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1. Introduction

Let L be a pure octic field @(§/m) over the field @ of rational numbers with a square free integer m # 1 and Z, the ring of
integers in L. The purpose of this paper is to determine whether Z; has a power integral basis over the ring Z of rational integers
or does not in the case of m = 1 (mod 4). For the case of m = 2,3 (mod 4) we have already proved the monogenity of L in
[12]. With the proof of non-monogenity of L in the case of m = 1 (mod 4) we will complete the classification of L with respect
to monogenity, thus partially solving the problem 6 of [18] which states “Find a necessary and sufficient condition for a field to
have index 1”.

For a finite field extension F/E of degree n, an element n € Z is said to give a relative power integral basis
{1,m,9%, ...,n" 1} for F over E if Z coincides with a Z;-module Z [n] = Zg1 + Zgn + Zgn? + - + Zgn™ 1 of rank n. When
a field F has a power integral basis over E, the field F is said to be relatively monogenic over E. In the case of E = @, we say that
Z: has a power integral basis or equivalently F is monogenic.

On the characterization of monogenity for non-abelian extensions with degree not less than 4, there are a few works for the
pure extensions [3], [5], [6], [10] and composites of polynomial orders of number fields [7]. If the fields K are abelian extensions
over Q, the explicit integral bases of K have been determined by H. W. Loepoldt [13] and there exist infinitely many monogenic
cyclic cubic and cyclic quartic extensions K of composite conductors over @ [2], [16] and non- monogenic characterizations [9],
[16]. It is known that the fields K belonging to the family of cyclic quartic extensions of prime conductor not equal to 5, 2-
elementary abelian extensions of degree [K : Q] > 23 not equal to the 24™ cyclotomic field Q({24) = Q( V-1,V 2,V/-3),
which is a complex multiplication field over the maximal real subfield Q(¢,, + ;1) and the other types of abelian extensions are
non-monogenic [17], [15], [14], [16], [20]. Recently, A. Pethé and M.E. Pohst obtained a generalization of [14] for
multiquadratic fields F and precise classification of F according to the values of field indices Ind; [19]. Here the index Ind is
defined by gcd ez, {Indpa} for the module index Indp(a) = (Zf : Z[a]) of a submodule Z[a] in Z. Modern expositions on
this area are found in [10], [4], [8] and [6].

2. Notations and Terminologies

For a finite extension field F/Q of degree n,dpand dp (ay,..,a,) With a; € Z; (1 < j < n) denote the field
discriminant of F and the discriminant of numbers a4, ... ,a,, With respect to the extension F/Q, respectively. If a; = a1
for a number a € F, we denote dp. (ay, ..., a,) by dg (a), which is the discriminant of a. Then Indg(ea) is equal to the value of

o) [1]. Let L be a pure octic field Q(@) over Q with g = §/m., m a square free integer = 1, where argd = 0ifm > 0
f a
/ df

and argd = 2m/8 if m < 0. We prove that for m = 2,3 (mod 4), the ring Z, of integers in L have power integral basis
over the ring Z and in Section 3 that for m = 1 (mod 4), the ring Z, does not have any power integral basis. For the proof of
non-monogenity of L, we work in the relative extension /D, where I denotes the Galois closure of the algebraic number field L
over Q and D denotes the biquadratic field @(/m, ¢%). Then we consider the relative norms Nip@m —17) of the partial

differents , _ p0/ (j = 2,1) of the different dL(#) of an integer 5 in L, where ¢ denotes the automorphism of L induced by
W - (8%' (8 _)(8'
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Let k,be the nth cyclotomic field @(¢,)over @ with a primitive nth root( _ e% of unity.Then
L=L() =00 m, g has degree 32 over the field Q for a square free integer m = +1,+2. We denote the Galois group
G(L/Q) of L over Q by G. The Group is generated by three automorphisms g, T and p whose actions on § and g are depicted in
table 1:

Table 1. The Actions of Automorphisms of L on @ and {g.

(4 (s
0|60 | g
p| 6 |t
t| 6| &

Thus 6 =< a,7,p; 6® =12 = p?2 = (t0)? = (6 p)? = (zp)? = ¢ > isthe Galois group with the identity map ¢ of L.

In the following Hasse diagram, we identify an isomorphism v € G and its restriction map cwvy to any subfield F of L. Then
we have the subfield structure of I and the corresponding subgroup structure of Galois group G for a square free integer m +
+1,+2 in Fig. 1.

L =Q(0,() Hy —<ov>
| i
I}l

M = Q(0,:) Hy =< 7p

; o
= Q(0) = Q(6*,1) H,=<T1,p> Hy =< o', mp>
ot o’
K = Q(8*) Q0" i) Hg =< '1".7.;; > Hp =<0 1p >
P

= Q(6") k¢ = Q(i) E = Q(ip")
& cl o \

Fig. 1. The Subfield Structure of Galois Closure of 1, = Q(W) form # +1, +2.

Here we denote k = @(6*) = Q(vm). E=Q(i6") = Q(V=m) ki =Q(). K=Q(6%) =Q(Vm) L=0Q(6)=
Q(¥m). D =Q(6*%i)=Q(WmV-1): N=Q(6%i)=QVm,v=1): M=Q(8,i)=Qmv-1) andL=L(Zy) =
Q(0,3g). The corresponding Galois groups are Hy =G =< 0,7,p >, H, =< o*,1,p> Hy, =< 0,T,p>, Hp=<
o%,0p,0T >,

Hy =<o*1,p> Hy=<d%1p> H, =<T1,p> Hy=<o0*1p> Hy =<1p>and Hy =< T >Here < py, .., ps > for
pj € G (1 <j < s)denotes the subgroup of G generated by py, ..., ps.

Let n € Z, be the generator of power integral basis for L, then there exist &, # € K such that n = a + g6. This is typical
throughout the paper unless stated otherwise. Elements of quadratic subfield k of L are denoted by i Bj and the integers in Z are
denoted by a;;, b;; with i,j = 0,1.

3. Monogenity of Pure Octic Fields @ (8/m) with Square Free Integersm # 1

For an eighth root g = §/m of a square free integer m = 1, let L = Q(@) be a pure octic field, K = Q(6%),k = Q(8*) its
quartic and quadratic subfields respectively. Basing on the integral bases of pure quartic fields determined by T. Funakara [3], we
obtained the integral basis of the pure octic field L and ascertained relative monogenity over its subfields in [11] as stated below.
3.1 Theorem. [11]. For an eighth root g = §/m of a square free integer m = 1, let L be a pure octic field @(@) and Z, be the

ring of integers in L. Then for 1+04 integral bases for Z; and field discriminants of L for different classes of m are as follows
[0] Z[0] = z,[0%][6] if m = 2,3(mod 4)
Z[1, w, 0%, w6%, 0, w0, 0%, wo3] if m = 5,13(mod 16)
= Zx[0] = Z,[67][6]
= 0? 0+ 63
Z1=1g [1, w, 0% w ,0,w0,0% w ] if m = 9(mod 16)
5 02 , 0+6°1+0 .
Z|1,w,0%w ,0,w0,0°, w I if m = 1(mod 16)

and hence
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(—2%*m’” = -28.d,-d% if m=23(mod4)
d - —21m7 = -28.4d, -d% if m = 5,13(mod 16)
L7 ) —212m7 = —28.d,-d2  if m = 9(mod 16)
| —219m7 = —28.d,-d%2  if m = 1(mod 16)

We also determined the monogenity of the pure octic fields L = Q(8) for m = 2,3 (mod 4) in [12]. Thus, for the complete
classification on monogenity of pure octic fields we are left with the proof of monogenity or non-monogenity of L for m =
1 (mod 4). for which the following lemma is fundamental.

32 Lemma. Let L = Q(@)be a pure octic field with g = §/m and m = 1 (mod 4). Let K = Q(#?)and k = Q(6*) be
quartic and quadratic subfields of L respectively. Let n = a + 8 € L with a, 8 € K. If L is monogenic with 5 a generator of
power integral bases of Z,, then

a. Ng(B) = +1form = 5,9,13(mod 16).

b.a, = 0 form = 5,13(mod 16), With a = a, + a,0% and ay, a, € Z,.

r _ " 2
b; = 1form = 1(mod 16) W'thn - a+ﬁ0+b3%%b3 €Z

Proof. The case a.

Since there is no relative integral basis of Z, over Z, for the case of m = 9(mod 16) by [11], we deal with the following
two cases separately;

(i) m = 5,13(mod 16) and (ii) m = 9(mod 16).
The case (i) m = 5,13 (mod 16).

By theorem 3.1 it holds that Z;, = Z,[0] = Z[1, w, 6%, w6?, 0, w0, 83, w63], then for n = a + BO witha, B € Z, we have
n-1"" = a+po—(a+p(-0)) =2p6-

Moreover for a, B € Zy = Z,[0*] We take a = a, + a,0% and B = By + B,6% With a;, B; € Z; (0 < j < 1), such that
n—n"" = (ao + @;6%) + (Bo + $167)0 — ((a — a6?) + (B — f6%)i6) = 2,67 + fo(1— )0 + f1(1 + 1)6° =
0(mod(1 —i)0Zy).

Foray, = ay + a;w Witha; € Z(0 < j < 1) and W= 1+2_94 , the next partial different becomes

n—-n°=ay,—aj + (a; — afi)6* + (B — B’5)0
= a,0* + (ay - afi)8% + (B — B°{3)0 = 0(mod 6Z;) bY ay- af = a;(w — %) = a,6*

6 5 4 4
We use 11—11”6=—(11—11”2)6,11—1]”3=(n—n“2)+(n—n”)”zand n—n° =(n_na)+(n_na)aso that

dy(m) = No(dym) = Ny (@ =) (n =0 ) (n=n"") - (n = 1) (n=1°*) - (1 = n°*)) = 0Gmod (6%)®) - (1 -
0)%6%)% - 2%6°N /k (Nk(B)) = 0(mod Ng(B)? - (6%)7 - (24)% - 2%) = 0(mod N (B)? - m’ - 2'%) = 0 (mod N (B)* - d)-
By d;, = 21%m7, we conclude that § should be a unit in K.
The case (ii) m = 9(mod 16).
In this case 7, = 74 [0] = Z[1, o, 92’w1+292’
For n = a + B6 with a, B € Zy, we take

0+63
0,00,0° w -

I

-
=ag+ a,w + a,0% + azw 1+6% with

1+6% and
2

B=b0+b1w+b202+b3
a; ,b]- €Z(0<j<3),s0 that n— 7164 =20 and - )1”2)/0 =2a,0 + azwb + (B — ﬁ”zi)'
2 2
FIOM g — g7*i = (by + byw)(1 - i) + b,6°(1 + i) + b3w (X2~ - 224)
:n2 H
= (1= i)(bo + by @ + b,0%0) + b 1+219 (1-iy it follows that
02
= (- ) (mod(1 - D)Zy)
Then & is an integer of the field N, because the relative norm

(m— 11”2)/9 =0+ a;wl + b;w

Ple="1 pen Ny @ = & = 2 (-20)

= w(—i) and the relative trace Ty,, (&) = 1 — i are integers in D. Thus, we may put _no? ] with
n/p(§ u :"—Z = wly + (1 —Dpy

suitable integers A, uy € Z, With this substitution,we proceed further to have NM/N(’?)=71M'(71M)"4=(w/1M+

(1= Dpp) - (wl}f: +@1- i)llﬁ) = w*Nyyny(Ay) + (1 = i) Ty (AMHE{;) — 2iNy/y(uM) = 0?2y + (1 — Dpy +
2v, , Which is denoted by 5y With Ay, uy , vy € Zy-

The next relative norm of #,, until the biquadratic field p = Q(\/ﬁ (g) gives Nu/o @) =1y - UKIZ _ w4ﬁnl +w?- 24p,
+221D3 + w3(1 - i)lD‘l, + 2(02}.1)5 + w(l - i) * 2).1)6 = w4).D1 + (1)2(1 - i))'D7 + 22).1)3 + (l)(l - i) * ZAD6’ WhICh IS
denoted by n,, with }‘Di €EZp(1<j< 7).

Next we have N, (1p) =1p-nf = (@ w)*2; + (0 @) (=2)2; +2*2; + (@ - @) (=2) - 2224 + (0 - @°)?
1-DAs+ 222+ @ @' (1 — i) - 24, + (1 — i) - 2225 + (@ - @°)(—2)Ag + 23(1 — i)Ag = 0(mod 22) With 2; € Z,,,

(1<j<9), because of .40 =1""= oupnod2) BY N <n_na2 it holds that N (n—n"2>
4 N/ky ) L 2]

) = 0 (mod 22)’
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0 (mod 2%). Thus N, Ty (,1_,1021) = o(mod (Nk(ﬁ))z  p2+8+2 which gives d, = —22.m7. (Nx(ﬂ))z' Butd, = —212.

[
m7 by theorem 3.1. Thus, it holds that N, (B) = +1.
The case b.
From the case a(i), since g is a unit of K, we putn = a + 0 = a, + a;0% + 6 With ay, @, € Z,. Thus, we have
N—1° = (ag + a,0% + 0) — (ap + a;(—0?) + i) = 2a,0% + (1 — i)0 = [(1 + D), 0 + 1](1 — 0)6.
Here N, [(1 —i)0] = 2*m which is a factor of d;(n). Put (1 +i)a;0 + 1 =&, then £ must be a unit of Z; . Here
Ny (&) = £-&7 = [(1 + Day0 + 1]2,which  we  denote by  gyThen N, (e) = Ny, () = &4 - €5

= [(1+ Dety0 +1]% - [(1 + D)ay (=) + 1]2 = [_(1 + 0)2a26? + 1]2 _ [—Ziaiez + 1]2 holds, whose value is denoted by

ey
Similarly, Ny/p(en) = £ - (SN)”Z = [4a,*0* + 1]zHolds. Put 4,%0* + 1 =€p. For m <0, as a,*0* € Z; = Z[1, w]

, We put a,*0* = s + tw With s,t € Z, Such that N, (g)) = (45 + 1+ 4tw)(4s + 1 + 4tw’) = (45 + 1)? + (4s + 1)4t

+(46)2 ™ Here 1™ _ g 4 om, >0 With my €Z*Thus Ny(ep) = (45 + 1)? + (45 + 14t + (4)%. (1 + 2m,y)

4 4

= (4s + 1+ 2t)® + (2t)%(3 + 8m,) = +1 holds if and only if ¢ =0 and s = 0, namely a; = 0 follows. If m > 0, then

No/(ep) = (£5)(£p)? = [4(s + 4w) + 1][4(s + 40°) + 1] = 16 (s + st + 2 7) +4(2s + ) + 1 = 1 holds.

Therefore, by ¢ — g2 y ¢ 4 2 L™ c zand d = 25+ t € Z, we have 16¢ + 4d + 1 = +1. For 16¢ + 4d + 1 = —1 we have

4

8c + 2d = —1 which is impossible. For the case of +1, consider again Npi(ep) = [405{94 + 1][4a‘1l”(_g4) + 1] = 1,

namely

4%[N (ap]*m + 4(at} + a}”)0* + 1 = 1.This implies

0 =4atal’ 0 + (at + a?’) = 4atat’0* + 2a%a?’ = 2a2a2’ 2a3a?" 0% + 1) > 2[N,(a1)]?. and hence Ny(a;)=0.

Since {1, w} is an integral basis of Z, then Ny (a,) = 0 ifand only if @; = 0.

The case c.

For m =1 (mod 16), we have ZL=Z[1,(»,02,w1+2—02,9,w0,03,w1+2—921;'—9]":0r NnEZ, We use n=a-+po
t by 1+Te'2 1+0 With @, f € Z and by € Z and hence ) _ 0t _ 2[30+b3w9+2—63’ ady— 97’ =a—a” +(p6 - p'i6)
+b3(w1+202$— 1+T‘921+Ti92)'PUta=ao+a1w+a292+a3w1+Tazand3=bo+b1w+b202.az.bn€ZWithOSlS

3 and 0<n<2 Then 4_ g —24,62 + azwh? = a;wb2(mod (1 — i)Zy ) B —PB°i=by(1—i)+byw(l—1i)
+b6%(1 + i) = 0 (mod(1 — i)Zy). If b; is even, then NL(’T—TI”4) = 0 (mod 28) @ 7- 7° = a; w0%(mod (1 — i)Zy,)

hold. Thus for 4, € Zy we write y_po® — .02 + (1 — i), TNeN Ny/n(n - 71°Y) = (as w0?% + (1 — i)Ay)(as w02
+(1— DA%) = wvy + (1 — DwAy + 2y, NOlds, which is denoted by iy for Ay, uy, vy € Zy. Proceeding in the same way,

we have Ny/p(y) =y - 71%2 = (@' + 202, + 2225 + 2(1 — D@2, + 22w?As + 2(1 — Dwl Which is denoted by
mp€Zp With 2;€Zp, (1<j<6)Then we obtain Np,, (p) =1p 15 = (W) + 2% (@w”) 1, + 2%;
+22 - (-2)(ww?)3py + 2* (ww?)? s + 22(-2)wwg + 0 + -+ 0 = 0(mod 2%Z;) for y; € Zx (1 < j < 6).
2 2
Thenwehave yv . i — ") = 0 = Ny(y — 1° ) (mod 2%
. . ’i :

Thus if by is even, then by 11—71”6 _ (71”2 _n)a , it follows that NL(H?:l (71 _ nal )) = 0(mod 2%+8+2); which

contradicts the fact that 2'° is a maximal even divisor of d;. Then b, is an odd number, say 1+ 2c;; namely

2 2 H .
n=a+ BO+1+2c)w 1+6%1+6 _ a+Bo+ w1+ze 1;_0 for some integers B’, B € Zy. Therefore Lemma 3.2 has been
proved.

2 2

We are now in a position to prove the non-monogenity of a family of pure octic fields.
4.Non-monogenity of Pure Octic Fields @ (3/m) with Square Free Integers m = 1
4.1. Theorem. The ring Z, of integers in [ = @(%/m) with a square free integer m = 1(mod 4) and m # 1 has no power
integral basis. Proof. First we consider the case of m = 5,13 (mod 16).

Assume that Z; = Z[n] holds for some integer n € Z,. Then for the different d, (n) and the field discriminant d; it should
hold that d; () = d,.

Forn=a+ 0 = ay + a;6% + f6, by Lemma 3.2a and 3.2b we have g = 1 and a; = 0. Hence we put n = a, + 0
= ay+a,w+ 60 with a; € Z,s =0,1. Then n —n° = a,0* + (1 — {4)@ holds. By the proof of Lemma 3.2a, (n —n?)/6
should be equal to a unit. If a; = 0, then n — n? = 0(mod 1 — {3) and since (1 — {g) is a prime ideal in kg, therefore (1 — {g)
isnotaunitin L. Thus a, # 0.

Pty =10 _ g% 4 (1 — gy hen Niyw(@e0) = [a0% + (1 - £)0lla,0% + (1~ G017 = 02Ny (e1),
Ni/m(ep) €Uy -
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Put ey =Nyu(ep) = (@,0° + D?—iso  that N (e) =gy - €5 = ((a10% + 1) — D)((—a,0% + 1)2 — i)
= a}0'? — 2a20° — 2ia%0° — 2i = atmym — 2i —2(1 + i)a? vm 6% Which is denoted by &y.Then we have
Nyp(en) = (ex)(en)” = (atmym — Zi)2 — 8iatmym = atm?® — 4 — 12i atmy/m - Which we denote by g5,

Finally, we have Ny . (ep) = ai®m® + 136a$m> + 16 which should be a unit in U,, n @ = {+1}. Namely it holds that
alm3(a®m3 + 136) = —15 or —17. Since |m|® >|-3|® therefore |a§m3(a§m3 + 136)| =0or>?27 Which is a
contradiction. Thus, for the case of m = 5,13(mod 16), Z; has no power integral basis.

Next, we consider the case of m = 9(mod 16).

1 2
NtIS Case 7, = 7,101 = Z[1,w,6%, 02", 6,00,6%, 0
Assume Z, = Z[n] for some integer n € Z;. Then n = a + @ with

ﬂ] and d = —2129n7 hold by Theorem 3.1.
2

a=ay+ a0’ +a;w
by Lemma 3.2. In this case 5 _ po* — 29 and hence NL(ﬂ _ na‘*) = 0 (mod 28) Molds- BY 5 _»o* — 24,02 + a;w6?
+(1-10)0 = 0(2a,0 + az w0 + (1_— i)), We put py =2a,6 +azwb + (1—1i). Then we have y_ (= iy - n",v_f
= —(2a,0 + azwO)? — 2i which is denoted by —py. Then Ny /o (ity) = py '”%2 = —((2a, + azw)*6* + 4). which is
denoted by pj,. The relative norm N g (up) = pp - pg* of pp, then gives {(2a, + azw)(2a, + a;@)}*(—m) — {(2a, + azw)*
—(2a; + a;®)*}46* +16. If 2a, + azw = 0, then a, = a5 = 0, 50 that 5 _ o — (1 _ )9 = 0(mod 1 — i) @nd hence
N, (T, (11 _ naZI) = 0 (mod 2*++8+4), which is impossible as 216 4 dL. Thus 2a, + azw *# 0, and the relative norm becomes
j =

146, ayg € Zy,as € Z,s = 2,3
2

_ 2 1-m =
Np/e(pp) = (4a§ + 2a,a; + a3 1Tm) (-m)+16 — {s + tw — (s + tw) }*6* Therefore by = O(mod 2), we get

and hence not in UgpnZ ={+1}, Which is a

1-m

2
Np/s(ip) = —4 (203 + aza; + a3 =) m + 16 — 4tm = 0(mod 4Z;)
contradiction. Thus for m = 9 (mod 16), Z, has no power integral basis.
Finally, we consider the case of m = 1(mod 16).
1+62 ﬂ] andd, = —219m’

. 2

Inthis case, 7 _ 711 4, 02’w¥,o,w0, 0% w——

Let Z, = Z[n]. Then by Lemma 3.2c we may put n = a + 6 +1n; With a = ay + a0 + a,0% + asns, B =P +
b, 62,

Nz = w1t? and N, = 02140, Thus o _ o® — (28 4 ;)@ holds. Put (5 _ yo*y /9 = 2B +m3 = &y, then Ny n(Ey)
2 2 2

:foMa4 :EMZ,Which is denoted by &,.Then it follows that NM/D(fm):NN/D(fN):foN”Z:[(230 +2b,60% +13)( 2B +
2b,0% + 157 17 [4B3 — 4b30* +157") + 2b,0%(1;"" — 13 ) + 1315”1

Here 0% is equal to  1-6%, so that 5 4 p o = g oo’ _ 5. = —@e?2 AN p g 0° = %wzw" = —2m, @ With
m=1 + 16m,. Moreover usingzg 0* =20 —1, 2 = ¢ + 4m1,%ww” =-2m, Y =¢c+dw €Z[1w] and the above

relations, we have
Nu/p(m) =42y + bw)? (4.1)

In the case of m < 0, we take the process from the biquadratic field D to the quadratic subfield K as shown in fig 1, such that
Np(2y + bw) = (2¢)* *2¢(2d + b) + (2d + b)? 1—Tm. If 2d + b = 0, then Np ., (§4) = 0(mod 283). If 2d + b +# 0, then
by 1—Tm = 4 m,With m; > 0, we have |Ny,p(2y + bw)| = (2¢(2d + b)/2)*+(2d + b)* ,4m, Z s +4my = 4. Thus, it is
deduced that
Nu/p(Em) Z (2%.2%)? (4.2)

For m > 0 we evaluate the N, (&,,) as follows:

Np/k(2y + bw) = (2y + bw)(2y + bw)? = 4yy° + b*ww’ + 2b(yw’ + Y’ ). Here ww’ =—-4m;,m; >0,
therefore N /x (2y + bw) = 0(mod 2).

Thus Ny (&y) = 0(mod 4*.2*) and y, (£,,) = 0 (mod V4*. 2% = 26). Thus, in both the cases

N (m) 2 2° (4.3)

Next, we evaluate norm of g _ go* — 4, ¢ along the field tower M 5 L 5 K 5 k > Q. Consider n 2

M= 0y~ %71‘37
- (pKei + %ngzei) with  a,, = 2a,0% + 2a;w60% + By + b,0° +1, and B, = B, — b,0?.Thus on the integer
20y = 20y — 1152 _ (Zﬁ'x + 71‘3{2) gi, form, = Ny, (ny), we have
2%y, = Ny, (Cnw) = (Z“M - ﬂgz) + (2Bk + ng)zez =2 |2“M - ﬂgz| |2ﬁK + né‘z
Ny (ny) = 2 |2“M - ﬂg2| |2ﬂK + ﬂg2| 0 (4.4)

Here by 20y — 71‘52 = 2a,0% + a;w0? + BO + wb? + ;0 Ve notice that 2ay — 11'3’2 = 0(mod ) Then it follows that
24k = Ny (22N () 2 2.2 | ey — n5) ey —n8)7 (2Bx — 1$)2| 02707 Mk = Nuyk (1),

- Thus we have the inequality
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28111( — NK/k(24NM/K(77M)) > 24 |(2aM _ ngz)i+a4+az+06((ZBK + ngZ)Z)i+62)2)| 04 for Nk = NK/k(nK) and hence
216Nk(771() > 28 |(2aM _ ngz)i+a4+02+a6+a+a5+03+a7| |((ZBK + ngZ)Z)i+62+a+U3| 08 Here we denote gP1§P2z by &P1+p2 for

any ¢eL and p,,p, € G(L/Q).
Since 2 is completely decomposed in the quadratic subfield k, we put 2= 88 for a prime ideal B, Which devides w. Using

ww’ = +4m, = 0(mod B?B’)?), and hence w = 0(mod B?) bY o + o7 =1, nsné'zw“’i“’a = w(+2m,) = 0(mod 2B)
— 2
for  m=1+ 16m1andﬁfm3 =aw+ a0 + a,0% + agw%, 4B20% + 4(4)° = 8ayw + 8a,ww + 4wO* + 4oz =
0(mod 4w), we deduce that
2 2 2 2 2

(2B +n3)H)™ = (4B% +4Bing + M3 )BT ) + (vns +13) =
aBin% + 4 (Bi (03 m3) 1z +) 4 (BE)? (€52 +) 4% (nsmg ) ng") + (% 15)? = 0(mod 4w), "AMelY = 0(mod 4%).

Thus, we obtain
N (280%) = 21N (1) Z 28N (2B + 0% )2)+o"+o+0° = 0(mod 28 (48B2)°")2) = 0 (mod 28 (42.22)2 =
0(mod 28+8+%), Therefore Ny (nx) = 0(mod 2*), thus
N.(ny) = 22 (4.5)

6 2 6 i . i iti
By NL(" —n° ) _ NL(—H —n° ))0‘ N, (—71 —n° )’l =1,3,57 and from inequalities (4.3), (4.4) and (4.5) we conclude

that N, (a,(1)) = 1.22.1.25.1.22.1. N, (87) = 21%m".
From inequality (4.4), the equality holds if and if 2a, — n302 = 2B, + n30%. However, 2a, —n30?% # 2B, + n30*
because 2ay — 130 ¢ K and 28, + n36% € K. Thus N, (a,(n)) > 21%m?, which is a contrary to |d, /N, (6)7| = 2°.
Thus partial solution to the problem 6 of [18] follows:
4.2. Theorem.
Let m = 1 be a square free integer. The pure octic field j — Q(W is monogenic if and only if m = 2, 3, (mod 4).
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