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1.0 Introduction 

A few attempts have been made to obtain equations and solutions for a double pendulum system using Lagrange formalism. 

There is limited initiative to advance studies for motions of multi-pendula systems both in planner and spatial motions. The 

Lagrangian approach simplifies the complicated configurations that would be strenuous by any other formalism. The resultant 

equations so developed are the second order partial deferential equations where time is an explicit parameter. Given that the 

Hamiltonian functions derive their base from the Lagrange formulations, it is of paramount importance to note that Lagrange 

formulated a method that appears unpopular to mathematicians but serves as a bridge to the Hamiltonian principles. Spiegel [17] 

attempted to obtain equations of motion for plane double pendulum systems. In his book titled ``Theoretical mechanics‟‟ on page 

299 in problem 11.28, as an example, which states that, `A double pendulum vibrates in a vertical plane. (a) Write the Lagrangian 

of the system (b) obtain equations for the motion‟. He derived the equations of motion for the double pendulum with even 

quantities as   
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This problem in plane motion is what triggered the research in spatial dynamics of even and uneven quantities of masses, 

lengths and angular displacements. A study had been done by Prichani et al ,  -and Sakwa et al ,  -about the planner motion of 

the masses under  the same conditions. 

Chow[3] used uneven quantities in plane motions to derive equations of motion for unequal mass units and unequal lengths of 

separation. He went further to obtain equations for spatial motion using a spherical pendulum and obtained the kinetic energy 

equation as                            
 

 
  ( ̇   ̇      )                                                                                       (1.3) 

    the potential energy equation as                                                                                                                (1.4) 

Subsequently the Lagrangian equation obtained was 
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Braun [2] acknowledged that a multiple pendulum was considered for a plane motion in a vertical plane only and studied to 

establish the equations for n >1. The solutions were found by Prichani et al [13] for the n-tupple pendulum systems. They used the 

Lagrangian framework. It was observed that the angular acceleration for any mass was influenced by the immediate masses and 

angles. Joot [5] and Weiting et al [19] wrote about the multi- spherical pendula system with n components where energy was 

described and acknowledged that the description of the dynamics of the multi-pendula was of formidable difficulty. They 

therefore concentrated on the more accessible problem of small oscillations. Zhenglong and Nico [23] in their paper presented a  

framework for energy efficient dynamic human-like walk for a Nao humanoid robot. They used an inverted pendulum model to 

find an energy efficient stable walking gait. In this model they proposed a leg control policy which utilizes joint stiffness control. 

In order to identify the optimal parameters of the new gait for a Nao humanoid robot they used the policy gradient reinforcement. 

On testing this policy in a simulator and on a real Nao robot it was successful. It was shown that the new control policy had a 

dynamic walk that is more energy efficient than the standard walk of a Nao robot. 
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ABSTRACT 

Functions of multi-Pendula systems in spatial motion in classical mechanics can be 

derived using the Lagrangian formalism. Limited research has been done for plane and 

spatial motion of linearly suspended mass units.  This paper is therefore intended for 

multiple (many) masses linearly connected at varying lengths and for relatively small 

angular displacements in spatial motion. The objective is to develop governing relations 

of spatial motions in 3-dimensions for multi- pendula systems set to oscillate in space. 

The basis of the study is to formulate the Lagrangian for a multi-pendula system  in 

spatial dynamics and determine the Lagangian  functions and equations of the resultant 

motions. 
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Iyad and Kemalettin [4] in their paper present the best method for joint sensor faults detection and fault signal reconstruction. 

A virtual joint sensor is applied which consists of two interconnected models: The simple linear inverted pendulum model (LIPM) 

and the robot leg kinematic model (LKM).This proposed method was confirmed by simulations on 3D dynamics model of a 

humanoid robot SURALP while walking on a flat terrain and it was found to be valid. 

Jung-Woo and Jan-Ho [8] in their paper a unit step pattern with a Center Of Mass (COM) position constrained in the 

supporting polygon at the end of each step, a robot can have a stationary time interval between steps to control and stabilize its 

posture. This is based on the linear inverted pendulum model. If there are zero moment point trajectories (ZMP), a simple solution 

form of the COM trajectories is formulated. Case studies based on different constraints on zero moment point (ZMP) references, 

COM and time differences are presented for an analytical solution. The unknown parameters of the COM trajectories in the 

solution form are formulated for the different cases. One of the cases was tested for the long stride walking with the DRC-HUBO 

robot developed at the Korea Advanced Institute of Science and Technology. Experiments on long-stride walking on bricks were 

successfully performed using the unit step pattern with several controllers of HUBO.Kaibing et al [9] proposed a whole-body 

control strategy for the walking of the the humanoid robots. This is based on the control of the centre of mass (COM) with the 

zero moment point (ZMP) regulation as well as the relative pose of the feet of the robot. A stable walking trajectory based on a 3D 

linear inverted pendulum model (3D-LIPM) is planned for study. In the proposed study it is shown that the control strategy 

perfectly tracks the planned trajectory of the COM and adjusts the ZMP back to the stability area when the robot is out of balance. 

Simulation results are presented to show the effectiveness of the proposed control scheme. Raudolph [14] clearly pointed out in 

one of his projections that “Lagrange discovered a method that is more generalized and simplifies solving the equations and 

positions with respect to two pendula for any given dimensions.” He gave a method that applies for the difference between the 

kinetic and potential energy but he did not go far enough to apply in all situations. Therefore although some work had already 

been done, it did not cover the general areas especially the multi-pendula systems. The use of this method gives the energy 

functions and equations whose solutions are in tandem with the established classical work. According to Wells [21] and Arnold 

[1] about a double pendulum, coupled second-order ordinary differential equations were derived and could be solved numerically 

for   ( ) and    ( ). Plotting the resulting solutions quickly reveals the complicated motion. It could obviously be worse if the 

number of masses was increased. The equations of motion could then be written in the Hamiltonian formalism. Solving for  ̇ 
 

and  ̇ 
leads to the Hamiltonian equations. 

According to a paper posted by Joot [6] it was indicated that although setting up the Lagrangian, for a double pendula system 

was difficult, it was worse solving it. From his research he did not know what to expect in future. He avoided doing more work 

because it proved to be complicated. In his second paper posted by the said Joot [7],  it was noted that introducing any additional 

mass in system, for planer motion, the interaction coupling terms increase and thus complicate the kinetic energy specifications. 

This concept is captured by Prichani et al [12] where it was stated that if there are n masses suspended there will be  (   )

 

kinetic 

energy terms and for(   )masses these terms will be (   )(   )

 
 
It was observed that an increase by one mass would give an 

increase of(   )kinetic energy terms.  In this study the Lagrangian for n masses in planer motion was given by  
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(1.6) 

Before, it had been made clear by Joot , - that, calculating the energy explicitly for a general multi pendula was likely 

thought to be too pedantic for even the most punishing instructor to inflict on students as a problem or an example. 

A paper by Shen et al [16] was to motivate continuing research on dynamics and control problems for many body 3-D rigid 

pendula systems.  They suggested that many of the problems had not been previously studied and that there are many 

opportunities for creative research. During the proceedings of the 17
th

 World Congress, a paper by the Ouyang et al [11]  

addressed a stability analysis and synthesis problem for pendulum systems with multinon-linearities. A method for analyzing the 

Lagrange stability of a pendulum-like system with multiple nonlinearities was proposed. Sakwa et al [15] worked on systems of 

up to five interlinked masses restricted to move vertically in a plane whose equations of motion motivated them to make further 

studies on energy equations. It was found that for the generalized angular acceleration  ̈     
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Warren et al [18] showed that the Lagrange equations depend exclusively on the difference between the total kinetic and 

potential energies of the system. They presented the equations without using variation calculus, a tool we find useful in the current 

method of developing equations of motion for the multi-pendula settings.White et al,  - went further and introduced the 

Lagrange dynamical equations as a robotics course at the university. There was need to study more of the arm control in Robotics 

at that level. Other systems of compound pendula that have been studied are somewhat similar to that of Leaderich [10] and our 

current work in that it is just a chain suspended at one end in a gravitational field in which the dimension of the problem is 

reduced by eliminating the reference to an inertial frame. 
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The vast literature is now elegantly reviewed for applicability and could have some similarities, though not entirely, to 

Prichani et al [13] coupled system of masses. In this study, freely moving system whose mass displacements are very small but 

could have different mass sizes, varying inter-link lengths with masses at different angular displacements at different times is 

considered. Weiting [20] studied a double spherical pendula setting with assigned co-ordinates (u, v, w) and (x, y, z) for which of 

the two spherical pendulum where the co-ordinates satisfy the equations 

                                                                                                                                                                                                                                 (1.10) 

   (   )  (   )  (   )                                                                                                                                                             (1.11)                                  

He also assigned ( ̇  ̇  ̇)     ( ̇  ̇  ̇) as the velocity of the bobs for the first and second pendulum that must satisfy 

the constraint equations given by 

  ̇    ̇    ̇                                                                                                                                                          (1.12) 

       ̇    ̇    ̇    ̇    ̇    ̇    ̇    ̇     ̇                                                                                          (1.13) 

subject to the constraints(           )that define the configuration of the system 

and(             ̇  ̇  ̇  ̇  ̇  ̇) that define the state of the system. 

According to him one need not attempt to describe the general dynamics for a multi-spherical pendula setting because the 

problem is of formidable difficulty. Calculation of the energy explicitly for a general n-pendula system was derived by Prichani et 

al [13] and Sakwa et al [15]. There were unique possibilities of advancing studies in n-tupple pendulum systems by Lagrange 

method which we eagerly embraced. This work was restricted to a series of n-pendula systems in spatial motion. The glaring gap 

in the increased number of uneven mass units, other contemporary uneven quantities of lengths and angles for the same pendula 

setting and the complicated methods of solving the resultant equations provide the motivation to research more in this area. The 

fact that researchers admit the strenuous and difficult stages to go through before obtaining the required equations make it even 

more real to do same. Furthermore, the energy matrix operator method to obtain the equation lays a direct avenue to do this 

research. In this exercise, it should be clear that the determination of the energy eigen functions and coefficients makes it easier to 

obtain the solutions for the equations of motion.  

2.0  LAGRANGIAN FUNCTIONS OF MULTI-PENDULA SYSTEMS 

When a general co-ordinate origin     and the respective axes           and  , then the position of the     mass   
 in 

Cartesian coordinate (            ) is expressed in polar co-ordinates as  

(∑             
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        )                                                                                     (2.1) 

The translated origin   takes on the position of the origin O if     and therefore it is the sum of the resolved components 

of    in the respective axes, where   
 is the zenith angle,   

  is the azimuth angle and    is the distance of the k
th

 mass from 

translated origin   .  

Adding the squares of the velocities gives 
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   the Lagrangian formulation for the         is 
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In matrix form obtains 
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When  the mass units are equal i.e.         and   ̇   ̇   
 then the above matrix equation has a determinant as 

hereunder 
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This determinant has an equation of the form  
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Applying this formula to various mass units suspended with the conditions as above give the respective determinant 

equations. 

Table 1. 

No of mass units Determinant equation=0 

1     

2          

3 6             

4                       

5                               
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Note that when  ̇   ̇     
 it means that the motion is planner depending only on the zenith angle. The values in the above 

table were obtained by Prichani et al (2010) in an M.sc. thesis titled Planner Motion of n-tupple Pendulum systems. 

3.0 DISCUSSION AND CONCLUSION 

The main objective of this research was to develop the governing relations of spatial motion for multiple pendula system set 

to oscillate in space for very small angular displacements. This objective has been achieved by the determination of the 

relationship between all the   mass units suspended linearly and oscillating as mentioned above. The major achievement was the 

Lagrangian equation for the kth. given by 
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The kinetic energy for the k
th

 mass particle, as an example, is found to be 
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And the respective potential energy is       (∑   
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        )

g                                                           (3.3) 

The sum of these two equations gives the total energy for the k
th

 mass particle in the system. The integration of the energy for 

all the mass units gave the total energy in system. Complicated equations of motion from the dynamics were obtained. Then 

matrices that were positive definite and symmetric about the leading diagonal were found. The angular accelerations varied 

directly as the product of the zenith angular velocity and the azimuth angular displacement. According to the second paper posted 

by Peeter Joot, - it was noted that introducing any additional mass in the system, for a planer motion, the interacting coupling 

terms increase and thus complicate the kinetic energy specifications. The results from this thesis show clearly that for  linearly 

suspended masses in spatial motion there         
   

 (   )   

  kinetic energy terms. This means that for 1,2,3,4    

suspended mass units the expected kinetic energy terms will             respectively. If there is an increase by one mass 

unit the kinetic energy terms for the (   )            will be
 (   )  

 (   ) 

     

. The increase in the number of 

kinetic energy terms is     . From this calculation the additional terms will be                             
All the primary matrix operators are                    symmetric matrices e.g.  
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 for unequal masses and

(
    
   
   

+
  for equal mass units.A few equations 

analyzed give the various symmetric forms mentioned above.  
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