

Available online at www.elixirpublishers.com (Elixir International Journal)

Discrete Mathematics

Elixir Dis. Math. 113 (2017) 49389-49394

Strong semitotal block domination in graphs

Nawazoddin U. Patel and M.H.Muddebihal

Department of Mathematics, Gulbarga University, Kalaburagi -Karnataka, India.

ARTICLE INFO

Article history: Received: 27 November 2017; Received in revised form: 20 December 2017; Accepted: 30 December 2017;

Keywords

Dominating Set/Independent Domination/Line Graph/Semitotal BlockGraph/Roman Domination/Edge Domination/Strong SplitDomination/Strong Semitotal block domination.

ABSTRACT

For any graph G = (V, E), the semitotal block graph $T_b(G) = H$, whose set of vertices is the union of the set of vertices and blocks of G and in which two vertices are adjacent if and only if the corresponding vertices of G are adjacent or the corresponding members are incident in G. For any two adjacent vertices u and v we say that u strongly dominates v if $deg(u) \ge deg(v)$. A dominating set D of a graph H is a strong semitotal block dominating set of G if every vertex in $V[T_b(G)] - D$ is strongly dominated by at least one vertex in D. Strong semitotal block dominating set of G. In this paper, we study graph theoretic properties of $\gamma_{Stb}(G)$ and many bounds were obtain in terms of elements of G and its relationship with other domination parameters were found.

© 2017 Elixir All rights reserved.

1. Introduction

In this paper, all the graphs consider here are simple and finite. For any undefined terms or notation can be found in Harary [5]. In general, we use $\langle X \rangle$ to denote the subgraph induced by the set of vertices X and N(v) and N([v]) denote open (closed) neighborhoods of a vertex v. The minimum distance between any two farthest vertices of a connected G is called the diameter of G and is denoted by diam(G). The notation $\beta_o(G)(\beta_1(G))$ is the maximum cardinality of a vertex (edge) independent set in G. A set $S \subseteq V(G)$ is said to be a dominating set of G, if every vertex in V - S is adjacent to some vertex in S. The minimum cardinality of vertices in such a set is called the domination number of G and is denoted by $\gamma(G)$. The concept of edge dominating set of F and is denoted by $\gamma(G)$.

sets were also studied by Mitchell and Hedetniemi in [9]. An edge dominating set of G if every edge in E - F is adjacent to at least one edge in F. Equivalently, a set F edges in G is called an edge dominating set of G if for every edge $e \in E - F$, there exists an edge $e_1 \in F$ such that e and e_1 have a vertex in common. The edge domination number $\gamma'(G)$ of graph G is the minimum cardinality of an edge dominating set of G. A dominating set S is called the total dominating set, if for every vertex $v \in V$, there exists a vertex $u \in S$, $u \neq v$ such that u is adjacent to v. The total domination number of G is denoted by $\gamma_t(G)$ is the minimum cardinality of total dominating set of G. A dominating set D of a graph G is a global dominating set if D is also a dominating set of \overline{G} . The global domination number $\gamma_g(G)$ in the minimum cardinality of a global dominating set of G. This concept was introduced independently by Brigham and Dutton [2and13]. The concept of Roman domination function (RDF) was introduced by E.J. Cockayne, P.A.Dreyer, S.M.Hedetiniemi and S.T.Hedetiniemi in [3]. A Roman dominating function on a graph G = (V, E) is a function $f: V \to \{0, 1, 2\}$ satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex of vfor which f(v) = 2. The weight of a Roman dominating function is the value $f(V) = \sum_{v \in V} f(v)$. The Roman domination number of a graph, denoted by $\gamma_R(G)$, equals the minimum weight of a Roman dominating function on G. A semitotal block graph $T_b(G)$ is the graph whose vertices corresponds to the blocks of G and two vertices in $T_b(G)$ are adjacent if and only if the corresponding blocks in G are adjacent.

A dominating set D of a graph G is a split dominating set of G if the induced subgraph $\langle V-D \rangle$ is disconnected (Kulli, V.R. and Janakiram, B. 1997 (see [4])). The split domination number $\gamma_s(G)$ is the minimum cardinality of the minimal split dominating set of **G**. If V-D contains a dominating set D' then D' is called the Inverse dominating set of G. Then D' is called an Inverse split dominating set of G if the induced subgraph $\langle V-D \rangle$ is disconnected (Ameenal Bibi, K. and Selvakumar, R.2008 (see [1])). The Inverse split domination number $\gamma_s'(G)$ is the minimum cardinality of the minimum set of G.

A dominating set **D** of a graph **G** is a non split dominating set if the induced subgraph $\langle V(G) - D \rangle$ is complete. The non split domination number $\gamma_{ns}(G)$ of **G** minimum cardinality of non split dominating set of **G**. [see (11)].

The concept of strong split block domination in graphs was introduced by M.H.Muddebihal and Nawazoddin U.Patel in [10].

A dominating set **D** of a graph **G** is a strong split block dominating set if the induced subgraph $\langle V[B(G)] - D \rangle$ is totally disconnected with at least two vertices. The strong split block domination number $\gamma_{ssb}(G)$ of **G** is the minimum cardinality of strong split block dominating set of **G**.

The concept of strong nonsplit block domination in graphs was introduced by M.H.Muddebihal and Nawazoddin U.Patel in [11]. A dominating set **D** of a graph B(G) is a strong nonsplit block dominating set if the induced subgraph $\langle V[B(G)] - D \rangle$ is complete. The strong nonsplit block domination number $\gamma_{snsb}(G)$ of **G** is the minimum cardinality of strong nonsplit block dominating set of **G**. Recently and a variation on the domination theory, which is called strong line domination in graphs, was introduced by M.H.Muddebihal and Nawazoddin U.Patel in [12]. A dominating set **D** of a graph L(G) is a strong line dominating set if every vertex in $\langle V[L(G)] - D \rangle$ is strongly dominated by at least one vertex in **D**. Strong line domination number $\gamma_{sL}(G)$ of **G** is the minimum cardinality of strong line dominating set of **G**.

The concept of strong domination was introduced by Sampathkumar and Pushpa Latha in [14] and well-studied in [6,7and 8]. Given two adjacent vertices u and v we say that u strongly dominates v if $deg(u) \ge deg(v)$. A set $D \subseteq V(G)$ is strong dominating set of G if very vertex in V - D is strongly dominated by at least one vertex in D. The strong domination number $\gamma_s(G)$ is the minimum cardinality of a strong dominating set of G. A dominating set D of a graph $T_b(G)$ is a strong semitotal block domination number $\gamma_{stb}(G)$ of G is the minimum cardinality of G is the minimum cardinality of $T_b(G) = D$ is strongly dominated by at least one vertex in D. Strong semitotal block domination number $\gamma_{stb}(G)$ of G is the minimum cardinality of strong semitotal block dominating set of G. In this paper, many bounds on $\gamma_{stb}(G)$ were obtained in terms of elements of G but not the elements of $T_b(G)$. Also its relation with other domination parameters were established.

We observed the following results for some standard graphs.

Observation 1: For any path P_n with $n \ge 2$ vertices $\gamma_{Stb}(P_n) = \left[\frac{n}{2}\right]$. **Observation 2:** For any non separable graph G, $\gamma_{Stb}(G) = 1$.

We needed the following theorem for our later results.

Theorem A [1]: Let *T* be a any tree such that any two adjacent cutvertices u and v with at least one of u and v is adjacent to an end vertices then $\gamma'(T) = \gamma_s^{-\prime}(T)$. Where $\gamma_s^{-\prime}(T)$ is the inverse split domination number.

2. MAIN RESULTS:

Theorem 1: For any (p,q) graph G with *n* blocks, then $\gamma_{stb}(G) \leq n$.

Proof: we consider the following cases:

Case 1: Suppose G is a tree. Then each blocks in an edge. In $T_b(G)$ each block is K_3 . Let $A_1 = \{v_1, v_2, ..., v_n\}$ be the set of all cutvertices of G. Suppose $D = \{v_1, v_2, ..., v_k\}$ be the sub set of A_1 such that $\forall v_i \in D$, $\deg(v_i) \ge \deg(v_j), v_j \in V[T_b(G) - D]$, and $N(v_j) \cap D = \{v_i\}$. Then D is a minimal strong semitotal block dominating set. Let $B = \{B_1, B_2, ..., B_n\}$ be the set of blocks of $T_b(G)$. Since $\forall v \in A_1$ has at least two blocks which are incident to v. Then $|D| \le |B|$ gives $\gamma_{sib}(G) \le n$.

Case 2: Suppose *G* is not a tree. Then there exists at least one block which is not an edge. Since v_i be the number of block vertices corresponding to blocks of *G* which are not edges. Then $\{v_i\} \cup \{D\}$ forms a strong semitotal block dominating set. Hence from the case 1, $|\{v_i\} \cup \{D\}| \le |B|$ gives $\gamma_{Stb}(G) \le n$. One can see for the equality, if *G* is a block.

Theorem 2: For any tree T, $\gamma_{Stb}(T) \ge \gamma'(T)$.

Proof: Let $E = \{e_1, e_2, ..., e_n\}$ be the set of edges which are adjacent to the end edges and $E_1 = \{e_1, e_2, ..., e_k\}$ be the set of end edges, $E_2 = E(T) - E \cup E_1 \cdot \text{Suppose } E_2 \subseteq E_2 \cdot \text{Then} \quad \forall e_i \in \{E \cup E_2^{'}\}$ is adjacent to at least one element of $E(T) - \{E \cup E_2^{'}\} \cdot \text{Hence } \{E \cup E_2^{'}\}$ form $\gamma' - set \cdot \ln T_b(T)$ each block is K_3 and each cutvertex of $T_b(T)$ lie on at least two blocks. Hence degree of each cutvertex is at least 4. Let $D = \{v_1, v_2, ..., v_n\}$ be set of cutvertices in $T_b(T)$ with $\deg(v_i) \ge 4$. Suppose $D_1 = \{v_1, v_2, ..., v_k\} \subseteq D$ in which $\deg(v_j) = 4 \forall v_j \in D_1, 1 \le j \le k$. Then consider $D_1^{'} \subseteq D_1$ and if at least one $v \in D_1^{'}$ in $\gamma_{stb} - set \cdot \text{Then } \{D \cup D_1^{'}\}$ is a minimal $\gamma_{stb} - set \cdot \text{Otherwise, if } D_1^{'} = \phi$, then $\{D\}$ is $\gamma_{stb} - set \cdot \text{Hence } |\{E \cup E_2^{'}\}| \le |\{D \cup D_1^{'}\}|^{\text{or }} |\{D\}|$, which gives $\gamma_{stb}(T) \ge \gamma'(T)$.

49390

Theorem 3: For any (p,q) tree T, $\gamma_{Stb}(T) \ge \gamma_s^{-'}(T)$. **Proof:** From Theorem A, $\gamma'(T) = \gamma_s^{-'}(T)$ ------ (1) From Theorem 2, $\gamma_{Stb}(T) \ge \gamma'(T)$ ------ (2) From (1) and (2) we get the required result.

Theorem 4: For any (p,q) graph G, $\gamma_{Stb}(G) \leq \beta_0(G)$. Where $\beta_0(G)$ is the maximum vertex independent number of G. **Proof:** Suppose $G = K_2$. Then $T_b(G) = K_3$. Hence $\gamma_{Stb}(G) = \beta_0(G)$. Now we consider G with $p \geq 3$ vertices. Let $A = \{v_1, v_2, ..., v_n\}$ be the set of all end vertices and $B = \{v_1, v_2, ..., v_k\} \subseteq \{V(G) - A\}$. $\forall v_i \in B, 1 \leq i \leq k$ Which are at a distance two. Since $N(A) \cap N(B) = \{v_j\} \in V(G) - \{A \cup B\}$, then $\{A \cup B\}$ is a independent set of G with $|A \cup B| = \beta_0(G)$. Suppose $C = \{v_1, v_2, ..., v_m\} \subseteq V[T_b(G)]$ be the set of vertices with maximum degree and $\forall v_i \in C, 1 \leq l \leq m$ is adjacent to at least one vertex $v_p \in V[T_b(G)] - C$, such that $N[C] = V[T_b(G)]$. Furthermore, $\deg(v_i) \geq \deg(v_p)$, since G has at least 3-vertices, then $\{C\} \subset \{A \cup B\}$. Hence $|\{A \cup B\}| \geq |C|$, which gives $\gamma_{Stb}(G) \leq \beta_0(G)$.

Lemma 1: If $\gamma^{-'}(G) \leq \gamma_{stb}(G)$, then $\gamma^{-'}(G) \leq n$. Where *n* is the number of blocks of *G*. **Proof:** Suppose $\gamma^{-'}(G) \leq \gamma_{stb}(G)$. Then by Theorem [1], $\gamma_{stb}(G) \leq n$. It follows that $\gamma^{-'}(G) \leq \gamma_{stb}(G) \leq n$, thus $\gamma^{-'}(G) \leq n$.

Theorem 5: For any (p,q) graph $G \cdot \gamma_{Stb}(G) \leq diam(G) \cdot$

Proof: Let $A = \{e_1, e_2, ..., e_k\}$ be the set of edges which constitutes the largest path between any two vertices of G such that |A| = diam(G).

We consider the following cases.

Case 1: If all the elements of A belongs to a single block, then $\gamma_{Stb}(G) = 1 \le |A|$.

Case 2: If all the elements of A belongs to different blocks and G is without end vertices, then $n \le |A|$. Then by the Theorem [1], $\gamma_{Stb}(G) \le n \le |A| \cdot \text{Hence } \gamma_{Stb}(G) \le diam(G)$.

Theorem 6: For any (p,q) graph G, $\gamma_{Stb}(G) \le \gamma(G) + \gamma'(G) - 1$. Equality holds for P_p .

Proof: Let $D = \{v_1, v_2, ..., v_i\}$ be the minimal set of vertices such that for each $v_i \in D$ and $N[\{v_i\}] = V[G]$. Then D is minimal dominating set of G, $|D| = \gamma(G)$. Further, let $F' = \{e_1, e_2, ..., e_i\}$ be a minimal edge set of G, $\forall e_i \in F', N(e_i) \cap F' = \phi$. Thus $|F'| = \gamma'(G)$. Since $V(G) \subset V[T_b(G)]$ and let $S = \{v_1, v_2, ..., v_n\} \subseteq V[T_b(G)] - D$, then there exists $S' \subseteq S$ such that the closed neighborhood of $\{D\} \cup \{S'\} = V[T_b(G)]$. Hence $\{D\} \cup \{S'\}$ is a minimal dominating set of $T_b(G)$. Suppose $\deg(v_i) \ge \deg(v_j), \forall v_i \in \{D\} \cup \{S'\}$ and $v_j \in V[T_b(G)] - [\{D\} \cup \{S'\}]$. Then $\{D\} \cup \{S'\}$ is strong dominating set $T_b(G) \cdot S$ is strong dominating set $T_b(G) \cdot S$.

Theorem 7: For nay non-trivial tree T, with $p \ge 4$ vertices, then $\gamma_{stb}(T) \le \gamma_{ns}(T)$.

Proof: Let $C = \{v_1, v_2, ..., v_n\} \subseteq V[T]$ be the set of all cutvertices in T. Then $C' \subseteq C$ forms a γ -set of T. Since each edge of T is K_2 and each block in $T_b(T)$ is K_3 which are incident with each $v_i, \forall v_i \in C, 1 \le i \le n$, then there exists $C' \subseteq V[T_b(T)] - C$, such that $C' \cup C''$ is a minimal dominating set of $T_b(T)$. Suppose $\deg(v_i) \ge \deg(v_j), \forall v_i \in \{C' \cup C''\}$ and $\forall v_j \in V[T_b(T)] - C$. Then $\{C' \cup C''\}$ is a minimal $\gamma_{Stb}(T) - set$ of a tree T. Now nonsplite dominating set for a tree is $V(T) - [V(T) - 2] = K_2$. Hence $|V(T) - [V(T) - 2]| \le |C' \cup C''|$ gives $\gamma_{Stb}(T) \le \gamma_{ns}(T)$.

Theorem 8: For any (p,q) graph G, $\gamma_{Stb}(G) \leq \gamma_s(G)$. Further, equality holds for $G = K_p$; $P \geq 2$. **Proof:** Let $S = \{v_1, v_2, ..., v_n\} \subseteq V[G]$ such that $\forall v_i \in S, N[S] = V[G]$. Then S is a minimal dominating set. Suppose $\langle V(G) - S \rangle$ is disconnected. Then S is a minimal split dominating set of G. Now assume if $\forall v_i \in S$ and $\forall v_j \in V[T_b(G)] - S$ is adjacent to at least an vertex of S and $\deg(v_i) \geq \deg(v_j)$. Then clearly S is a $\gamma_{Stb} - set$ of G. Otherwise there exists a vertex $v_k \in V[T_b(G)] - S$ such that $S \cup \{v_k\}$ dominates all vertices of $V[T_b(G) - S]$. Hence in any one, $|S \cup \{v_k\}| = |S|^{gives} \gamma_{Stb}(G) = \gamma_s(G)$.

On the other hand suppose G has a block B with maximum number of vertices which is B not a complete graph. Then this block has at least two vertices $v_1, v_2 \in \{S\}$, where as in $T_b(G)$, u be a block vertex adjacent to all vertices of B and $u \in \gamma_{stb} - set \cdot \text{Hence } |S \cup \{v_k\}| \leq |S|$ gives $\gamma_{stb}(G) \leq \gamma_s(G)$.

Lemma 2: For any star $K_{1,p}$; $p \ge 1$, $\gamma_{Stb}(K_{1,p}) = 1$.

49392

The following theorem gives the result on strong semitotal block domination number of a graph G .

Theorem 9: For any connected (p,q) graph G, $\gamma_{sth}(G) \le p - \gamma_t(G)$.

Proof: Let $H_1 = \{v_1, v_2, ..., v_n\}$ be the minimum set of vertices which covers all the vertices in G. Suppose $\deg(v_j) \ge 1, \forall v_j \in H_1, 1 \le j \le m$ in the subgraph $\langle H_1 \rangle$ then H_1 forms a $\gamma_t(G) - set$ of G. Otherwise if $\deg(v_j) < 1$, then attaché the vertices $w_i \in N(v_i)$ to make $\deg \ge 1$ such that $\langle H_1 \cup \{w_i\} \rangle$ does not contains any isolated vertex. Clearly $H_1 \cup \{w_i\}$ forms a minimal total dominating set of G.

Now in $T_b(G)$, let $A \leq V[T_b(G)]$, let there exists a subset $D = \{u_1, u_2, ..., u_k\} \subseteq A$ of vertices with $\deg(u_i) \geq 3, 1 \leq i \leq k$ and $N[\{u_i\}] = V[T_b(G)]$. Further, $|\deg(u) - \deg(w)| \leq 2, \forall u \in D$ and $w \in V[T_b(G)] - D$ has at least one vertex in D. Clearly D forms a minimal strong dominating set in $T_b(G)$. Therefore it follows that $|D| \leq |V(G)| - |H_1 \cup \{w_i\}|$ and hence $\gamma_{Stb}(G) \leq p - \gamma_t(G)$.

Theorem 10: For any connected (p,q) graph G with $p \ge 3$, then $\gamma_{Stb}(G) \le \gamma_R(G) - 1$.

Proof: Let $f: V(G) \to \{0,1,2\}$ and partition the vertex set V(G) into (V_0, V_1, V_2) induced by f with $|V_i| = n_i$ for i = 0, 1, 2. Suppose the set V_2 dominates V_0 . Then $S = V_1 \cup V_2$ forms a minimal Roman dominating set of G. Further, let $A = \{v_1, v_2, ..., v_i\} \subseteq V[T_b(G)]$ be the set of vertices with $\deg(v_j) \ge 3$. Suppose there exists a vertex set $D \subseteq A$ with $N[D] = V[T_b(G)]$ and if $|\deg(x) - \deg(y)| \le 2$, $\forall x \in D$, $y \in V[T_b(G)] - D$. Then D forms a Strong dominating set in $T_b(G)$. Otherwise there exists at least one vertex $\{w\} \subseteq A$ where $\{w\} \notin D$ such that $D \cup \{w\}$ forms a minimal $\gamma_{stb} - set$ in $T_b(G)$ which gives $|D \cup \{w\}| \le |S|$. Clearly, $\gamma_{stb}(G) \le \gamma_R(G) - 1$.

Next, we obtained the upper bound for $\gamma_{sth}(T)$ in forms of $\gamma_{sth}(T)$.

49393

Theorem 11: For nay non-trivial tree T, $T \neq K_{1,p}$, then $\gamma_{Stb}(T) \leq \gamma_{Ssb}(T)$. **Proof:** Suppose $T = K_{1,p}$. Then block graph of T, $B(T) = K_p$ and by the definition of strong split domination $\gamma_{Ssb} - set$ does not exists. Hence $T \neq K_{1,p}$. Let $H = \{v_1, v_2, ..., v_n\} \subseteq V(T)$ be the set of non-end vertices. Since $H \subset V[T_b(T)]$ and let $H' \subseteq H$ such that $\forall v_i \in H'$, $\deg(v_i) \geq \deg(v_j)$, $\forall v_j \in V[T_b(T)] - H'$, then H' is a minimal $\gamma_{Stb} - set$. Suppose the edge set of T, E(T) = V[B(T)]. Then in B(T) each block is complete. Let $B_1, B_2, ..., B_k$ be the number of blocks in $T_b(T)$, if each block $B_i, 1 \leq i \leq k$ contains P vertices. Then p-1 vertices from each block form a set $S = [\{p-1\}_1, \{p-2\}_2, ..., \{p-1\}_k] \subseteq T_b(T)$ such that $M = V[T_b(T)] - S$ in which $\langle H \rangle$ is a null graph with at least two vertices. Hence H is a $\gamma_{Ssb} - set$. Clearly $|H'| \leq |M|$, which gives $\gamma_{Stb}(T) \leq \gamma_{Ssb}(T)$.

Next, we obtain the relationship between $\gamma_{strack}(G)$ and $\gamma_{strack}(G)$.

Theorem 12: For any connected $(p,q) \operatorname{graph} G$, $\gamma_{Stb}(G) \leq \gamma_{Snsb}(G) + \gamma(G) - 1$. **Proof:** Suppose G is a block. Then $\gamma_{Snsb}(G) = 1$, $\gamma(G) \geq \gamma_{Stb}(G)$. Hence we have required result. Now assume G has at least two blocks. Then $\gamma_{Stb}(G) \geq \gamma(G)$ and hence $\gamma(G) + \gamma_{Snsb}(G) - 1 \geq \gamma_{Stb}(G)$, as required.

We conclude this section by giving the following result that is relation between $\gamma_{SI}(T)$ and $\gamma_{Stb}(T)$.

Theorem 13: For nay non-trivial tree T, then $\gamma_{SL}(T) \leq \gamma_{Stb}(T)$.

Proof: Suppose $G = K_{1,p}$, $p \ge 2$. Then $\gamma_{SL}(T) = \gamma_{Stb}(T)$. Now assume $G \ne K_{1,p}$, $p \ge 2$, then every block in L(T) is complete and every block in $T_b(T)$ is a triangle. Let $S = \{v_1, v_2, ..., v_n\} \subseteq V(T)$ be the set of all non-end vertices, $H = \{e_1, e_2, ..., e_n\} \subseteq E(T)$ be the set of edges which are incident to the vertices of S. In L(T), $H \subseteq V[L(T)]$ and $\forall e_i \in H$ can be denoted as $H = \{v_1, v_2, ..., v_m\}$ in L(T). Now consider a set $H' = \{v_1, v_2, ..., v_k\} \subseteq H$ in which $\forall v_j, 1 \le j \le k \deg(v_j) \ge \deg(v_p)$, $\forall v_p \in V[L(T)] - H'$. Since $S \subseteq V[T_b(T)]$, then $S' \subseteq S$ such that $\forall v \in S'$ deg $(v) \ge \deg(u)$, $\forall u \in V[T_b(T)] - S'$. Also $|S'| \ge |H'|$ which gives $\gamma_{SL}(T) \le \gamma_{Stb}(T)$.

Theorem 14: For any connected (\mathbf{p}, \mathbf{q}) graph $G, \gamma_{Stb}(G) \leq \gamma_g(G)$. Where $\gamma_g(G)$ is a global domination number of G. Proof: Let $S = \{v_1, v_2, v_3, \dots, v_i\} \subseteq V(G)$ be an independent set of G. Since G has no isolated vertices, V - S is dominating set of G. Clearly for very vertex $\in S$, $(V - S) \cup \{v\}$ is a global dominating set of G. Since $|(V - S) \cup \{v\}| = \gamma_g(G)$. Let $D' = \{v_1, v_2, v_3, \dots, v_i\} \subseteq V[T_b(G)]$ be the minimal dominating set of $T_b(G)$ and if $deg(v_i) \geq 2 \forall v_i \in D'$ with $deg(v_k) \leq 2, \forall v_k \in V[T_b(G)] - D'$. Then D' is a Strong dominating set of $T_b(G)$. It follows that $|D'| \leq |(V - S) \cup \{v\}|$ and hence $\gamma_{Stb}(G) = \gamma_g(G)$.

Theorem 15: For any acyclic (p,q) graph G, with $p \ge 3$ vertices, then $\gamma_{Stb}(G) \le c_0 + e - 2$. Where c_0 is the number of cutvertices and e be the number of end edges of G.

Proof: Suppose acyclic graph G, with p < 3 vertices. Then result does not hold. Hence acyclic graph G has $p \ge 3$ vertices. Consider the following cases.

Case 1: Suppose acyclic graph G is a path with $p \ge 3$ vertices. Then path with 3 -vertices, $\gamma_{Stb}(T) = 1$, $c_0 = 1, e = 2$. Hence equality holds. Further if path has p > 3 vertices then $\gamma_{Stb} = \left\lceil \frac{p}{2} \right\rceil$, $c_0 = p - 2, e = 2$. Thus

$$\left\lceil \frac{p}{2} \right\rceil \le (p-2) + 2 - 2 \quad \text{which gives } \gamma_{Stb}(G) \le c_0 + e - 2 \cdot$$

Case 2: Suppose acyclic graph G is not a path. Then there exists at least two vertices of degree at least 3. Then $E = \{e_1, e_2, ..., e_n\}$ be the set of end edges incident to the cutvertices $C_0 = \{c_1, c_2, ..., c_n\}$. Since $|E| > |C_0|$ and $C_0 \in V[T_b(G)]$, then there exits $C'_0 \subseteq C_0$ such that $\forall v_i \in C'_0$ is adjacent to at least one vertex of $V[T_b(G)] - C'_0$. Also $\deg(v_i) \ge \deg(v_j) \ \forall v_i \in C'_0$ and, $\forall v_j \in V[T_b(G) - C'_0]$. Clearly it is known that $|C'_0| \le |C_0|$. Obviously $|C'_0| \le |C_0| + |E| - 2$, which gives $\gamma_{Stb}(G) \le c_0 + e - 2$.

3. References:

- [1]. Ameenal Bibi, K. and Selvakumar, *Inverse domination in semi-total block graphs*. Proc. of theInternational Conference on Graph Theory and itsApplications, Dept. of Mathematics, Amrita VishwaVidya Peetham, Ettimadai, Coimbatore. R (2008) December11-13.
- [2].R.C.Brigham and R.D.Dutton, Factor domination in graphs, Discrete.Math.86(1990) 127-136.
- [3].E.J.Cockayne, P.A.Dreyer. Jr,S.M.Hedetiniemi and S.T.Hedetiniemi, Roman domination in graphs, Discrete maths, 278(2004), 11-22.
- [4].V.R.Kulli and B.Janakiram, The split domination number of a graph, Graph theory notes of New York, New York Academy of Sciences, 32, (1997), 16 – 19.
- [5].F.Harary, graph Theory, Adison Wesley, Reading mass, (1972).
- [6].T.W.Haynes, S.T.Hedetiniemi and P.J.Slater, Fundamentals of domination in graphs. Marcel-Dekker, Inc. (1997).
- [7].T.W.Haynes,S.T.Hedetiniemi and P.J.Slater,(1998),Fundamentals of domination in graphs,New York,Marcel-Dekker,Inc.
- [8].T.W.Haynes, S.T.Hedetiniemi and P.J.Slater, (1999), Domination in Advanced Topics, New York, Marcel-Dekker, Inc.
- [9].S.L.Mitchell and S.T.Hedetniemi, Edge domination in tree.Congr.Numer.19(1977) 489-509.
- [10].M.H.Muddebihal and Nawazoddin U. Patel, Strong Split Block Domination in graphs, JJESR, 2(2014) 102-112.
- [11].M.H.Muddebihal and Nawazoddin U. Patel, Strong non split Block Domination in graphs, IJRITCC,3(2015) 4977-4983.
- [12].M.H.Muddebihal and Nawazoddin U. Patel, Strong Line Domination in graphs, IJCR,8(2016) 39782-39787.
- [13].E.Sampathkumar, The global domination number of a graph, J. Math. Phy. Sci., 23, (1989),377 385.
- [14].E.Sampathkumar and L.Pushpa Latha. Strong Weak domination and domination balance in a graph. Discrete. Math., 161:235-242,1996.