

Available online at www.elixirpublishers.com (Elixir International Journal)

Discrete Mathematics

Strong semitotal block domination in graphs

Nawazoddin U. Patel and M.H.Muddebihal
Department of Mathematics, Gulbarga University, Kalaburagi -Karnataka, India.

ARTICLE INFO

Article history:

Received: 27 November 2017; Received in revised form: 20 December 2017; Accepted: 30 December 2017;

Keywords

Dominating
Set/Independent
Domination/Line
Graph/Semitotal
BlockGraph/Roman
Domination/Edge
Domination/Strong
SplitDomination/Strong
Semitotal block domination.

Abstract

For any graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$, the semitotal block graph $\boldsymbol{T}_{\boldsymbol{b}}(\boldsymbol{G})=\boldsymbol{H}$, whose set of vertices is the union of the set of vertices and blocks of \boldsymbol{G} and in which two vertices are adjacent if and only if the corresponding vertices of \boldsymbol{G} are adjacent or the corresponding members are incident in \boldsymbol{G}. For any two adjacent vertices \boldsymbol{u} and \boldsymbol{v} we say that \boldsymbol{u} strongly dominates \boldsymbol{v} if $\operatorname{deg}(\boldsymbol{u}) \geq \boldsymbol{\operatorname { d e g }}(\boldsymbol{v})$. A dominating set \boldsymbol{D} of a graph \boldsymbol{H} is a strong semitotal block dominating set of \boldsymbol{G} if every vertex in $\boldsymbol{V}\left[\boldsymbol{T}_{\boldsymbol{b}}(\boldsymbol{G})\right]-\boldsymbol{D}$ is strongly dominated by at least one vertex in \boldsymbol{D}. Strong semitotal block domination number $\boldsymbol{\gamma}_{\boldsymbol{S t \boldsymbol { t }}}(\boldsymbol{G})$ of \boldsymbol{G} is the minimum cardinality of strong semitotal block dominating set of \boldsymbol{G}. In this paper, we study graph theoretic properties of $\boldsymbol{\gamma}_{\boldsymbol{S t \boldsymbol { b }}}(\boldsymbol{G})$ and many bounds were obtain in terms of elements of \boldsymbol{G} and its relationship with other domination parameters were found.

© 2017 Elixir All rights reserved.

1. Introduction

In this paper, all the graphs consider here are simple and finite. For any undefined terms or notation can be found in Harary [5]. In general, we use $<\boldsymbol{X}>$ to denote the subgraph induced by the set of vertices \boldsymbol{X} and $\boldsymbol{N}(\boldsymbol{v}) \boldsymbol{a n d} \boldsymbol{N}([\boldsymbol{v}])$ denote open (closed) neighborhoods of a vertex \boldsymbol{v}. The minimum distance between any two farthest vertices of a connected G is called the diameter of G and is denoted by $\operatorname{diam}(G)$. The notation $\boldsymbol{\beta}_{\boldsymbol{o}}(\boldsymbol{G})\left(\boldsymbol{\beta}_{\mathbf{1}}(\boldsymbol{G})\right)$ is the maximum cardinality of a vertex (edge) independent set in \boldsymbol{G}. A set $\boldsymbol{S} \subseteq \boldsymbol{V}(\boldsymbol{G})$ is said to be a dominating set of \boldsymbol{G}, if every vertex in $\boldsymbol{V}-\boldsymbol{S}$ is adjacent to some vertex in \boldsymbol{S}. The minimum cardinality of vertices in such a set is called the domination number of \boldsymbol{G} and is denoted by $\boldsymbol{\gamma}(\boldsymbol{G})$. The concept of edge dominating sets were also studied by Mitchell and Hedetniemi in [9]. An edge dominating set of \boldsymbol{G} if every edge in $\boldsymbol{E}-\boldsymbol{F}$ is adjacent to at least one edge in \boldsymbol{F}. Equivalently, a set \boldsymbol{F} edges in \boldsymbol{G} is called an edge dominating set of \boldsymbol{G} if for every edge $\boldsymbol{e} \in \boldsymbol{E}-\boldsymbol{F}$, there exists an edge $\boldsymbol{e}_{\boldsymbol{1}} \in \boldsymbol{F}$ such that \boldsymbol{e} and $\boldsymbol{e}_{\boldsymbol{1}}$ have a vertex in common. The edge domination number $\boldsymbol{\gamma}^{\prime}(\boldsymbol{G})$ of graph \boldsymbol{G} is the minimum cardinality of an edge dominating set of \boldsymbol{G}. A dominating set \boldsymbol{S} is called the total dominating set, if for every vertex $\boldsymbol{v} \in \boldsymbol{V}$, there exists a vertex $\boldsymbol{u} \in \boldsymbol{S}, \boldsymbol{u} \neq \boldsymbol{v}$ such that \boldsymbol{u} is adjacent to \boldsymbol{v}. The total domination number of \boldsymbol{G} is denoted by $\boldsymbol{\gamma}_{\boldsymbol{t}}(\boldsymbol{G})$ is the minimum cardinality of total dominating set of \boldsymbol{G}. A dominating set \boldsymbol{D} of a graph \boldsymbol{G} is a global dominating set if \boldsymbol{D} is also a dominating set of $\overline{\boldsymbol{G}}$. The global domination number $\boldsymbol{\gamma}_{\boldsymbol{g}}(\boldsymbol{G})$ in the minimum cardinality of a global dominating set of \boldsymbol{G}. This concept was introduced independently by Brigham and Dutton [2and13]. The concept of Roman domination function (RDF) was introduced by E.J. Cockayne, P.A.Dreyer, S.M.Hedetiniemi and S.T.Hedetiniemi in [3]. A Roman dominating function on a graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ is a function $\boldsymbol{f}: \boldsymbol{V} \rightarrow\{\mathbf{0}, \mathbf{1}, \mathbf{2}\}$ satisfying the condition that every vertex \boldsymbol{u} for which $\boldsymbol{f}(\boldsymbol{u})=\mathbf{0}$ is adjacent to at least one vertex of \boldsymbol{v} for which $f(v)=\mathbf{2}$. The weight of a Roman dominating function is the value $f(V)=\sum_{\boldsymbol{v} \epsilon \boldsymbol{V}} f(\boldsymbol{v})$. The Roman domination number of a graph, denoted by $\boldsymbol{\gamma}_{\boldsymbol{R}}(\boldsymbol{G})$, equals the minimum weight of a Roman dominating function on \boldsymbol{G}. A semitotal block graph $\boldsymbol{T}_{\boldsymbol{b}}(\boldsymbol{G})$ is the graph whose vertices corresponds to the blocks of \boldsymbol{G} and two vertices in $\boldsymbol{T}_{\boldsymbol{b}}(\boldsymbol{G})$ are adjacent if and only if the corresponding blocks in \boldsymbol{G} are adjacent.

A dominating set D of a graph G is a split dominating set of G if the induced subgraph <V-D> is disconnected (Kulli, V.R. and Janakiram,B. 1997 (see [4])). The split domination number $\boldsymbol{\gamma}_{\boldsymbol{s}}(\boldsymbol{G})$ is the minimum cardinality of the minimal split dominating set of \boldsymbol{G}. If V-D contains a dominating set D^{\prime} then D^{\prime} is called the Inverse dominating set of G . Then D^{\prime} is called an Inverse split dominating set of G if the induced subgraph <V-D'> is disconnected (Ameenal Bibi, K. and Selvakumar,R. 2008 (see [1])). The Inverse split domination number $\boldsymbol{\gamma}_{s}^{-\prime}(\boldsymbol{G})$ is the minimum cardinality of the minimal Inverse split dominating set of G.

A dominating set \boldsymbol{D} of a graph \boldsymbol{G} is a non split dominating set if the induced subgraph $\langle\boldsymbol{V}(\boldsymbol{G})-\boldsymbol{D}\rangle$ is complete. The non split domination number $\boldsymbol{\gamma}_{\boldsymbol{n s}}(\boldsymbol{G})$ of \boldsymbol{G} minimum cardinality of non split dominating set of \boldsymbol{G}. [see (11)].

The concept of strong split block domination in graphs was introduced by M.H.Muddebihal and Nawazoddin U.Patel in [10].
A dominating set \boldsymbol{D} of a graph \boldsymbol{G} is a strong split block dominating set if the induced subgraph $\langle\boldsymbol{V}[\boldsymbol{B}(\boldsymbol{G})]-\boldsymbol{D}\rangle$ is totally disconnected with at least two vertices. The strong split block domination number $\boldsymbol{\gamma}_{\boldsymbol{s s b}}(\boldsymbol{G})$ of \boldsymbol{G} is the minimum cardinality of strong split block dominating set of \boldsymbol{G}.

Tele:
E-mail address: nawazpatel. 88 @gmail.com

The concept of strong nonsplit block domination in graphs was introduced by M.H.Muddebihal and Nawazoddin U.Patel in [11]. A dominating set \boldsymbol{D} of a graph $\boldsymbol{B}(\boldsymbol{G})$ is a strong nonsplit block dominating set if the induced subgraph $\langle\boldsymbol{V}[\boldsymbol{B}(\boldsymbol{G})]-\boldsymbol{D}\rangle$ is complete. The strong nonsplit block domination number $\boldsymbol{\gamma}_{\text {snsb }}(\boldsymbol{G})$ of \boldsymbol{G} is the minimum cardinality of strong nonsplit block dominating set of \boldsymbol{G}. Recently and a variation on the domination theory, which is called strong line domination in graphs, was introduced by M.H.Muddebihal and Nawazoddin U.Patel in [12]. A dominating set \boldsymbol{D} of a graph $\boldsymbol{L}(\boldsymbol{G})$ is a strong line dominating set if every vertex in $\langle\boldsymbol{V}[\boldsymbol{L}(\boldsymbol{G})]-\boldsymbol{D}\rangle$ is strongly dominated by at least one vertex in \boldsymbol{D}. Strong line domination number $\boldsymbol{\gamma}_{\boldsymbol{S L}}(\boldsymbol{G})$ of \boldsymbol{G} is the minimum cardinality of strong line dominating set of \boldsymbol{G}.

The concept of strong domination was introduced by Sampathkumar and Pushpa Latha in [14] and well-studied in [6,7and 8]. Given two adjacent vertices \boldsymbol{u} and \boldsymbol{v} we say that \boldsymbol{u} strongly dominates \boldsymbol{v} if $\boldsymbol{\operatorname { d e g }}(\boldsymbol{u}) \geq \boldsymbol{\operatorname { d e g }}(\boldsymbol{v})$. A set $\boldsymbol{D} \subseteq \boldsymbol{V}(\boldsymbol{G})$ is strong dominating set of \boldsymbol{G} if very vertex in $\boldsymbol{V}-\boldsymbol{D}$ is strongly dominated by at least one vertex in \boldsymbol{D}. The strong domination number $\boldsymbol{\gamma}_{\boldsymbol{s}}(\boldsymbol{G})$ is the minimum cardinality of a strong dominating set of \boldsymbol{G}. A dominating set \boldsymbol{D} of a graph $\boldsymbol{T}_{\boldsymbol{b}}(\boldsymbol{G})$ is a strong semitotal block dominating set of \boldsymbol{G} if every vertex in $\left\langle\boldsymbol{V}\left[\boldsymbol{T}_{\boldsymbol{b}}(\boldsymbol{G})\right]-\boldsymbol{D}\right\rangle$ is strongly dominated by at least one vertex in \boldsymbol{D}. Strong semitotal block domination number $\boldsymbol{\gamma}_{\boldsymbol{S t b}}(\boldsymbol{G})$ of \boldsymbol{G} is the minimum cardinality of strong semitotal block dominating set of \boldsymbol{G}. In this paper, many bounds on $\boldsymbol{\gamma}_{\boldsymbol{s t \boldsymbol { b }}}(\boldsymbol{G})$ were obtained in terms of elements of \boldsymbol{G} but not the elements of $\boldsymbol{T}_{\boldsymbol{b}}(\boldsymbol{G})$. Also its relation with other domination parameters were established.

We observed the following results for some standard graphs.
Observation 1: For any path $\boldsymbol{P}_{\boldsymbol{n}}$ with $\boldsymbol{n} \geq$ 2vertices $_{\boldsymbol{\gamma}_{\boldsymbol{S t b}}}\left(\boldsymbol{P}_{\boldsymbol{n}}\right)=\left\lceil\frac{n}{2}\right\rceil$.
Observation 2: For any non separable graph $\boldsymbol{G}, \boldsymbol{\gamma}_{S t b}(G)=1$.
We needed the following theorem for our later results.
Theorem A [1]: Let \boldsymbol{T} be a any tree such that any two adjacent cutvertices \boldsymbol{u} and \boldsymbol{v} with at least one of \boldsymbol{u} and \boldsymbol{v} is adjacent to an end vertices then $\boldsymbol{\gamma}^{\prime}(\boldsymbol{T})=\boldsymbol{\gamma}_{s}^{-\prime}(\boldsymbol{T})$. Where $\boldsymbol{\gamma}_{s}^{-\prime}(\boldsymbol{T})$ is the inverse split domination number.

2. MAIN RESULTS:

Theorem 1: For any (p, q) graph G with n blocks, then $\gamma_{S t b}(G) \leq n$.
Proof: we consider the following cases:
Case 1: Suppose G is a tree. Then each blocks in an edge. In $T_{b}(G)$ each block is K_{3}. Let $A_{1}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the set of all cutvertices of G. Suppose $D=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be the sub set of A_{1} such that $\forall v_{i} \in D$, $\operatorname{deg}\left(v_{i}\right) \geq \operatorname{deg}\left(v_{j}\right), v_{j} \in V\left[T_{b}(G)-D\right]$, and $N\left(v_{j}\right) \cap D=\left\{v_{i}\right\}$. Then D is a minimal strong semitotal block dominating set. Let $B=\left\{B_{1}, B_{2}, \ldots, B_{n}\right\}$ be the set of blocks of $T_{b}(G)$. Since $\forall v \in A_{1}$ has at least two blocks which are incident to v. Then $|D| \leq|B|$ gives $\gamma_{S t b}(G) \leq n$.
Case 2: Suppose G is not a tree. Then there exists at least one block which is not an edge. Since v_{i} be the number of block vertices corresponding to blocks of G which are not edges. Then $\left\{v_{i}\right\} \cup\{D\}$ forms a strong semitotal block dominating set. Hence from the case 1, $\left|\left\{v_{i}\right\} \cup\{D\}\right| \leq|B|$ gives $\gamma_{S t b}(G) \leq n$. One can see for the equality, if G is a block.

Theorem 2: For any tree $T, \gamma_{S t b}(T) \geq \gamma^{\prime}(T)$.
Proof: Let $E=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be the set of edges which are adjacent to the end edges and $E_{1}=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ be the set of end edges, $E_{2}=E(T)-E \cup E_{1}$. Suppose $E_{2}^{\prime} \subseteq E_{2}$. Then $\forall e_{i} \in\left\{E \cup E_{2}^{\prime}\right\}$ is adjacent to at least one element of $E(T)-\left\{E \cup E_{2}^{\prime}\right\}$. Hence $\left\{E \cup E_{2}^{\prime}\right\}^{\text {form }} \gamma^{\prime}-$ set. In $T_{b}(T)$ each block is K_{3} and each cutvertex of $T_{b}(T)$ lie on at least two blocks. Hence degree of each cutvertex is at least 4. Let $D=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be set of cutvertices in $T_{b}(T)$ with $\operatorname{deg}\left(v_{i}\right) \geq 4$. Suppose $D_{1}=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \subseteq D$ in which $\operatorname{deg}\left(v_{j}\right)=4 \forall v_{j} \in D_{1}, 1 \leq j \leq k$.Then consider $D_{1}^{\prime} \subseteq D_{1}$ and if at least one $v \in D_{1}^{\prime}$ in $\gamma_{S t b}-s e t$. Then $\left\{D \cup D_{1}^{\prime}\right\}$ is a minimal $\gamma_{s t b}-s e t$. Otherwise, if $D_{1}^{\prime}=\phi$, then $\{D\}^{\text {is }}$ $\gamma_{S t b}-$ set. Hence $\left|\left\{E \cup E_{2}^{\prime}\right\}\right| \leq\left|\left\{D \cup D_{1}^{\prime}\right\}\right|$ or $|\{D\}|$, which gives $\gamma_{S t b}(T) \geq \gamma^{\prime}(T)$.

Theorem 3: For any (p, q) tree $T, \gamma_{S t b}(T) \geq \gamma_{s}^{-^{\prime}}(T)$.
Proof: From Theorem A, $\gamma^{\prime}(T)=\gamma_{s}^{-^{\prime}}(T)$

$$
\begin{equation*}
\text { From Theorem 2, } \quad \gamma_{S t b}(T) \geq \gamma^{\prime}(T) \tag{1}
\end{equation*}
$$

From (1) and (2) we get the required result.
Theorem 4: For any (p, q) graph $G, \gamma_{S t b}(G) \leq \beta_{0}(G)$. Where $\beta_{0}(G)$ is the maximum vertex independent number of G.
Proof: Suppose $G=K_{2}$. Then $T_{b}(G)=K_{3}$. Hence $\gamma_{S t b}(G)=\beta_{0}(G)$. Now we consider G with $p \geq 3$ vertices. Let $A=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the set of all end vertices and $B=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \subseteq\{V(G)-A\} \cdot \forall v_{i} \in B, 1 \leq i \leq k$ Which are at a distance two. Since $N(A) \cap N(B)=\left\{v_{j}\right\} \in V(G)-\{A \cup B\}$, then $\{A \cup B\}$ is a independent set of G with $|A \cup B|=\beta_{0}(G)$. Suppose $C=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\} \subseteq V\left[T_{b}(G)\right]$ be the set of vertices with maximum degree and $\forall v_{l} \in C, 1 \leq l \leq m$ is adjacent to at least one vertex $v_{p} \in V\left[T_{b}(G)\right]-C$, such that $N[C]=V\left[T_{b}(G)\right]$. Furthermore, $\operatorname{deg}\left(v_{l}\right) \geq \operatorname{deg}\left(v_{p}\right)$, since G has at least 3-vertices, then $\{C\} \subset\{A \cup B\}$. Hence $|\{A \cup B\}| \geq|C|$, which gives $\gamma_{S t b}(G) \leq \beta_{0}(G)$.

Lemma 1: If $\gamma^{-^{\prime}}(G) \leq \gamma_{S t b}(G)$, then $\gamma^{-^{\prime}}(G) \leq n$. Where n is the number of blocks of G.
Proof: Suppose $\gamma^{-^{\prime}}(G) \leq \gamma_{S t b}(G)$. Then by Theorem [1], $\gamma_{S t b}(G) \leq n$. It follows that $\gamma^{-^{\prime}}(G) \leq \gamma_{S t b}(G) \leq n$, thus $\gamma^{-^{\prime}}(G) \leq n$.

Theorem 5: For any $(p, q) \operatorname{graph} G, \gamma_{S t b}(G) \leq \operatorname{diam}(G)$.
Proof: Let $A=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ be the set of edges which constitutes the largest path between any two vertices of G such that $|A|=\operatorname{diam}(G)$.

We consider the following cases.
Case 1: If all the elements of A belongs to a single block, then $\gamma_{S t b}(G)=1 \leq|A|$.
Case 2: If all the elements of A belongs to different blocks and G is without end vertices, then $n \leq|A|$. Then by the Theorem [1], $\gamma_{S t b}(G) \leq n \leq|A|$. Hence $\gamma_{S t b}(G) \leq \operatorname{diam}(G)$.

Theorem 6: For any $(p, q) \operatorname{graph} G, \gamma_{S t b}(G) \leq \gamma(G)+\gamma^{\prime}(G)-1$. Equality holds for P_{p}.
Proof: Let $D=\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}$ be the minimal set of vertices such that for each $v_{i} \in D$ and $N\left[\left\{v_{i}\right\}\right]=V[G]$. Then D is minimal dominating set of $G,|D|=\gamma(G)$. Further, let $F^{\prime}=\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}$ be a minimal edge set of G, $\forall e_{i} \in F^{\prime}, N\left(e_{i}\right) \cap F^{\prime}=\phi^{\text {Thus }}\left|F^{\prime}\right|=\gamma^{\prime}(G)$ Since $\quad V(G) \subset V\left[T_{b}(G)\right] \quad$ and \quad let $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subseteq V\left[T_{b}(G)\right]-D, \quad$ then there exists $\quad S^{\prime} \subseteq S$ such that the closed neighborhood of $\{D\} \cup\left\{S^{\prime}\right\}=V\left[T_{b}(G)\right]$. Hence $\{D\} \cup\left\{S^{\prime}\right\}$ is a minimal dominating set of $T_{b}(G)$. Suppose $\operatorname{deg}\left(v_{i}\right) \geq \operatorname{deg}\left(v_{j}\right), \forall v_{i} \in\{D\} \cup\left\{S^{\prime}\right\}^{\text {and }} v_{j} \in V\left[T_{b}(G)\right]-\left[\{D\} \cup\left\{S^{\prime}\right\}\right]^{\text {. Then }}\{D\} \cup\left\{S^{\prime}\right\}$ is strong dominating set $T_{b}(G)$. Since $|D|>\left|\{D\} \cup\left\{S^{\prime}\right\}\right| \leq|D|+|F|-1$, which gives $\gamma_{S t b}(G) \leq \gamma(G)+\gamma^{\prime}(G)-1$.

Theorem 7: For nay non-trivial tree T, with $p \geq 4$ vertices, then $\gamma_{S t b}(T) \leq \gamma_{n s}(T)$.

Proof: Let $C=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subseteq V[T]$ be the set of all cutvertices in T. Then $C^{\prime} \subseteq C$ forms a $\gamma-s e t$ of T. Since each edge of T is K_{2} and each block in $T_{b}(T)$ is K_{3} which are incident with each $v_{i}, \forall v_{i} \in C, 1 \leq i \leq n$, then there exists $C^{\prime \prime} \subseteq V\left[T_{b}(T)\right]-C, \quad$ such that $\quad C^{\prime} \cup C^{\prime \prime}$ is a minimal dominating set of $T_{b}(T)$. Suppose $\operatorname{deg}\left(v_{i}\right) \geq \operatorname{deg}\left(v_{j}\right), \forall v_{i} \in\left\{C^{\prime} \cup C^{\prime \prime}\right\}^{\text {and }} \forall v_{j} \in V\left[T_{b}(T)\right]-C$. Then $\left\{C^{\prime} \cup C^{\prime \prime}\right\}$ is a minimal $\gamma_{S t b}(T)-\operatorname{set}$ of a tree T. Now nonsplite dominating set for a tree is $V(T)-[V(T)-2]=K_{2}$. Hence $|V(T)-[V(T)-2]| \leq\left|C^{\prime} \cup C^{\prime \prime}\right|$ gives $\gamma_{S t b}(T) \leq \gamma_{n s}(T)$.

Theorem 8: For any (p, q) graph $G, \gamma_{S t b}(G) \leq \gamma_{s}(G)$. Further, equality holds for $G=K_{p} ; P \geq 2$.
Proof: Let $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subseteq V[G]$ such that $\forall v_{i} \in S, N[S]=V[G]$. Then S is a minimal dominating set. Suppose $\langle V(G)-S\rangle$ is disconnected. Then S is a minimal split dominating set of G. Now assume if $\forall v_{i} \in S$ and $\forall v_{j} \in V\left[T_{b}(G)\right]-S$ is adjacent to at least an vertex of S and $\operatorname{deg}\left(v_{i}\right) \geq \operatorname{deg}\left(v_{j}\right)$. Then clearly S is a $\gamma_{\text {Stb }}-\operatorname{set}$ of G. Otherwise there exists a vertex $v_{k} \in V\left[T_{b}(G)\right]-S$ such that $S \cup\left\{v_{k}\right\}$ dominates all vertices of $V\left[T_{b}(G)-S\right]$.Hence in any one, $\left|S \cup\left\{v_{k}\right\}\right|=|S|$ gives $\gamma_{S t b}(G)=\gamma_{s}(G)$.

On the other hand suppose G has a block B with maximum number of vertices which is B not a complete graph. Then this block has at least two vertices $v_{1}, v_{2} \in\{S\}$, where as in $T_{b}(G), u$ be a block vertex adjacent to all vertices of B and $u \in \gamma_{S t b}-$ set. Hence $\left|S \cup\left\{v_{k}\right\}\right| \leq|S|$ gives $\gamma_{S t b}(G) \leq \gamma_{s}(G)$.

Lemma 2: For any star $K_{1, p} ; p \geq 1, \gamma_{S t b}\left(K_{1, p}\right)=1$.
The following theorem gives the result on strong semitotal block domination number of a graph G.
Theorem 9: For any connected (p, q) graph $G, \gamma_{S t b}(G) \leq p-\gamma_{t}(G)$.
Proof: Let $H_{1}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the minimum set of vertices which covers all the vertices in G. Suppose $\operatorname{deg}\left(v_{j}\right) \geq 1, \forall v_{j} \in H_{1}, 1 \leq j \leq m$ in the subgraph $\left\langle H_{1}\right\rangle$ then H_{1} forms a $\gamma_{t}(G)-\operatorname{set}$ of G. Otherwise if $\operatorname{deg}\left(v_{j}\right)<1$, then attaché the vertices $w_{i} \in N\left(v_{i}\right)$ to make $\operatorname{deg} \geq 1$ such that $\left\langle H_{1} \cup\left\{w_{i}\right\}\right\rangle$ does not contains any isolated vertex. Clearly $H_{1} \cup\left\{w_{i}\right\}$ forms a minimal total dominating set of G.

Now in $T_{b}(G)$, let $A \leq V\left[T_{b}(G)\right]$, let there exists a subset $D=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\} \subseteq A$ of vertices with $\operatorname{deg}\left(u_{i}\right) \geq 3,1 \leq i \leq k$ and $N\left[\left\{u_{i}\right\}\right]=V\left[T_{b}(G)\right]$.Further, $\quad|\operatorname{deg}(u)-\operatorname{deg}(w)| \leq 2, \forall u \in D \quad$ and $w \in V\left[T_{b}(G)\right]-D$ has at least one vertex in D. Clearly D forms a minimal strong dominating set in $T_{b}(G)$. Therefore it follows that $|D| \leq|V(G)|-\left|H_{1} \cup\left\{w_{i}\right\}\right|$ and hence $\gamma_{S t b}(G) \leq p-\gamma_{t}(G)$.

Theorem 10: For any connected (p, q) graph G with $p \geq 3$, then $\gamma_{S t b}(G) \leq \gamma_{R}(G)-1$.
Proof: Let $f: V(G) \rightarrow\{0,1,2\}$ and partition the vertex set $V(G)$ into $\left(V_{0}, V_{1}, V_{2}\right)$ induced by f with $\left|V_{i}\right|=n_{i}$ for $i=0,1,2$. Suppose the set V_{2} dominates V_{0}. Then $S=V_{1} \cup V_{2}$ forms a minimal Roman dominating set of G. Further, let $A=\left\{v_{1}, v_{2}, \ldots, v_{i}\right\} \subseteq V\left[T_{b}(G)\right]$ be the set of vertices with $\operatorname{deg}\left(v_{j}\right) \geq 3$. Suppose there exists a vertex set $D \subseteq A$ with $N[D]=V\left[T_{b}(G)\right]$ and if $|\operatorname{deg}(x)-\operatorname{deg}(y)| \leq 2, \forall x \in D, \quad y \in V\left[T_{b}(G)\right]-D$. Then D forms a Strong dominating set in $T_{b}(G)$. Otherwise there exists at least one vertex $\{w\} \subseteq A$ where $\{w\} \notin D$ such that $D \cup\{w\}$ forms a minimal $\gamma_{S t b}-s e t$ in $T_{b}(G)$ which gives $|D \cup\{w\}| \leq|S|$. Clearly, $\gamma_{S t b}(G) \leq \gamma_{R}(G)-1$.

Next, we obtained the upper bound for $\gamma_{S t b}(T)$ in forms of $\gamma_{S s b}(T)$.
Theorem 11: For nay non-trivial tree $T, T \neq K_{1, p}$, then $\gamma_{S t b}(T) \leq \gamma_{S s b}(T)$.
Proof: Suppose $T=K_{1, p}$. Then block graph of $T, B(T)=K_{p}$ and by the definition of strong split domination $\gamma_{S s b}-$ set does not exists. Hence $T \neq K_{1, p}$. Let $H=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subseteq V(T)$ be the set of non end vertices. Since $H \subset V\left[T_{b}(T)\right]$ and let $H^{\prime} \subseteq H^{\text {such that }} \forall v_{i} \in H^{\prime}, \operatorname{deg}\left(v_{i}\right) \geq \operatorname{deg}\left(v_{j}\right), \forall v_{j} \in V\left[T_{b}(T)\right]-H^{\prime}$, then H^{\prime} is a minimal $\gamma_{S t b}-s e t$. Suppose the edge set of $T, E(T)=V[B(T)]$. Then in $B(T)$ each block is complete. Let $B_{1}, B_{2}, \ldots, B_{k}$ be the number of blocks in $T_{b}(T)$, if each block $B_{i}, 1 \leq i \leq k$ contains p vertices. Then $p-1$ vertices from each block form a set $S=\left[\{p-1\}_{1},\{p-2\}_{2}, \ldots,,\{p-1\}_{k}\right] \subseteq T_{b}(T)$ such that $M=V\left[T_{b}(T)\right]-S$ in which $\langle H\rangle$ is a null graph with at least two vertices. Hence H is a $\gamma_{S s b}-$ set. Clearly $\left|H^{\prime}\right| \leq|M|$, which gives $\gamma_{S t b}(T) \leq \gamma_{S s b}(T)$.

Next, we obtain the relationship between $\gamma_{\text {Snsb }}(G)$ and $\gamma_{S t b}(G)$.
Theorem 12: For any connected (p, q) graph $G, \gamma_{S t b}(G) \leq \gamma_{\text {Snsb }}(G)+\gamma(G)-1$.
Proof: Suppose G is a block. Then $\gamma_{\text {Snsb }}(G)=1, \gamma(G) \geq \gamma_{S t b}(G)$. Hence we have required result. Now assume G has at least two blocks. Then $\gamma_{S t b}(G) \geq \gamma(G)$ and hence $\gamma(G)+\gamma_{S n s b}(G)-1 \geq \gamma_{S t b}(G)$, as required.

We conclude this section by giving the following result that is relation between $\gamma_{S L}(T)$ and $\gamma_{S t b}(T)$.
Theorem 13: For nay non-trivial tree T, then $\gamma_{S L}(T) \leq \gamma_{S t b}(T)$.
Proof: Suppose $G=K_{1, p}, p \geq 2$. Then $\gamma_{S L}(T)=\gamma_{S t b}(T)$. Now assume $G \neq K_{1, p}, p \geq 2$, then every block in $L(T)$ is complete and every block in $T_{b}(T)$ is a triangle. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subseteq V(T)$ be the set of all non-end vertices, $H=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\} \subseteq E(T)$ be the set of edges which are incident to the vertices of $S \cdot$ In $L(T), H \subseteq V[L(T)]$ and $\forall e_{i} \in H$ can be denoted as $H=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ in $L(T)$. Now consider a set $H^{\prime}=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \subseteq H^{\text {in which }}$ $\forall v_{j}, 1 \leq j \leq k \operatorname{deg}\left(v_{j}\right) \geq \operatorname{deg}\left(v_{p}\right), \forall v_{p} \in V[L(T)]-H^{\prime}$. Since $S \subseteq V\left[T_{b}(T)\right]$, then $S^{\prime} \subseteq S^{\text {such that }} \forall v \in S^{\prime}$ $\operatorname{deg}(v) \geq \operatorname{deg}(u), \forall u \in V\left[T_{b}(T)\right]-S^{\prime}$. Also $\left|S^{\prime}\right| \geq\left|H^{\prime}\right|$ which gives $\gamma_{S L}(T) \leq \gamma_{S t b}(T)$.

Theorem 14: For any connected (\mathbf{p}, \mathbf{q}) graph $\mathbf{G}, \boldsymbol{\gamma}_{\boldsymbol{s t b}}(\boldsymbol{G}) \leq \boldsymbol{\gamma}_{\boldsymbol{g}}(\boldsymbol{G})$. Where $\boldsymbol{\gamma}_{\boldsymbol{g}}(\boldsymbol{G})$ is a global domination number of \boldsymbol{G}.
Proof: Let $\boldsymbol{S}=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \ldots \ldots \ldots, \boldsymbol{v}_{i}\right\} \subseteq \boldsymbol{V}(\boldsymbol{G})$ be an independent set of \boldsymbol{G}. Since \boldsymbol{G} has no isolated vertices, $\boldsymbol{V}-\boldsymbol{S}$ is dominating set of \boldsymbol{G}. Clearly for very vertex $\in \boldsymbol{S},(\boldsymbol{V}-\boldsymbol{S}) \cup\{\boldsymbol{v}\}$ is a global dominating set of \boldsymbol{G}. Since $|(V-S) \cup\{v\}|=\boldsymbol{\gamma}_{\boldsymbol{g}}(\boldsymbol{G})$. Let $\boldsymbol{D}^{\prime}=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \ldots \ldots \ldots, \boldsymbol{v}_{i}\right\} \subseteq \boldsymbol{V}\left[\boldsymbol{T}_{\boldsymbol{b}}(\boldsymbol{G})\right]$ be the minimal dominating set of $\boldsymbol{T}_{\boldsymbol{b}}(\boldsymbol{G})$ and if $\boldsymbol{\operatorname { d e g }}\left(\boldsymbol{v}_{\boldsymbol{i}}\right) \geq \mathbf{2} \forall \boldsymbol{v}_{\boldsymbol{i}} \in \boldsymbol{D}^{\prime}$ with $\operatorname{deg}\left(\boldsymbol{v}_{\boldsymbol{k}}\right) \leq$ $\mathbf{2}, \forall \boldsymbol{v}_{\boldsymbol{k}} \in \boldsymbol{V}\left[\boldsymbol{T}_{\boldsymbol{b}}(\boldsymbol{G})\right]-\boldsymbol{D}^{\prime}$. Then \boldsymbol{D}^{\prime} is a Strong dominating set of $\boldsymbol{T}_{\boldsymbol{b}}(\boldsymbol{G})$. It follows that $|\boldsymbol{D}| \leq|(V-S) \cup\{v\}|$ and hence $\gamma_{S t b}(\boldsymbol{G})=\gamma_{g}(\boldsymbol{G})$.

Theorem 15: For any acyclic (p, q) graph G, with $p \geq 3$ vertices, then $\gamma_{S t b}(G) \leq c_{0}+e-2$. Where c_{0} is the number of cutvertices and e be the number of end edges of G.
Proof: Suppose acyclic graph G, with $p<3$ vertices. Then result does not hold. Hence acyclic graph G has $p \geq 3$ vertices. Consider the following cases.
Case 1: Suppose acyclic graph G is a path with $p \geq 3$ vertices. Then path with 3 - vertices, $\gamma_{S t b}(T)=1, c_{0}=1, e=2$. Hence equality holds. Further if path has $p>3$ vertices then $\quad \gamma_{S t b}=\left\lceil\frac{p}{2}\right\rceil{ }^{\prime} c_{0}=p-2, e=2$. Thus
$\left\lceil\frac{p}{2}\right\rceil \leq(p-2)+2-2$ which gives $_{S t b}(G) \leq c_{0}+e-2$.

Case 2: Suppose acyclic graph G is not a path. Then there exists at least two vertices of degree at least 3. Then $E=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be the set of end edges incident to the cutvertices $C_{0}=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$. Since $|E|>\left|C_{0}\right|$ and $C_{0} \in V\left[T_{b}(G)\right]$, then there exits $C_{0}^{\prime} \subseteq C_{0}$ such that $\forall v_{i} \in C_{0}^{\prime}$ is adjacent to at least one vertex of $V\left[T_{b}(G)\right]-C_{0}^{\prime}$. Also $\operatorname{deg}\left(v_{i}\right) \geq \operatorname{deg}\left(v_{j}\right) \forall v_{i} \in C_{0}^{\prime} \quad$ and, $\forall v_{j} \in V\left[T_{b}(G)-C_{0}^{\prime}\right]$. Clearly it is known that $\left|C_{0}^{\prime}\right| \leq\left|C_{0}\right|$. Obviously $\left|C_{0}^{\prime}\right| \leq\left|C_{0}\right|+|E|-2$, which gives $\gamma_{S t b}(G) \leq c_{0}+e-2$.

3. References:

[1].Ameenal Bibi, K. and Selvakumar, Inverse domination in semi-total block graphs. Proc. of theInternational Conference on Graph Theory and itsApplications, Dept. of Mathematics, Amrita VishwaVidya Peetham, Ettimadai, Coimbatore. R (2008) December11-13.
[2].R.C.Brigham and R.D.Dutton, Factor domination in graphs, Discrete.Math.86(1990) 127-136.
[3].E.J.Cockayne, P.A.Dreyer. Jr,S.M.Hedetiniemi and S.T.Hedetiniemi, Roman domination in graphs, Discrete maths,278(2004),11-22.
[4].V.R.Kulli and B.Janakiram, The split domination number of a graph, Graph theory notes of New York, New York Academy of Sciences, 32, (1997), 16 - 19.
[5].F.Harary, graph Theory, Adison Wesley,Reading mass,(1972).
[6].T.W.Haynes,S.T.Hedetiniemi and P.J.Slater, Fundamentals of domination in graphs. Marcel-Dekker,Inc.(1997).
[7].T.W.Haynes,S.T.Hedetiniemi and P.J.Slater,(1998),Fundamentals of domination in graphs,New York,Marcel-Dekker,Inc.
[8].T.W.Haynes,S.T.Hedetiniemi and P.J.Slater,(1999),Domination in Advanced Topics,New York,Marcel-Dekker,Inc.
[9].S.L.Mitchell and S.T.Hedetniemi, Edge domination in tree.Congr.Numer.19(1977) 489-509.
[10].M.H.Muddebihal and Nawazoddin U. Patel, Strong Split Block Domination in graphs,IJESR, 2(2014) 102-112.
[11].M.H.Muddebihal and Nawazoddin U. Patel, Strong non split Block Domination in graphs, IJRITCC,3(2015) 4977-4983.
[12].M.H.Muddebihal and Nawazoddin U. Patel, Strong Line Domination in graphs, IJCR,8(2016) 39782-39787.
[13].E.Sampathkumar, The global domination number of a graph, J. Math. Phy. Sci., 23, (1989), 377 - 385.
[14].E.Sampathkumar and L.Pushpa Latha. Strong Weak domination and domination balance in a graph. Discrete. Math.,161:235242,1996.

