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1. Introduction 

  The fractional derivative describes the effect of hereditary and memory properties, [1-5], consequently many biological 

problems, when describes in terms of differential equations of non-integer orders, provide a more accurate description of reality. 

Many mathematical models have been applied in cancer growth with chemotherapy. The chemotherapy has damaging side effects, 

so it is better to investigate fractional mathematical models to get best results. 

Let us use the following notations, T(t), tumor cell population at time t, N(t), total level of natural killer, (NK), cell 

effectiveness at time t and   L(t) total level of tumor – specific CD 8
+
 T cell effectiveness at time t. As a main step to exploring the 

use of gene therapy on the tumor - immune interaction during cancer, we will consider a fractional mathematical €◦with the goal 

of predicting optimal combinations of approaches leading to clearance of tumors. The fractional version of the mathematical 

model of Lisette G. de Pillis and Kuznetose, [6-9], is given by: 
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Where,   T(t)     [ 0, a
-1

], for all t > 0, 
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Where 
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d
D   is the fractional derivative of order α, with  respect to t, 0 < α < 1. 
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In this article, we present a general fractional dynamical system related to cancer tumor. 

The considered model describes tumor – immune cell interactions using a system of 

fractional order differential equations. The conditions for global stability of cancer free 
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eliminate the cancer, we suggest suitable choices of functions and parameters in our 
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If for suitable functions E1 (t) and E2 (t), we have  

Dα E1 (t) = E2 (t),  

Then 

                     
Where Γ (  . ) is the gamma function. According to previous results, [10-21 ]   , the solution of the fractional integral system: 

  
is given by 
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Where u and f are column vectors of n functions,   

A is a square matrix of order n, whose elements are real numbers and  Γ(θ) is a probability density function defined on [0, ∞], 

whose Laplace  transform is given by 
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  is the Mittag–Leflar function,  

t > to > 0. 

In section 2, we define the parameters of the considered model, their values as well as their ranges of variations are given in 

tables 1-4. They are based on previously published data, [ 6.22,23] , estimated according to different patients. 

In section 3, we shall derive some estimates. We shall find also condition for global stability of cancer free state. 

2. Parameters of the model  

Table 1.Parameters of equation (1.1). 

Parameters Units Definitions Estimated Values 

r (t) 0.18 1/Time Cancer growth term [10-1, 2] 

a 10-9 1/cells Cancer cell capacity logistic growth 10-9 

b (t) 1 1/time Cancer cell clearance term [10-2 , 102] 

b1 105 cells Half- saturation for cancer cells 105 

Table 2.Parameters of equation (1.2). 

Parameters Units Definitions Estimated Values 

σ 1/Cell 

1/Day 

Constant source of effector cells 1.3 x 104 

c1 1/Day Death rate of effector cells 4.12 x 10-2 

b2 

 

 

 

 

 

 

 

c 

1/Day 

 

 

 

 

 

 

2 

      Cell 

Maximum effector cells recruitment rate  

by tumor cell 

 

Steepness coefficient of the NK cell recruitment curve 

 

 

2.5 x 10-2 

 

 

 

 

 

 

        -1 

2x10 

c3 1/Cell 

1/Day 

Effector cell inactivation term by tumor cells 1 x 10-7 

Table 3.Parameters of equation (1.3). 

Parameters Units Definitions Estimated Values 

c4 1/Day Death rate of CD 8+ T cells  2 x 10-2 

c5 1/Day Maximum CD 8+ T – cell recruitment 

rate  

3-75 x 10-2 

c6 1/Cell 

1/Day 

CD 8+ T – cell inactivation rate by tumor 

cell 

3.42 x 10-10 

c7 1/Cell 

1/Day 

Rate at which 

Tumor – specific CD 8+ T – cells are 

stimulated to be produced to be result of 

tumor cells killed by NK cells  

1.1 x 10-7 

k Cell2 Steepness coefficients of CD 8+ T – cell 2 x 107 
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Table 4.Parameters of equation (1.4). 
Parameters Units Definitions Estimated Values 

γ 1/Day Saturation level of fractional tumor cell killed by CD 8+ T - cell 5.80 

λ None Exponent of fractional tumor cell killed by CD 8+ T - cells 1.36 

s None Steepness coefficient of the tumor CD 8+  T – cell competition term 2.5 x 10-1 

3. Estimations and stability 

Theorem 3.1.   The total level of (NK) satisfies the following inequalities:   

                                                                                             (3.1) 

For all 

 

                                                                                            (3.2) 

                                 
and the data of table 2, we can write 

 

 

for all   t  to  0. 

Theorem 3.2. The total level L(t) of tumor specific CD 8
+
 T- cell satisfies 

CD 8+ T- cell satisfies 

                                                                                                      (3.3)            

                                                                            (3.4) 

Where 

 
E,  (t)  is the generalized Mittag–Leflar function, defined by 
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Proof.  From (1.3) and the data of table 3, we get 

D

 L(t)  a3 L(t) + c7 N(t) T(t).                                                                                                                                                       (3.5) 

From (1.6) and (3.5), we get 

                                                        (3.6) 

From (1.7) we can write 
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Differentiating  the last formula with respect to t, we get 

∫     ( )  
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                                                                                                                              (3.7) 

From (3.6) and (3.7) we get (3.3). 

In a similar manner from the data of table 3 and equation (1.3), we can write 

                                                                                                                             (3.8) 

From (1.6) and (3.8) , we get 
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The last in equality leads to (3.4). 

Theorem 3.3.  Suppose that there exist >0 and to  0 such that  
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Proof . Using equation (1.1), 

It is easy to write: 

It is easy to write: 

                                                            (3.12) 

follows from (3.2) that 
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Thus from (3.9) and (3.12), we get 

D

 T(t)  -ἐT (t), 

For all t  to  0. 

Consequently 
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Corollary. If there exist 
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For all t  to  0, then 
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(Comp. [24- 27]) 

Conclusion 

The suitable mathematical models of fractional dynamical systems explore important problems in biology. This tool is an ever 

increasing  towards  

Shedding light on these nonlinear fractional systems. The considered model incorporates tumor-immune interaction terms of a 

form that is qualitatively different from those commonly used. Perhaps the results about the NK cells , CD8 T cells and the 

behavior of the tumor cell population T(t) helps of gaining time to fight the tumor by medical means , (Surgical. Chemical or 

radiation). 
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