.6
$\mathrm{A}(4-5-6)$	116.8
A(4-5-73)	108.2
A(4-5-74)	109.1
$\mathrm{A}(75-4-76)$	105.6
A(6-5-73)	107.6
A(6-5-74)	109.1
A(5-6-7)	114.7
A(5-6-71)	110.8
A(5-6-72)	107.6
A(73-5-74)	105.5
A(7-6-71)	108.8
$\mathrm{A}(7-6-72)$	108.5
A(6-7-8)	113.9
A(6-7-69)	109.9
A(6-7-70)	108.6
$\mathrm{A}(71-6-72)$	106.0
A(8-7-69)	109.6
A(8-7-70)	109.0

A(7-8-9)	113.3
A(7-8-67)	109.1
A(7-8-68)	109.6
$\mathrm{A}(69-7-70)$	105.6
A(9-8-67)	109.0
A(9-8-68)	109.7
A(8-9-10)	114.6
A(8-9-65)	109.0
A(8-9-66)	108.7
A(67-8-68)	105.9
A(10-9-65)	109.2
A(10-9-66)	108.6
A(9-10-11)	113.9
$\mathrm{A}(9-10-63)$	110.0
A(9-10-64)	108.5
A(65-9-66)	106.4
A(11-10-63)	108.7
A(11-10-64)	110.1
A(10-11-12)	112.9
A(10-11-61)	109.1
A(10-11-62)	109.7
A(63-10-64)	105.4
A(12-11-61)	108.8
A(12-11-62)	110.0
A(11-12-13)	114.0
A(11-12-59)	108.6
A(11-12-60)	109.9
A(61-11-62)	106.2
A(13-12-59)	109.4
A(13-12-60)	108.1
A(12-13-14)	113.3
A(12-13-57)	109.7
A(12-13-58)	108.4
A(59-12-60)	106.6
A(14-13-57)	109.0
A(14-13-58)	110.2
A(13-14-15)	113.1
A(13-14-55)	110.6
A(13-14-56)	109.2
A(57-13-58)	105.9
A(15-14-55)	108.3
A(15-14-56)	109.1
A(14-15-16)	114.0
A(14-15-53)	107.8
A(14-15-54)	109.3
A(55-14-56)	106.3
A(16-15-53)	111.0
A(16-15-54)	109.7
A(15-16-17)	124.9
A(15-16-52)	118.9
A(53-15-54)	104.7
A(17-16-52)	115.8
A(16-17-28)	120.9
A(16-17-29)	126.0
A(28-17-29)	113.0
A(17-28-18)	119.9
A(17-29-51)	108.2
A(19-18-28)	111.7
A(19-18-49)	111.4
A(19-18-50)	110.5
A(18-19-20)	113.8
A(18-19-47)	107.8
A(18-19-48)	108.2
A(28-18-49)	110.2
A(28-18-50)	104.2
A(49-18-50)	108.4
A(20-19-47)	109.5
A(20-19-48)	110.4

A(19-20-21)	113.4
A(19-20-45)	108.8
A(19-20-46)	109.2
A(47-19-48)	106.9
A(21-20-45)	109.5
A(21-20-46)	109.3
A(20-21-22)	114.2
A(20-21-43)	109.3
A(20-21-44)	108.9
A(45-20-46)	106.4
A(22-21-43)	109.1
A(22-21-44)	108.8
A(21-22-23)	112.6
A(21-22-41)	109.3
A(21-22-42)	109.6
A(43-21-44)	106.2
A(23-22-41)	109.4
A(23-22-42)	109.4
A(22-23-24)	113.9
A(22-23-39)	108.9
A(22-23-40)	109.0
A(41-22-42)	106.3
A(24-23-39)	109.2
A(24-23-40)	109.3
A(23-24-25)	113.7
A(23-24-37)	109.0
A(23-24-38)	109.1
A(39-23-40)	106.3
A(25-24-37)	109.7
A(25-24-38)	108.8
A(24-25-26)	113.6
A(24-25-35)	108.9
A(24-25-36)	109.7
A(37-24-38)	106.3
A(26-25-35)	109.2
A(26-25-36)	108.9
A(25-26-27)	113.4
A(25-26-33)	109.1
A(25-26-34)	109.0
A(35-25-36)	106.4
A(27-26-33)	109.4
A(27-26-34)	109.3
A(26-27-30)	110.8
A(26-27-31)	111.3
A(26-27-32)	111.5
A(33-26-34)	106.4
A(30-27-31)	107.9
A(30-27-32)	107.7
A(31-27-32)	107.6
W1(A)	8.3
W2(A)	13.0
W3(A)	14.3
W4(A)	19.5
W5(A)	21.6
W6(A)	37.2
W7(A)	37.6
W8(A)	41.6
W9(A)	48.5
W10(A)	58.3
W11(A)	63.2
W12(A)	71.0
W13(A)	73.8
W14(A)	96.8
W15(A)	99.4
W16(A)	113.8
W17(A)	119.5
W18(A)	125.7
W19(A)	128.8

W20(A)	133.8
W21(A)	142.6
W22(A)	163.2
W23(A)	182.6
W24(A)	184.0
W25(A)	201.6
W26(A)	211.7
W27(A)	217.5
W28(A)	231.1
W29(A)	239.4
W30(A)	245.9
W31(A)	257.3
W32(A)	269.2
W33(A)	281.2
W34(A)	288.8
W35(A)	292.5
W36(A)	299.4
W37(A)	302.5
W38(A)	312.7
W39(A)	319.5
W40(A)	335.2
W41(A)	348.9
W42(A)	369.7
W43(A)	384.3
W44(A)	390.1
W45(A)	405.9
W46(A)	425.5
W47(A)	443.4
W48(A)	463.6
W49(A)	475.9
W50(A)	509.9
W51(A)	524.7
W52(A)	532.2
W53(A)	552.6
W54(A)	564.8
W55(A)	608.7
W56(A)	673.1
W57(A)	713.7
W58(A)	732.3
W59(A)	733.1
W60(A)	739.2
W61(A)	752.9
W62(A)	760.7
W63(A)	771.5
W64(A)	781.9
W65(A)	791.7
W66(A)	792.3
W67(A)	800.9
W68(A)	814.7
W69(A)	834.1
W70(A)	841.5
W71(A)	851.3
W72(A)	858.9
W73(A)	871.2
W74(A)	879.2
W75(A)	888.3
W76(A)	892.8
W77(A)	903.2
W78(A)	914.1
W79(A)	917.8
W80(A)	932.0
W81(A)	947.8
W82(A)	961.1
W83(A)	964.2
W84(A)	976.8
W85(A)	997.9
W86(A)	1002.6
W87(A)	1006.5

W88(A)	1011.0
W89(A)	1025.4
W90(A)	1037.8
W91(A)	1043.4
W92(A)	1056.9
W93(A)	1063.2
W94(A)	1068.3
W95(A)	1085.6
W96(A)	1091.8
W97(A)	1092.3
W98(A)	1095.9
W99(A)	1106.2
W100(A)	1109.5
W101(A)	1111.0
W102(A)	1116.5
W103(A)	1122.8
W104(A)	1128.0
W105(A)	1129.2
W106(A)	1141.7
W107(A)	1148.9
W108(A)	1153.7
W109(A)	1155.4
W110(A)	1169.1
W111(A)	1173.7
W112(A)	1186.0
W113(A)	1190.3
W114(A)	1193.7
W115(A)	1215.7
W116(A)	1220.7
W117(A)	1244.6
W118(A)	1247.5
W119(A)	1250.1
W120(A)	1258.9
W121(A)	1277.2
W122(A)	1287.6
W123(A)	1289.5
W124(A)	1291.4
W125(A)	1298.0
W126(A)	1304.8
W127(A)	1306.5
W128(A)	1311.2
W129(A)	1321.9
W130(A)	1324.3
W131(A)	1327.2
W132(A)	1328.8
W133(A)	1329.7
W134(A)	1335.4
W135(A)	1336.7
W136(A)	1339.2
W137(A)	1344.3
W138(A)	1348.6
W139(A)	1354.0
W140(A)	1356.8
W141(A)	1362.5
W142(A)	1369.7
W143(A)	1375.2
W144(A)	1384.2
W145(A)	1384.9
W146(A)	1388.3
W147(A)	1391.3
W148(A)	1397.6
W149(A)	1398.2
W150(A)	1403.5
W151(A)	1410.1
W152(A)	1413.7
W153(A)	1415.6
W154(A)	1419.6
W155(A)	1422.6

W156(A)	1424.4
W157(A)	1427.1
W158(A)	1427.3
W159(A)	1430.8
W160(A)	1431.3
W161(A)	1447.5
W162(A)	1486.4
W163(A)	1487.1
W164(A)	1491.0
W165(A)	1493.4
W166(A)	1494.8
W167(A)	1496.9
W168(A)	1497.9
W169(A)	1499.6
W170(A)	1499.8
W171(A)	1502.2
W172(A)	1502.8
W173(A)	1503.7
W174(A)	1504.3
W175(A)	1506.5
W176(A)	1508.9
W177(A)	1509.8
W178(A)	1509.9
W179(A)	1510.8
W180(A)	1514.9
W181(A)	1515.1
W182(A)	1516.8
W183(A)	1517.0
W184(A)	1520.3
W185(A)	1522.9
W186(A)	1522.9
W187(A)	1527.8
W188(A)	1529.5
W189(A)	1802.7
W190(A)	3014.2
W191(A)	3036.7
W192(A)	3038.2
W193(A)	3041.2
W194(A)	3042.3
W195(A)	3044.3
W196(A)	3046.7
W197(A)	3047.2
W198(A)	3048.2
W199(A)	3049.4
W200(A)	3051.4
W201(A)	3052.5
W202(A)	3052.6
W203(A)	3055.3
W204(A)	3056.9
W205(A)	3057.7
W206(A)	3058.3
W207(A)	3061.7
W208(A)	3063.1
W209(A)	3063.4
W210(A)	3063.5
W211(A)	3064.0
W212(A)	3068.5
W213(A)	3069.4
W214(A)	3079.2
W215(A)	3080.5
W216(A)	3082.4
W217(A)	3086.3
W218(A)	3087.1
W219(A)	3088.3
W220(A)	3089.6
W221(A)	3091.4
W222(A)	3095.3
W223(A)	3095.3

W224(A)	3098.1
W225(A)	3098.9
W226(A)	3101.7
W227(A)	3102.7
W228(A)	3103.2
W229(A)	3107.4
W230(A)	3108.0
W231(A)	3110.6
W232(A)	3114.5
W233(A)	3118.7
W234(A)	3119.3
W235(A)	3122.9
W236(A)	3124.1
W237(A)	3140.6
W238(A)	3146.1
W239(A)	3152.5
W240(A)	3152.9
W241(A)	3157.0
W242(A)	3223.8
W243(A)	3902.1

Table A3. Coordinates of decyl heptadecanoate obtained at the M06-2x/6-31g(d,p) level of theory.

2.593349000	0.331394000	-2.535969000
2.628528000	0.681003000	-0.808146000
0.543960000	-1.077734000	-2.194568000
0.321592000	0.603856000	-1.675892000
0.550549000	-3.744924000	-0.476365000
0.525670000	-1.492842000	2.224528000
0.642439000	-4.460995000	1.298149000
1.030188000	-3.874450000	2.889552000
-1.112118000	-5.102198000	2.826071000
-1.343750000	-3.454635000	3.385089000
-1.633810000	-3.908787000	0.421831000
-2.917837000	-4.582691000	1.442940000
-2.059860000	-1.669896000	1.697099000
-3.475388000	-2.448535000	2.391791000
-4.277835000	-1.200704000	0.523400000
-4.284790000	-2.868645000	-0.028881000
-2.091328000	-0.808190000	-0.601029000
-2.045120000	-2.461631000	-1.157499000
-4.053012000	-2.148495000	-2.541064000
-2.793143000	-0.997065000	-2.961335000
-4.966247000	0.113806000	-2.963258000
-5.317931000	-0.425369000	-1.333067000
-3.529644000	0.988090000	-0.408944000
-2.933468000	1.365852000	-2.009422000
-4.223732000	3.244109000	-1.072081000
-4.919722000	2.650188000	-2.565588000
-6.701065000	1.499469000	-1.460068000
-6.690553000	3.163161000	-0.926022000
-7.18060000	1.248495000	0.789095000
-5.396253000	0.950822000	0.741434000
-6.059212000	2.307421000	2.657153000
-3.867952000	2.963706000	1.139623000
-4.262681000	3.738213000	2.656039000
-3.775772000	5.427534000	0.853502000
-5.399915000	5.598437000	1.532553000
-5.184703000	4.853225000	-0.049016000
-6.791679000	3.521013000	1.628859000

[^0]: Tele:
 E-mail address: emmaetim@gmail.com

