Non-Monogenity of an Infinite Family of Pure Octic Fields

Abdul Hameed ${ }^{1}$, Toru Nakahara ${ }^{2}$ and Shahzad Ahmad ${ }^{3}$
${ }^{1}$ National University of Sciences and Technology [NUST], Islamabad, The Islamic Republic of Pakistan.
${ }^{2}$ Department of Mathematics, University of Peshawar, The Islamic Republic of Pakistan.
${ }^{3}$ University of Management and Technology, Sialkot Campus, The Islamic Republic of Pakistan.

ARTICLE INFO

Article history:

Received: 29 July 2017;
Received in revised form:
10 December 2017;
Accepted: 22 December 2017;

Keywords

Pure Octic Fields,
Power Integral Basis, Monogenity.

Abstract

Let $\boldsymbol{m} \neq \mathbf{1}$ be a square free integer. The aim of this paper is to prove that the infinite family of pure octic field $\boldsymbol{L}=\boldsymbol{Q}(\sqrt[8]{\boldsymbol{m}})$ is non-monogenic if $\boldsymbol{m} \equiv \mathbf{1}(\bmod 4)$, ultimately, to complete the classification of pure octic fields $\boldsymbol{L}=\boldsymbol{Q}(\sqrt[8]{\boldsymbol{m}})$ with respect to monogenity. We prove our results by considering the relative norms of the partial differents $\boldsymbol{\xi}-\xi^{\sigma^{j}}$ of an integer $\boldsymbol{\xi}$ from the Galois closure \tilde{L} of L to Dirichlet optimum subfields of \boldsymbol{L}, where σ is the isomorphism which maps $(\sqrt[8]{\boldsymbol{m}})$ to $\zeta_{8} \sqrt[8]{\boldsymbol{m}}$ of L with $\underline{\zeta_{8}=e^{\frac{2 \pi \iota}{8}}, \iota=\sqrt{-1} \text {, and } j=4,2,1}$

© 2017 Elixir All rights reserved.

1. Introduction

Let \boldsymbol{L} be a pure octic field $\boldsymbol{Q}(\sqrt[8]{\boldsymbol{m}})$ over the field \boldsymbol{Q} of rational numbers with a square free integer $\boldsymbol{m} \neq \mathbf{1}$ and $\boldsymbol{Z}_{\boldsymbol{L}}$ the ring of integers in \boldsymbol{L}. The purpose of this paper is to determine whether $\boldsymbol{Z}_{\boldsymbol{L}}$ has a power integral basis over the ring \boldsymbol{Z} of rational integers or does not in the case of $\boldsymbol{m} \equiv \mathbf{1}(\bmod 4)$. For the case of $\boldsymbol{m} \equiv 2,3(\bmod 4)$ we have already proved the monogenity of \boldsymbol{L} in [12]. With the proof of non-monogenity of \boldsymbol{L} in the case of $\boldsymbol{m} \equiv \mathbf{1}(\bmod 4)$ we will complete the classification of \boldsymbol{L} with respect to monogenity, thus partially solving the problem 6 of [18] which states "Find a necessary and sufficient condition for a field to have index 1 ".

For a finite field extension $\boldsymbol{F} / \boldsymbol{E}$ of degree \boldsymbol{n}, an element $\boldsymbol{\eta} \in \boldsymbol{Z}_{\boldsymbol{F}}$ is said to give a relative power integral basis $\left\{\mathbf{1}, \boldsymbol{\eta}, \boldsymbol{\eta}^{\mathbf{2}}, \ldots, \boldsymbol{\eta}^{\boldsymbol{n - 1}}\right\}$ for \boldsymbol{F} over \boldsymbol{E} if $\boldsymbol{Z}_{\boldsymbol{F}}$ coincides with a $\boldsymbol{Z}_{\boldsymbol{E}}$-module $\boldsymbol{Z}_{\boldsymbol{E}}[\boldsymbol{\eta}]=\boldsymbol{Z}_{\boldsymbol{E}} \mathbf{1}+\boldsymbol{Z}_{\boldsymbol{E}} \boldsymbol{\eta}+\boldsymbol{Z}_{\boldsymbol{E}} \boldsymbol{\eta}^{\mathbf{2}}+\cdots+\boldsymbol{Z}_{\boldsymbol{E}} \boldsymbol{\eta}^{\boldsymbol{n} \boldsymbol{1}}$ of rank \boldsymbol{n}. When a field \boldsymbol{F} has a power integral basis over E , the field F is said to be relatively monogenic over \boldsymbol{E}. In the case of $\boldsymbol{E}=\boldsymbol{Q}$, we say that $\boldsymbol{Z}_{\boldsymbol{F}}$ has a power integral basis or equivalently \boldsymbol{F} is monogenic.

On the characterization of monogenity for non-abelian extensions with degree not less than 4 , there are a few works for the pure extensions [3], [5], [6], [10] and composites of polynomial orders of number fields [7]. If the fields \boldsymbol{K} are abelian extensions over \boldsymbol{Q}, the explicit integral bases of \boldsymbol{K} have been determined by H. W. Loepoldt [13] and there exist infinitely many monogenic cyclic cubic and cyclic quartic extensions \boldsymbol{K} of composite conductors over \boldsymbol{Q} [2], [16] and non- monogenic characterizations [9], [16]. It is known that the fields \boldsymbol{K} belonging to the family of cyclic quartic extensions of prime conductor not equal to 5 , 2 elementary abelian extensions of degree $[\boldsymbol{K}: \boldsymbol{Q}] \geq \mathbf{2}^{\mathbf{3}}$ not equal to the $24^{\text {th }}$ cyclotomic field $\boldsymbol{Q}\left(\boldsymbol{\zeta}_{24}\right)=\boldsymbol{Q}(\sqrt{ }-\mathbf{1}, \sqrt{ } \mathbf{2}, \sqrt{ }-\mathbf{3})$, which is a complex multiplication field over the maximal real subfield $\boldsymbol{Q}\left(\boldsymbol{\zeta}_{24}+\boldsymbol{\zeta}_{24}^{-1}\right)$ and the other types of abelian extensions are non-monogenic [17], [15], [14], [16], [20]. Recently, A. Pethö and M.E. Pohst obtained a generalization of [14] for multiquadratic fields \boldsymbol{F} and precise classification of \boldsymbol{F} according to the values of field indices $\mathbf{I n d}_{\boldsymbol{F}}$ [19]. Here the index Ind $_{\boldsymbol{F}}$ is
 this area are found in [10], [4], [8] and [6].

2. Notations and Terminologies

For a finite extension field $\boldsymbol{F} / \boldsymbol{Q}$ of degree $\boldsymbol{n}, \boldsymbol{d}_{\boldsymbol{F}}$ and $\boldsymbol{d}_{\boldsymbol{F}}\left(\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{\boldsymbol{n}}\right)$ with $\boldsymbol{\alpha}_{\boldsymbol{j}} \in \boldsymbol{Z}_{\boldsymbol{F}}(\mathbf{1} \leq \boldsymbol{j} \leq \boldsymbol{n})$ denote the field discriminant of \boldsymbol{F} and the discriminant of numbers $\boldsymbol{\alpha}_{\mathbf{1}}, \ldots, \boldsymbol{\alpha}_{\boldsymbol{n}}$ with respect to the extension $\boldsymbol{F} / \boldsymbol{Q}$, respectively. If $\boldsymbol{\alpha}_{\boldsymbol{j}}=\boldsymbol{\alpha}^{\boldsymbol{j}-\mathbf{1}}$ for a number $\boldsymbol{\alpha} \in \boldsymbol{F}$, we denote $\boldsymbol{d}_{\boldsymbol{F}}\left(\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{\boldsymbol{n}}\right)$ by $\boldsymbol{d}_{\boldsymbol{F}}(\boldsymbol{\alpha})$, which is the discriminant of $\boldsymbol{\alpha}$. Then $\operatorname{Ind}_{\boldsymbol{F}}(\boldsymbol{\alpha})$ is equal to the value of $\sqrt{\frac{\left|d_{f}(\alpha)\right|}{d_{f}}}$
[1]. Let \boldsymbol{L} be a pure octic field $\boldsymbol{Q}(\boldsymbol{\theta})$ over \boldsymbol{Q} with $\boldsymbol{\theta}=\sqrt[8]{\boldsymbol{m}}, \boldsymbol{m}$ a square free integer $\neq \mathbf{1}$, where $\boldsymbol{a r g} \boldsymbol{\theta}=\mathbf{0}$ if $\boldsymbol{m}>\mathbf{0}$
and $\boldsymbol{a r g} \boldsymbol{\theta}=2 \pi / \mathbf{8}$ if $\boldsymbol{m}<\mathbf{0}$. We prove that for $\boldsymbol{m} \equiv \mathbf{2 , 3}(\boldsymbol{\operatorname { m o d }} 4)$, the ring $\boldsymbol{Z}_{\boldsymbol{L}}$ of integers in \boldsymbol{L} have power integral basis over the ring \boldsymbol{Z} and in Section 3 that for $\boldsymbol{m} \equiv \mathbf{1}(\boldsymbol{\operatorname { m o d }} 4)$, the ring $\boldsymbol{Z}_{\boldsymbol{L}}$ does not have any power integral basis. For the proof of non-monogenity of \boldsymbol{L}, we work in the relative extension $\tilde{\boldsymbol{L}} / \boldsymbol{D}$, where $\tilde{\boldsymbol{L}}$ denotes the Galois closure of the algebraic number field \boldsymbol{L} over \boldsymbol{Q} and \boldsymbol{D} denotes the biquadratic field $\boldsymbol{Q}\left(\sqrt{\boldsymbol{m}}, \boldsymbol{\zeta}_{\mathbf{8}}^{\mathbf{2}}\right)$. Then we consider the relative norms $\boldsymbol{N}_{\tilde{\boldsymbol{L}} / \boldsymbol{D}}\left(\boldsymbol{\eta}-\boldsymbol{\eta}^{\sigma^{j}}\right)$ of the partial differents $\boldsymbol{\eta}-\boldsymbol{\eta}^{\sigma^{j}}(\boldsymbol{j}=\mathbf{2}, \mathbf{1})$ of the different $\boldsymbol{D} \boldsymbol{L}(\boldsymbol{\eta})$ of an integer $\boldsymbol{\eta}$ in \boldsymbol{L}, where $\boldsymbol{\sigma}$ denotes the automorphism of $\tilde{\boldsymbol{L}}$ induced by $\sqrt[8]{m} \rightarrow \zeta_{8} \sqrt[8]{m}, \zeta_{8} \rightarrow \zeta_{8}$.

Let \boldsymbol{k}_{n} be the nth cyclotomic field $\boldsymbol{Q}\left(\zeta_{n}\right)$ over \boldsymbol{Q} with a primitive nth root $\zeta_{n}=e^{\frac{2 \pi i}{n}}$ of unity.Then $\tilde{\boldsymbol{L}}=\boldsymbol{L}\left(\boldsymbol{\zeta}_{8}\right)=\boldsymbol{Q}\left(\sqrt[8]{\boldsymbol{m}}, \boldsymbol{\zeta}_{8}\right)$ has degree 32 over the field \boldsymbol{Q} for a square free integer $\boldsymbol{m} \neq \pm \mathbf{1}, \pm \mathbf{2}$. We denote the Galois group $\boldsymbol{G}(\tilde{\boldsymbol{L}} / \boldsymbol{Q})$ of $\tilde{\boldsymbol{L}}$ over \boldsymbol{Q} by \boldsymbol{G}. The Group is generated by three automorphisms $\boldsymbol{\sigma}, \boldsymbol{\tau}$ and $\boldsymbol{\rho}$ whose actions on $\boldsymbol{\theta}$ and $\boldsymbol{\zeta}_{\boldsymbol{8}}$ are depicted in table 1:

Table 1. The Actions of Automorphisms of \tilde{L} on θ and ζ_{8}.

	θ	ζ_{8}
σ	$\theta \zeta_{8}$	ζ_{8}
$\boldsymbol{\rho}$	$\boldsymbol{\theta}$	ζ_{8}^{-1}
τ	$\boldsymbol{\theta}$	ζ_{8}^{3}

Thus $\boldsymbol{G}=<\boldsymbol{\sigma}, \boldsymbol{\tau}, \boldsymbol{\rho} ; \boldsymbol{\sigma}^{\mathbf{8}}=\boldsymbol{\tau}^{2}=\boldsymbol{\rho}^{2}=(\boldsymbol{\tau} \boldsymbol{\sigma})^{2}=(\boldsymbol{\sigma} \boldsymbol{\rho})^{2}=(\boldsymbol{\tau} \boldsymbol{\rho})^{2}=\boldsymbol{\iota}>$ is the Galois group with the identity map $\boldsymbol{\iota}$ of $\tilde{\boldsymbol{L}}$. In the following Hasse diagram, we identify an isomorphism $\boldsymbol{v} \in \boldsymbol{G}$ and its restriction map $\in \boldsymbol{v}_{\boldsymbol{F}}$ to any subfield \boldsymbol{F} of $\tilde{\boldsymbol{L}}$. Then we have the subfield structure of $\tilde{\boldsymbol{L}}$ and the corresponding subgroup structure of Galois group \boldsymbol{G} for a square free integer $\boldsymbol{m} \neq$ $\pm \mathbf{1}, \mathbf{2}$ in Fig. 1 .

Fig. 1. The Subfield Structure of Galois Closure of $L=Q(\sqrt[8]{m})$ for $m \neq \pm 1, \pm 2$.
Here we denote $\boldsymbol{k}=\boldsymbol{Q}\left(\boldsymbol{\theta}^{4}\right)=\boldsymbol{Q}(\sqrt{\boldsymbol{m}}), \quad \boldsymbol{E}=\boldsymbol{Q}\left(\boldsymbol{i} \boldsymbol{\theta}^{4}\right)=\boldsymbol{Q}(\sqrt{-\boldsymbol{m}}), \quad \boldsymbol{k}_{4}=\boldsymbol{Q}(\boldsymbol{i}), \quad \boldsymbol{K}=\boldsymbol{Q}\left(\boldsymbol{\theta}^{2}\right)=\boldsymbol{Q}(\sqrt[4]{\boldsymbol{m}}), \quad \boldsymbol{L}=\boldsymbol{Q}(\boldsymbol{\theta})=$ $Q(\sqrt[8]{m}), \quad D=Q\left(\theta^{4}, i\right)=Q(\sqrt{m}, \sqrt{-1}), \quad N=Q\left(\theta^{2}, i\right)=Q(\sqrt[4]{m}, \sqrt{-1}), \quad M=Q(\theta, i)=Q(\sqrt[8]{m}, \sqrt{-1}) \quad$ and $\tilde{L}=L\left(\zeta_{8}\right)=$ $\boldsymbol{Q}\left(\boldsymbol{\theta}, \boldsymbol{\zeta}_{8}\right)$. The corresponding Galois groups are $\boldsymbol{H}_{Q}=\boldsymbol{G}=<\boldsymbol{\sigma}, \boldsymbol{\tau}, \boldsymbol{\rho}>, \quad \boldsymbol{H}_{\boldsymbol{k}}=<\boldsymbol{\sigma}^{2}, \boldsymbol{\tau}, \boldsymbol{\rho}>, \quad \boldsymbol{H}_{\boldsymbol{k}_{4}}=<\boldsymbol{\sigma}, \boldsymbol{\tau}, \boldsymbol{\rho}>, \quad \boldsymbol{H}_{\boldsymbol{E}}=<$ $\sigma^{2}, \sigma \rho, \sigma \tau>$,
$H_{k}=<\sigma^{4}, \tau, \rho>, H_{D}=<\sigma^{2}, \tau \rho>, H_{L}=<\tau, \rho>, H_{N}=<\sigma^{4}, \tau \rho>, H_{M}=<\tau \rho>$ and $H_{L}=<\tau>$. Here $<\rho_{1}, \ldots, \rho_{s}>$ for $\boldsymbol{\rho}_{j} \in \boldsymbol{G}(\mathbf{1} \leq \boldsymbol{j} \leq \boldsymbol{s})$ denotes the subgroup of \boldsymbol{G} generated by $\rho_{1}, \ldots, \boldsymbol{\rho}_{\boldsymbol{s}}$.

Let $\boldsymbol{\eta} \in \boldsymbol{Z}_{\boldsymbol{L}}$ be the generator of power integral basis for L , then there exist $\boldsymbol{\alpha}, \boldsymbol{\beta} \in \boldsymbol{K}$ such that $\boldsymbol{\eta}=\boldsymbol{\alpha}+\boldsymbol{\beta} \boldsymbol{\theta}$. This is typical throughout the paper unless stated otherwise. Elements of quadratic subfield \boldsymbol{k} of \boldsymbol{L} are denoted by $\boldsymbol{\alpha}_{\boldsymbol{j}}, \boldsymbol{\beta}_{\boldsymbol{j}}$ and the integers in \boldsymbol{Z} are denoted by $\boldsymbol{a}_{\boldsymbol{i} \boldsymbol{j}}, \boldsymbol{b}_{\boldsymbol{i} \boldsymbol{j}}$ with $\boldsymbol{i}, \boldsymbol{j}=\mathbf{0}, \mathbf{1}$.

3. Monogenity of Pure Octic Fields $\boldsymbol{Q}(\sqrt[8]{m})$ with Square Free Integers $\boldsymbol{m} \neq 1$

For an eighth root $\boldsymbol{\theta}=\sqrt[8]{\boldsymbol{m}}$ of a square free integer $\boldsymbol{m} \neq \mathbf{1}$, let $\boldsymbol{L}=\boldsymbol{Q}(\boldsymbol{\theta})$ be a pure octic field, $\boldsymbol{K}=\boldsymbol{Q}\left(\boldsymbol{\theta}^{2}\right), \boldsymbol{k}=\boldsymbol{Q}\left(\boldsymbol{\theta}^{\boldsymbol{4}}\right)$ its quartic and quadratic subfields respectively. Basing on the integral bases of pure quartic fields determined by T. Funakara [3], we obtained the integral basis of the pure octic field \boldsymbol{L} and ascertained relative monogenity over its subfields in [11] as stated below. 3.1 Theorem. [11]. For an eighth root $\boldsymbol{\theta}=\sqrt[8]{\boldsymbol{m}}$ of a square free integer $\boldsymbol{m} \neq \mathbf{1}$, let \boldsymbol{L} be a pure octic field $\boldsymbol{Q}(\boldsymbol{\theta})$ and $\boldsymbol{Z}_{\boldsymbol{L}}$ be the ring of integers in \boldsymbol{L}. Then for $\boldsymbol{\omega}=\frac{\mathbf{1}+\boldsymbol{\theta}^{4}}{\mathbf{2}}$ integral bases for $\boldsymbol{Z}_{\boldsymbol{L}}$ and field discriminants of \boldsymbol{L} for different classes of \boldsymbol{m} are as follows

$$
Z_{L}=\left\{\begin{array}{lr}
Z[\theta]=Z_{K}[\theta]=Z_{k}\left[\theta^{2}\right][\theta] & \text { if } m \equiv 2,3(\bmod 4) \\
Z\left[1, \omega, \theta^{2}, \omega \theta^{2}, \theta, \omega \theta, \theta^{3}, \omega \theta^{3}\right] & \text { if } m \equiv 5,13(\bmod 16) \\
=Z_{K}[\theta]=Z_{k}\left[\theta^{2}\right][\theta] & \\
Z\left[1, \omega, \theta^{2}, \omega \frac{1+\theta^{2}}{2}, \theta, \omega \theta, \theta^{3}, \omega \frac{\theta+\theta^{3}}{2}\right] & \text { if } m \equiv 9(\bmod 16) \\
Z\left[1, \omega, \theta^{2}, \omega \frac{1+\theta^{2}}{2}, \theta, \omega \theta, \theta^{3}, \omega \frac{\theta+\theta^{3}}{2} \frac{1+\theta}{2}\right] & \text { if } m \equiv 1(\bmod 16)
\end{array}\right.
$$

and hence

$$
d_{L}=\left\{\begin{array}{lr}
-2^{24} m^{7}=-2^{8} \cdot d_{k} \cdot d_{K}^{2} & \text { if } m \equiv 2,3(\bmod 4) \\
-2^{16} m^{7}=-2^{8} \cdot d_{k} \cdot d_{K}^{2} & \text { if } m \equiv 5,13(\bmod 16) \\
-2^{12} m^{7}=-2^{8} \cdot d_{k} \cdot d_{K}^{2} & \text { if } m \equiv 9(\bmod 16) \\
-2^{10} m^{7}=-2^{8} \cdot d_{k} \cdot d_{K}^{2} & \text { if } m \equiv 1(\bmod 16)
\end{array}\right.
$$

We also determined the monogenity of the pure octic fields $\boldsymbol{L}=\boldsymbol{Q}(\boldsymbol{\theta})$ for $\boldsymbol{m} \equiv 2, \mathbf{3}(\boldsymbol{\operatorname { m o d }} 4)$ in [12]. Thus, for the complete classification on monogenity of pure octic fields we are left with the proof of monogenity or non-monogenity of \boldsymbol{L} for $\boldsymbol{m} \equiv$ $\mathbf{1}(\bmod 4)$. for which the following lemma is fundamental.
3.2 Lemma. Let $\boldsymbol{L}=\boldsymbol{Q}(\boldsymbol{\theta})$ be a pure octic field with $\boldsymbol{\theta}=\sqrt[8]{\boldsymbol{m}}$ and $\boldsymbol{m} \equiv \mathbf{1}(\boldsymbol{\operatorname { m o d }} \mathbf{4})$. Let $\boldsymbol{K}=\boldsymbol{Q}\left(\boldsymbol{\theta}^{2}\right)$ and $\boldsymbol{k}=\boldsymbol{Q}\left(\boldsymbol{\theta}^{4}\right)$ be quartic and quadratic subfields of \boldsymbol{L} respectively. Let $\boldsymbol{\eta}=\boldsymbol{\alpha}+\boldsymbol{\beta} \boldsymbol{\theta} \in \boldsymbol{L}$ with $\boldsymbol{\alpha}, \boldsymbol{\beta} \in \boldsymbol{K}$. If \boldsymbol{L} is monogenic with $\boldsymbol{\eta}$ a generator of power integral bases of $\boldsymbol{Z}_{\boldsymbol{L}}$, then
a. $N_{K}(\beta)= \pm 1$ for $m \equiv 5,9,13(\bmod 16)$.
b. $\alpha_{1}=0$ for $m \equiv 5,13(\bmod 16)$, with $\alpha=\alpha_{0}+\alpha_{1} \theta^{2}$ and $\alpha_{0}, \alpha_{1} \in Z_{k}$.
$b_{3}=1$ for $m \equiv \mathbf{1}(\bmod 16)$ with $\eta=\alpha+\beta \theta+b_{3} \frac{1+\theta^{2}}{2} \frac{1+\theta}{2} b_{3} \in Z$.

Proof. The case a.

Since there is no relative integral basis of $\boldsymbol{Z}_{\boldsymbol{L}}$ over $\boldsymbol{Z}_{\boldsymbol{k}}$ for the case of $\boldsymbol{m} \equiv \mathbf{9}(\boldsymbol{\operatorname { m o d }} \mathbf{1 6})$ by [11], we deal with the following two cases separately;
(i) $m \equiv 5,13(\bmod 16)$ and (ii) $m \equiv 9(\bmod 16)$.

The case $(\mathbf{i}) \boldsymbol{m} \equiv 5,13(\bmod 16)$.
By theorem 3.1 it holds that $\boldsymbol{Z}_{\boldsymbol{L}}=\boldsymbol{Z}_{\boldsymbol{K}}[\boldsymbol{\theta}]=\boldsymbol{Z}\left[\mathbf{1}, \boldsymbol{\omega}, \boldsymbol{\theta}^{\mathbf{2}}, \boldsymbol{\omega} \boldsymbol{\theta}^{\mathbf{2}}, \boldsymbol{\theta}, \boldsymbol{\omega} \boldsymbol{\theta}, \boldsymbol{\theta}^{\mathbf{3}}, \boldsymbol{\omega} \boldsymbol{\theta}^{\mathbf{3}}\right]$, then for $\boldsymbol{\eta}=\boldsymbol{\alpha}+\boldsymbol{\beta} \boldsymbol{\theta}$ with $\boldsymbol{\alpha}, \boldsymbol{\beta} \in \boldsymbol{Z}_{\boldsymbol{K}}$, we have $\boldsymbol{\eta}-\boldsymbol{\eta}^{\boldsymbol{\sigma}^{4}}=\boldsymbol{\alpha}+\boldsymbol{\beta} \boldsymbol{\theta}-(\boldsymbol{\alpha}+\boldsymbol{\beta}(-\boldsymbol{\theta}))=\mathbf{2} \boldsymbol{\beta} \boldsymbol{\theta}$.

Moreover for $\alpha, \boldsymbol{\beta} \in \boldsymbol{Z}_{K}=\boldsymbol{Z}_{\boldsymbol{k}}\left[\boldsymbol{\theta}^{2}\right]$ we take $\boldsymbol{\alpha}=\boldsymbol{\alpha}_{\mathbf{0}}+\boldsymbol{\alpha}_{\mathbf{1}} \boldsymbol{\theta}^{2}$ and $\boldsymbol{\beta}=\boldsymbol{\beta}_{\mathbf{0}}+\boldsymbol{\beta}_{\mathbf{1}} \boldsymbol{\theta}^{2}$ with $\boldsymbol{\alpha}_{j}, \boldsymbol{\beta}_{j} \in \boldsymbol{Z}_{\boldsymbol{k}}(\mathbf{0} \leq \boldsymbol{j} \leq \mathbf{1})$, such that $\eta-\eta^{\sigma^{2}}=\left(\alpha_{0}+\alpha_{1} \theta^{2}\right)+\left(\beta_{0}+\beta_{1} \theta^{2}\right) \theta-\left(\left(\alpha-\alpha \theta^{2}\right)+\left(\beta-\beta \theta^{2}\right) i \theta\right)=2 \alpha_{1} \theta^{2}+\beta_{0}(1-i) \theta+\beta_{1}(1+i) \theta^{3} \equiv$ $0\left(\bmod (1-i) \theta Z_{M}\right)$.

For $\boldsymbol{\alpha}_{\mathbf{0}}=\boldsymbol{a}_{\mathbf{0}}+\boldsymbol{a}_{\mathbf{1}} \boldsymbol{\omega}$ with $\boldsymbol{a}_{\boldsymbol{j}} \in \mathbf{Z}(\mathbf{0} \leq \boldsymbol{j} \leq \mathbf{1})$ and $\boldsymbol{\omega}=\frac{\mathbf{1}+\boldsymbol{\theta}^{4}}{2}$, the next partial different becomes

$$
\eta-\eta^{\sigma}=\alpha_{0}-\alpha_{0}^{\sigma}+\left(\alpha_{1}-\alpha_{1}^{\sigma} i\right) \theta^{2}+\left(\beta-\beta^{\sigma} \zeta_{8}\right) \theta
$$

$=a_{1} \theta^{4}+\left(\alpha_{1}-\alpha_{1}^{\sigma} i\right) \theta^{2}+\left(\beta-\beta^{\sigma} \zeta_{8}\right) \theta \equiv 0\left(\bmod \theta Z_{\tilde{L}}\right)$ by $\alpha_{0}-\alpha_{0}^{\sigma}=a_{1}\left(\omega-\omega^{\sigma}\right)=a_{1} \theta^{4}$.
We use $\boldsymbol{\eta}-\boldsymbol{\eta}^{\boldsymbol{\sigma}^{6}}=-\left(\boldsymbol{\eta}-\boldsymbol{\eta}^{\boldsymbol{\sigma}^{2}}\right)^{\boldsymbol{\sigma}^{\boldsymbol{6}}}, \boldsymbol{\eta}-\boldsymbol{\eta}^{\boldsymbol{\sigma}^{3}}=\left(\boldsymbol{\eta}-\boldsymbol{\eta}^{\boldsymbol{\sigma}^{2}}\right)+\left(\boldsymbol{\eta}-\boldsymbol{\eta}^{\boldsymbol{\sigma}}\right)^{\boldsymbol{\sigma}^{2}}$ and $\boldsymbol{\eta}-\boldsymbol{\eta}^{\boldsymbol{\sigma}^{5}}=\left(\boldsymbol{\eta}-\boldsymbol{\eta}^{\sigma^{4}}\right)+\left(\boldsymbol{\eta}-\boldsymbol{\eta}^{\boldsymbol{\sigma}}\right)^{\boldsymbol{\sigma}^{4}}$ so that
$\boldsymbol{d}_{\boldsymbol{L}}(\boldsymbol{\eta})=\boldsymbol{N}_{L}\left(\boldsymbol{d}_{\boldsymbol{L}}(\boldsymbol{\eta})\right)=\boldsymbol{N}_{L}\left(\left(\boldsymbol{\eta}-\boldsymbol{\eta}^{\sigma}\right)\left(\boldsymbol{\eta}-\boldsymbol{\eta}^{\sigma^{3}}\right)\left(\boldsymbol{\eta}-\boldsymbol{\eta}^{\sigma^{5}}\right) \cdot\left(\boldsymbol{\eta}-\boldsymbol{\eta}^{\sigma^{2}}\right)\left(\boldsymbol{\eta}-\boldsymbol{\eta}^{\sigma^{6}}\right) \cdot\left(\boldsymbol{\eta}-\boldsymbol{\eta}^{\boldsymbol{\sigma}^{4}}\right)\right) \equiv \mathbf{0}\left(\boldsymbol{m o d}\left(\boldsymbol{\theta}^{4}\right)^{\mathbf{8}}\right) \cdot((\mathbf{1}-$
$\left.i)^{8} \theta^{8}\right)^{2} \cdot 2^{8} \theta^{8} N_{L / K}\left(N_{K}(\beta)\right) \equiv 0\left(\bmod N_{K}(\beta)^{2} \cdot\left(\theta^{8}\right)^{7} \cdot\left(2^{4}\right)^{2} \cdot 2^{8}\right) \equiv 0\left(\bmod N_{K}(\beta)^{2} \cdot m^{7} \cdot 2^{16}\right) \equiv 0\left(\bmod N_{K}(\beta)^{2} \cdot d_{L}\right)$. By $\boldsymbol{d}_{\boldsymbol{L}}=\mathbf{2}^{\mathbf{1 6}} \boldsymbol{m}^{7}$, we conclude that β should be a unit in K .
The case (ii) $\boldsymbol{m} \equiv \mathbf{9}(\bmod 16)$.
In this case $\boldsymbol{Z}_{L}=\boldsymbol{Z}_{K}[\boldsymbol{\theta}]=\boldsymbol{Z}\left[\mathbf{1}, \omega, \boldsymbol{\theta}^{2}, \omega \frac{1+\boldsymbol{\theta}^{2}}{2}, \boldsymbol{\theta}, \omega \boldsymbol{\theta}, \boldsymbol{\theta}^{\mathbf{3}}, \boldsymbol{\omega} \frac{\theta+\boldsymbol{\theta}^{3}}{2}\right]$.
For $\boldsymbol{\eta}=\alpha+\beta \boldsymbol{\theta}$ with $\alpha, \beta \in Z_{K}$, we take $\alpha=a_{0}+a_{1} \omega+a_{2} \theta^{2}+a_{3} \omega \frac{1+\theta^{2}}{2}$ and $\beta=b_{0}+b_{1} \omega+b_{2} \theta^{2}+b_{3} \frac{1+\theta^{2}}{2}$ with $\boldsymbol{a}_{j}, \boldsymbol{b}_{\boldsymbol{j}} \in \boldsymbol{Z}(\mathbf{0} \leq \boldsymbol{j} \leq 3)$, so that $\boldsymbol{\eta}-\boldsymbol{\eta}^{\boldsymbol{\sigma}^{4}}=\mathbf{2} \boldsymbol{\beta} \boldsymbol{\theta}$ and $\left(\boldsymbol{\eta}-\boldsymbol{\eta}^{\boldsymbol{\sigma}^{2}}\right) / \boldsymbol{\theta}=\mathbf{2} \boldsymbol{a}_{2} \boldsymbol{\theta}+\boldsymbol{a}_{\mathbf{3}} \boldsymbol{\omega} \boldsymbol{\theta}+\left(\boldsymbol{\beta}-\boldsymbol{\beta}^{\boldsymbol{\sigma}^{2}} \boldsymbol{i}\right)$.

From $\beta-\beta^{\sigma^{2}} i=\left(b_{0}+b_{1} \omega\right)(1-i)+b_{2} \theta^{2}(1+i)+b 3 \omega\left(\frac{1+\theta^{2}}{2}-\frac{1+\theta^{2}}{2} i\right)$

$$
=(1-i)\left(b_{0}+b_{1} \omega+b_{2} \theta^{2} i\right)+b_{3} \omega \frac{1+i \theta^{2}}{2}(1-i) \text {, it follows that }
$$

$\left(\eta-\eta^{\sigma^{2}}\right) / \theta \equiv 0+a_{3} \omega \theta+b_{3} \omega \frac{1+i \theta^{2}}{2}(1-i)\left(\bmod (1-i) Z_{M}\right)$.
Put $\xi=\frac{\mathbf{1}+\boldsymbol{i} \boldsymbol{\theta}^{\mathbf{2}}}{\mathbf{2}}(\mathbf{1}-\boldsymbol{i}) \in \boldsymbol{N}$. Then ξ is an integer of the field N, because the relative norm $\boldsymbol{N}_{\boldsymbol{N} / \boldsymbol{D}}(\xi)=\xi \xi^{\boldsymbol{\sigma}^{\mathbf{2}}}=\frac{\mathbf{1}+\boldsymbol{\theta}^{4}}{\mathbf{4}}(-\mathbf{2 i})$ $=\boldsymbol{\omega}(-\boldsymbol{i})$ and the relative trace $\boldsymbol{T}_{\boldsymbol{N} / \boldsymbol{D}}(\xi)=\mathbf{1}-\boldsymbol{i}$ are integers in D. Thus, we may put $\boldsymbol{\eta}_{\boldsymbol{M}}=\frac{\boldsymbol{\eta}-\boldsymbol{\eta}^{\boldsymbol{\sigma}^{\boldsymbol{2}}}}{\boldsymbol{\theta}}=\boldsymbol{\omega} \boldsymbol{\lambda}_{\boldsymbol{M}}+(\mathbf{1}-\boldsymbol{i}) \mu_{\boldsymbol{M}}$ with suitable integers $\boldsymbol{\lambda}_{\boldsymbol{M}}, \mu_{\boldsymbol{M}} \in \boldsymbol{Z}_{\boldsymbol{M}}$. With this substitution, we proceed further to have $\boldsymbol{N}_{\boldsymbol{M} / \boldsymbol{N}}(\boldsymbol{\eta})=\boldsymbol{\eta}_{\boldsymbol{M}} \cdot\left(\boldsymbol{\eta}_{\boldsymbol{M}}\right)^{\boldsymbol{\sigma}^{4}}=\left(\boldsymbol{\omega} \boldsymbol{\lambda}_{\boldsymbol{M}}+\right.$ $\left.(1-i) \mu_{M}\right) \cdot\left(\omega \lambda_{M}^{\sigma^{4}}+(1-i) \mu_{M}^{\sigma^{4}}\right)=\omega^{2} N_{M / N}\left(\lambda_{M}\right)+\omega(1-i) T_{M / N}\left(\lambda_{M} \mu_{M}^{\sigma^{4}}\right)-2 i N_{M / N}(\mu M)=\omega^{2} \lambda_{N}+\omega(1-i) \mu_{N}+$ $\mathbf{2} \boldsymbol{v}_{\boldsymbol{N}}$, which is denoted by $\boldsymbol{\eta}_{N}$ with $\lambda_{N}, \mu_{N}, \boldsymbol{v}_{N} \in \boldsymbol{Z}_{N}$.

The next relative norm of $\boldsymbol{\eta}_{N}$ until the biquadratic field $\boldsymbol{D}=\boldsymbol{Q}\left(\sqrt{\boldsymbol{m}}, \zeta_{8}^{2}\right)$ gives $\boldsymbol{N}_{\boldsymbol{N} / \boldsymbol{D}}\left(\boldsymbol{\eta}_{N}\right)=\boldsymbol{\eta}_{N} \cdot \boldsymbol{\eta}_{N}^{\boldsymbol{\sigma}^{2}}=\boldsymbol{\omega}^{4} \boldsymbol{\lambda}_{\boldsymbol{D}_{1}}+\boldsymbol{\omega}^{2} \cdot \mathbf{2} \boldsymbol{\lambda}_{\boldsymbol{D}_{2}}$ $+2^{2} \lambda_{D_{3}}+\omega^{3}(1-i) \lambda_{D_{4}}+2 \omega^{2} \lambda_{D_{5}}+\omega(1-i) \cdot 2 \lambda_{D_{6}} \quad=\omega^{4} \lambda_{D_{1}}+\omega^{2}(1-i) \lambda_{D_{7}}+2^{2} \lambda_{D_{3}}+\omega(1-i) \cdot 2 \lambda_{D_{6}}$, which is denoted by $\boldsymbol{\eta}_{\boldsymbol{D}}$ with $\lambda_{D_{j}} \in Z_{D}(1 \leq j \leq 7)$.

Next we have $\boldsymbol{N}_{\boldsymbol{D} / \boldsymbol{k}_{4}}\left(\boldsymbol{\eta}_{\boldsymbol{D}}\right)=\boldsymbol{\eta}_{\boldsymbol{D}} \cdot \boldsymbol{\eta}_{\boldsymbol{D}}^{\sigma}=\left(\boldsymbol{\omega} \cdot \boldsymbol{\omega}^{\sigma}\right)^{4} \boldsymbol{\lambda}_{1}+\left(\boldsymbol{\omega} \cdot \boldsymbol{\omega}^{\sigma}\right)^{2}(-2) \lambda_{2}+\mathbf{2}^{4} \lambda_{3}+\left(\boldsymbol{\omega} \cdot \boldsymbol{\omega}^{\sigma}\right)(-2) \cdot \mathbf{2}^{\mathbf{2}} \boldsymbol{\lambda}_{4}+\left(\boldsymbol{\omega} \cdot \boldsymbol{\omega}^{\sigma}\right)^{2}$ $(1-i) \lambda_{5}+2^{2} \lambda_{6}+\omega \cdot \omega^{\sigma}(1-i) \cdot 2 \lambda_{7}+(1-i) \cdot 2^{2} \lambda_{8}+\left(\omega \cdot \omega^{\sigma}\right)(-2) \lambda_{9}+2^{3}(1-i) \lambda_{9} \equiv 0\left(\bmod 2^{2}\right) \quad$ with $\quad \lambda_{j} \in Z_{k_{4}}$, $(1 \leq j \leq 9)$, because of $\omega \cdot \omega^{\sigma}=\frac{1-m}{4} \equiv \mathbf{0}(\bmod 2)$. By $\boldsymbol{N}_{N / k_{4}}\left(\frac{\eta-\eta^{\sigma^{2}}}{\boldsymbol{\theta}}\right) \equiv \mathbf{0}\left(\bmod 2^{2}\right)$, it holds that $\quad \boldsymbol{N}_{L}\left(\frac{\eta-\eta^{\sigma^{2}}}{\boldsymbol{\theta}}\right) \equiv$
$\mathbf{0}\left(\boldsymbol{\operatorname { m o d }} 2^{2}\right)$. Thus $\boldsymbol{N}_{L} \prod_{j=1}^{3}\left(\frac{\eta-\eta^{\sigma^{2 j}}}{\theta}\right) \equiv \mathbf{0}\left(\boldsymbol{\operatorname { m o d }}\left(\boldsymbol{N}_{K}(\beta)\right)^{2} \cdot 2^{2+8+2}\right.$, which gives $\boldsymbol{d}_{L}=-\mathbf{2}^{12} \cdot \boldsymbol{m}^{7} \cdot\left(\boldsymbol{N}_{K}(\beta)\right)^{2}$. But $\boldsymbol{d}_{L}=-\mathbf{2}^{12}$. \boldsymbol{m}^{7} by theorem 3.1. Thus, it holds that $\boldsymbol{N}_{\boldsymbol{K}}(\boldsymbol{\beta})= \pm \mathbf{1}$.
The case b.
From the case a(i), since $\boldsymbol{\beta}$ is a unit of \boldsymbol{K}, we put $\boldsymbol{\eta}=\boldsymbol{\alpha}+\boldsymbol{\theta}=\boldsymbol{\alpha}_{\boldsymbol{0}}+\boldsymbol{\alpha}_{\boldsymbol{1}} \boldsymbol{\theta}^{2}+\boldsymbol{\theta}$ with $\boldsymbol{\alpha}_{\mathbf{0}}, \boldsymbol{\alpha}_{\boldsymbol{1}} \in \boldsymbol{Z}_{\boldsymbol{k}}$. Thus, we have

$$
\eta-\eta^{\sigma^{2}}=\left(\alpha_{0}+\alpha_{1} \theta^{2}+\theta\right)-\left(\alpha_{0}+\alpha_{1}\left(-\theta^{2}\right)+i \theta\right)=2 \alpha_{1} \theta^{2}+(1-i) \theta=\left[(1+i) \alpha_{1} \theta+1\right](1-i) \theta
$$

Here $\boldsymbol{N}_{\boldsymbol{L}}[(\mathbf{1}-\boldsymbol{i}) \boldsymbol{\theta}]=\mathbf{2}^{\mathbf{4}} \boldsymbol{m}$ which is a factor of $\boldsymbol{d}_{\boldsymbol{L}}(\boldsymbol{\eta})$. Put $(\mathbf{1}+\boldsymbol{i}) \alpha_{\mathbf{1}} \boldsymbol{\theta}+\mathbf{1}=\boldsymbol{\varepsilon}$, then $\boldsymbol{\varepsilon}$ must be a unit of $\boldsymbol{Z}_{\tilde{L}}$. Here $\boldsymbol{N}_{\tilde{L} / M}(\varepsilon)=\varepsilon \cdot \varepsilon^{\rho \tau}=\left[(\mathbf{1}+\boldsymbol{i}) \alpha_{1} \theta+\mathbf{1}\right]^{2}$, which we denote by ε_{M}. Then $N_{\tilde{L} / N}(\varepsilon)=N_{\tilde{L} / M}\left(\varepsilon_{M}\right)=\varepsilon_{M} \cdot \varepsilon_{M}^{\sigma^{4}}$ $=\left[(1+i) \alpha_{1} \theta+1\right]^{2} \cdot\left[(1+i) \alpha_{1}(-\theta)+1\right]^{2}=\left[-(1+i)^{2} \alpha_{1}^{2} \theta^{2}+1\right]^{2}=\left[-2 i \alpha_{1}^{2} \theta^{2}+1\right]^{2}$ holds, whose value is denoted by ε_{N}.

Similarly, $\boldsymbol{N}_{\boldsymbol{N} / \boldsymbol{D}}\left(\varepsilon_{N}\right)=\varepsilon_{N} \cdot\left(\varepsilon_{N}\right)^{\sigma^{2}}=\left[4 \alpha_{1}{ }^{4} \boldsymbol{\theta}^{4}+1\right]^{2}$ Holds. Put $4 \alpha_{1}{ }^{4} \boldsymbol{\theta}^{4}+1=\varepsilon_{D}$. For $m<0$, as $\alpha_{1}{ }^{4} \boldsymbol{\theta}^{4} \in Z_{k}=\boldsymbol{Z}[1, \omega]$, we put $\alpha_{1}{ }^{4} \theta^{4}=s+t \omega$ with $s, t \in Z$, Such that $N_{k}\left(\varepsilon_{D}\right)=(4 s+1+4 t \omega)\left(4 s+1+4 t \omega^{\sigma}\right)=(4 s+1)^{2}+(4 s+1) 4 t$ $+(4 t)^{2} \frac{1-m}{4}$. Here $\frac{1-m}{4}=1+2 m_{1}>0 \quad$ with $\quad m_{1} \in Z^{+}$.Thus $\quad N_{k}\left(\varepsilon_{D}\right)=(4 s+1)^{2}+(4 s+1) 4 t+(4 t)^{2} \cdot\left(1+2 m_{1}\right)$ $=(4 s+1+2 t)^{2}+(2 t)^{2}\left(3+8 m_{1}\right)=+1$ holds if and only if $\boldsymbol{t}=\mathbf{0}$ and $\boldsymbol{s}=\mathbf{0}$, namely $\boldsymbol{\alpha}_{\mathbf{1}}=\mathbf{0}$ follows. If $\boldsymbol{m}>\mathbf{0}$, then $N_{D / K}\left(\varepsilon_{D}\right)=\left(\varepsilon_{D}\right)\left(\varepsilon_{D}\right)^{2}=[4(s+4 \omega)+1]\left[4\left(s+4 \omega^{\sigma}\right)+1\right]=16\left(s^{2}+s t+t^{2} \frac{1-m}{4}\right)+4(2 s+t)+1= \pm 1 \quad$ holds. Therefore, by $c=s^{2}+s t+t^{2} \frac{1-m}{4} \in Z$ and $d=2 s+t \in Z$, we have $16 c+4 d+1= \pm 1$. For $\mathbf{1 6 c}+\mathbf{4 d}+1=-1$ we have $\mathbf{8 c}+\mathbf{2 d}=-\mathbf{1}$ which is impossible. For the case of +1 , consider again $\boldsymbol{N}_{\boldsymbol{D} / \boldsymbol{k}}\left(\varepsilon_{\boldsymbol{D}}\right)=\left[4 \alpha_{1}^{4} \boldsymbol{\theta}^{4}+1\right]\left[4 \alpha_{1}^{4^{\sigma}}\left(-\boldsymbol{\theta}^{4}\right)+1\right]=1$, namely
$4^{2}\left[N_{k}\left(\alpha_{1}\right)\right]^{4} m+4\left(\alpha_{1}^{4}+\alpha_{1}^{4^{\sigma}}\right) \theta^{4}+1=1$. This implies
$0=4 \alpha_{1}^{4} \alpha_{1}^{4^{\sigma}} \theta^{4}+\left(\alpha_{1}^{4}+\alpha_{1}^{4^{\sigma}}\right) \geq 4 \alpha_{1}^{4} \alpha_{1}^{4^{\sigma}} \theta^{4}+2 \alpha_{1}^{2} \alpha_{1}^{2^{\sigma}}=2 \alpha_{1}^{2} \alpha_{1}^{2^{\sigma}}\left(2 \alpha_{1}^{2} \alpha_{1}^{2^{\sigma}} \theta^{4}+1\right) \geq 2\left[N_{k}(\alpha 1)\right]^{2}$, and hence $N_{k}\left(\alpha_{1}\right)=0$. Since $\{\mathbf{1}, \boldsymbol{\omega}\}$ is an integral basis of $\boldsymbol{Z}_{\boldsymbol{k}}$ then $\boldsymbol{N}_{\boldsymbol{k}}\left(\boldsymbol{\alpha}_{\boldsymbol{1}}\right)=\mathbf{0}$ if and only if $\boldsymbol{\alpha}_{\boldsymbol{1}}=\mathbf{0}$.
The case c .
For $\boldsymbol{m} \equiv \mathbf{1}(\boldsymbol{\operatorname { m o d }} 16)$, we have $\boldsymbol{Z}_{L}=\boldsymbol{Z}\left[\mathbf{1}, \boldsymbol{\omega}, \boldsymbol{\theta}^{2}, \boldsymbol{\omega} \frac{1+\boldsymbol{\theta}^{2}}{2}, \boldsymbol{\theta}, \boldsymbol{\omega} \boldsymbol{\theta}, \boldsymbol{\theta}^{\mathbf{3}}, \boldsymbol{\omega} \frac{1+\boldsymbol{\theta}^{2}}{2} \frac{1+\boldsymbol{\theta}}{2}\right]$. For $\boldsymbol{\eta} \in \boldsymbol{Z}_{L}$, we use $\boldsymbol{\eta}=\boldsymbol{\alpha}+\boldsymbol{\beta} \boldsymbol{\theta}$ $+b_{3} \omega \frac{1+\theta^{2}}{2} \frac{1+\boldsymbol{\theta}}{2}$ with $\alpha, \beta \in Z_{K}$ and $b_{3} \in Z$, and hence $\boldsymbol{\eta}-\boldsymbol{\eta}^{\sigma^{4}}=\mathbf{2} \boldsymbol{\beta} \boldsymbol{\theta}+\boldsymbol{b}_{3} \omega \frac{\theta+\theta^{3}}{2}$, and $\boldsymbol{\eta}-\boldsymbol{\eta}^{\sigma^{2}}=\alpha-\alpha^{\sigma^{2}}+\left(\boldsymbol{\beta} \boldsymbol{\theta}-\boldsymbol{\beta}^{\boldsymbol{\sigma}^{2}} \boldsymbol{i \theta}\right)$ $+b 3\left(\omega \frac{1+\theta^{2}}{2} \frac{1+\theta}{2}-\omega \frac{1+\theta^{2}}{2} \frac{1+i \theta^{2}}{2}\right)$. Put $\alpha=a_{0}+a_{1} \omega+a_{2} \theta^{2}+a_{3} \omega \frac{1+\theta^{2}}{2}$ and $\beta=b_{0}+b_{1} \omega+b_{2} \theta^{2}, a_{l}, b_{n} \in Z$ with $0 \leq l \leq$ 3 and $0 \leq n \leq 2$. Then $\alpha-\alpha^{\sigma^{2}}=2 a_{2} \theta^{2}+a_{3} \omega \theta^{2} \equiv a_{3} \omega \theta^{2}\left(\bmod (1-i) Z_{M}\right), \quad \beta-\beta^{\sigma^{2}} i=b_{0}(1-i)+b_{1} \omega(1-i)$ $+b_{2} \theta^{2}(1+i) \equiv \mathbf{0}\left(\bmod (1-i) Z_{M}\right)$. If b_{3} is even, then $N_{L}\left(\boldsymbol{\eta}-\boldsymbol{\eta}^{\sigma^{4}}\right) \equiv \mathbf{0}\left(\bmod 2^{8}\right)$ and $\boldsymbol{\eta}-\boldsymbol{\eta}^{\sigma^{2}} \equiv \boldsymbol{a}_{3} \boldsymbol{\omega} \theta^{2}\left(\bmod (\mathbf{1}-\boldsymbol{i}) Z_{M}\right)$ hold. Thus for $\lambda_{\boldsymbol{M}} \in \boldsymbol{Z}_{\boldsymbol{M}}$ we write $\boldsymbol{\eta}-\boldsymbol{\eta}^{\boldsymbol{\sigma}^{2}}=\boldsymbol{a}_{\mathbf{3}} \boldsymbol{\omega} \boldsymbol{\theta}^{2}+(\mathbf{1}-\boldsymbol{i}) \lambda_{\boldsymbol{M}}$. Then $\boldsymbol{N}_{\boldsymbol{M} / \boldsymbol{N}}\left(\boldsymbol{\eta}-\boldsymbol{\eta}^{\boldsymbol{\sigma}^{2}}\right)=\left(\boldsymbol{a}_{3} \boldsymbol{\omega} \boldsymbol{\theta}^{2}+(\mathbf{1}-\boldsymbol{i}) \lambda_{\boldsymbol{M}}\right)\left(\boldsymbol{a}_{\mathbf{3}} \boldsymbol{\omega} \boldsymbol{\theta}^{\boldsymbol{2}}\right.$ $\left.+(\mathbf{1}-\boldsymbol{i}) \lambda_{M}^{\boldsymbol{q}^{4}}\right)=\boldsymbol{\omega}^{2} \boldsymbol{v}_{N}+(\mathbf{1}-\boldsymbol{i}) \boldsymbol{\omega} \lambda_{N}+2 \mu_{N}$ holds, which is denoted by $\boldsymbol{\eta}_{N}$ for $\lambda_{N}, \mu_{N}, \boldsymbol{v}_{N} \in \boldsymbol{Z}_{N}$. Proceeding in the same way, we have $N_{N / D}\left(\eta_{N}\right)=\eta_{N} \cdot \eta_{N}^{\sigma^{2}}=\left(\omega^{4} \lambda_{1}+2 \omega^{2} \lambda_{2}+2^{2} \lambda_{3}+2(1-i) \omega^{3} \lambda_{4}+2^{2} \omega^{2} \lambda_{5}+2(1-i) \omega \lambda_{6}\right.$, which is denoted by $\boldsymbol{\eta}_{\boldsymbol{D}} \in \boldsymbol{Z}_{\boldsymbol{D}} \quad$ with $\quad \lambda_{\boldsymbol{j}} \in \boldsymbol{Z}_{\boldsymbol{D}},(\mathbf{1} \leq \boldsymbol{j} \leq 6)$.Then we obtain $\quad \boldsymbol{N}_{\boldsymbol{D} / \boldsymbol{k}_{4}}\left(\boldsymbol{\eta}_{\boldsymbol{D}}\right)=\boldsymbol{\eta}_{\boldsymbol{D}} \cdot \boldsymbol{\eta}_{\boldsymbol{D}}^{\boldsymbol{\sigma}}=\left(\boldsymbol{\omega} \boldsymbol{\omega}^{\sigma}\right)^{4} \mu_{1}+\mathbf{2}^{2}\left(\boldsymbol{\omega} \boldsymbol{\omega}^{\sigma}\right)^{2} \mu_{\mathbf{2}}+\mathbf{2}^{4} \mu_{3}$ $+2^{2} \cdot(-2)\left(\boldsymbol{\omega} \omega^{\sigma}\right)^{3} \mu_{4}+2^{4}\left(\boldsymbol{\omega} \boldsymbol{\omega}^{\sigma}\right)^{2} \mu_{5}+2^{2}(-2) \omega \omega^{\sigma} \mu_{6}+0+\cdots+0 \equiv \mathbf{0}\left(\bmod 2^{2} Z_{E}\right)$ for $\mu_{j} \in Z_{E}(1 \leq j \leq 6)$.

Then we have $\boldsymbol{N}_{\boldsymbol{N} / \boldsymbol{k}_{4}}\left(\boldsymbol{\eta}-\boldsymbol{\eta}^{\sigma^{2}}\right) \equiv \mathbf{0} \equiv \boldsymbol{N}_{L}\left(\boldsymbol{\eta}-\boldsymbol{\eta}^{\sigma^{2}}\right)\left(\boldsymbol{\operatorname { m o d }} \mathbf{2}^{2}\right)$.
Thus if \boldsymbol{b}_{3} is even, then by $\boldsymbol{\eta}-\boldsymbol{\eta}^{\boldsymbol{\sigma}^{\boldsymbol{6}}}=\left(\boldsymbol{\eta}^{\boldsymbol{\sigma}^{2}}-\boldsymbol{\eta}\right)^{\boldsymbol{\sigma}^{\boldsymbol{6}}}$, it follows that $\boldsymbol{N}_{\boldsymbol{L}}\left(\prod_{\boldsymbol{j}=\mathbf{1}}^{3}\left(\boldsymbol{\eta}-\boldsymbol{\eta}^{\boldsymbol{\sigma}^{2 \boldsymbol{j}}}\right)\right) \equiv \mathbf{0}\left(\boldsymbol{m o d} \boldsymbol{2}^{\mathbf{2 + 8 + 2}}\right)$, which contradicts the fact that 2^{10} is a maximal even divisor of $\boldsymbol{d}_{\boldsymbol{L}}$. Then $\boldsymbol{b}_{\mathbf{3}}$ is an odd number, say $\mathbf{1}+\mathbf{2} \boldsymbol{c}_{\mathbf{3}}$; namely
 proved.

We are now in a position to prove the non-monogenity of a family of pure octic fields.
4. Non-monogenity of Pure Octic Fields $Q(\sqrt[8]{m})$ with Square Free Integers $\boldsymbol{m} \neq 1$
4.1. Theorem. The ring $\boldsymbol{Z}_{\boldsymbol{L}}$ of integers in $\boldsymbol{L}=\boldsymbol{Q}(\sqrt[8]{\boldsymbol{m}})$ with a square free integer $\boldsymbol{m} \equiv \mathbf{1}(\boldsymbol{\operatorname { m o d }} \mathbf{4})$ and $\boldsymbol{m} \neq \mathbf{1}$ has no power integral basis. Proof. First we consider the case of $\boldsymbol{m} \equiv \mathbf{5}, \mathbf{1 3}(\bmod 16)$.

Assume that $\boldsymbol{Z}_{\boldsymbol{L}}=\boldsymbol{Z}[\boldsymbol{\eta}]$ holds for some integer $\boldsymbol{\eta} \in \boldsymbol{Z}_{\boldsymbol{L}}$. Then for the different $\boldsymbol{d}_{\boldsymbol{L}}(\boldsymbol{\eta})$ and the field discriminant $\boldsymbol{d}_{\boldsymbol{L}}$ it should hold that $\boldsymbol{d}_{\boldsymbol{L}}(\boldsymbol{\eta}) \cong \boldsymbol{d}_{\boldsymbol{L}}$.

For $\boldsymbol{\eta}=\boldsymbol{\alpha}+\boldsymbol{\beta} \boldsymbol{\theta}=\boldsymbol{\alpha}_{\mathbf{0}}+\boldsymbol{\alpha}_{\mathbf{1}} \boldsymbol{\theta}^{\mathbf{2}}+\boldsymbol{\beta} \boldsymbol{\theta}$, by Lemma 3.2 a and 3.2 b we have $\boldsymbol{\beta} \cong \mathbf{1}$ and $\boldsymbol{\alpha}_{\boldsymbol{1}}=\mathbf{0}$. Hence we put $\boldsymbol{\eta}=\boldsymbol{\alpha}_{\mathbf{0}}+\boldsymbol{\theta}$ $=a_{0}+\boldsymbol{a}_{1} \omega+\boldsymbol{\theta}$ with $\boldsymbol{a}_{\boldsymbol{s}} \in \boldsymbol{Z}, \boldsymbol{s}=\mathbf{0}, \mathbf{1}$. Then $\boldsymbol{\eta}-\boldsymbol{\eta}^{\boldsymbol{\sigma}}=\boldsymbol{a}_{1} \boldsymbol{\theta}^{4}+\left(\mathbf{1}-\zeta_{8}\right) \boldsymbol{\theta}$ holds. By the proof of Lemma 3.2a, $\left(\boldsymbol{\eta}-\boldsymbol{\eta}^{\boldsymbol{\sigma}}\right) / \boldsymbol{\theta}$ should be equal to a unit. If $\boldsymbol{a}_{\mathbf{1}}=\mathbf{0}$, then $\boldsymbol{\eta}-\boldsymbol{\eta}^{\sigma} \equiv \mathbf{0}\left(\boldsymbol{\operatorname { m o d }} \mathbf{1}-\zeta_{8}\right)$ and since $\left(\mathbf{1}-\zeta_{8}\right)$ is a prime ideal in $\boldsymbol{k}_{\mathbf{8}}$, therefore $\left(\mathbf{1}-\boldsymbol{\zeta}_{\mathbf{8}}\right)$ is not a unit in $\tilde{\boldsymbol{L}}$. Thus $\boldsymbol{a}_{\mathbf{1}} \neq \mathbf{0}$.

Put $_{\varepsilon_{\tilde{L}}} \frac{\eta-\eta^{\sigma}}{\theta}=a_{1} \theta^{3}+\left(1-\zeta_{8}\right)$,then
$N_{\tilde{L} / M}\left(\theta \varepsilon_{\tilde{L}}\right)=\left[a_{1} \theta^{4}+\left(1-\zeta_{8}\right) \theta\right]\left[a_{1} \theta^{4}+\left(1-\zeta_{8}\right) \theta\right]^{\rho \tau}=\theta^{2} N_{\tilde{L} / M}\left(\varepsilon_{\tilde{L}}\right)$,
$N_{\tilde{L} / M}\left(\varepsilon_{\tilde{L}}\right) \in U_{M}$.

Put $\quad \varepsilon_{M}=N_{\bar{L} / M}\left(\varepsilon_{\bar{L}}\right)=\left(a_{1} \theta^{3}+1\right)^{2}-i$,so \quad that $\quad N_{M / N}\left(\varepsilon_{M}\right)=\varepsilon_{M} \cdot \varepsilon_{M}^{\sigma^{4}}=\left(\left(a_{1} \theta^{3}+1\right)^{2}-i\right)\left(\left(-a_{1} \theta^{3}+1\right)^{2}-i\right)$ $=a_{1}^{4} \theta^{12}-2 a_{1}^{2} \theta^{6}-2 i a_{1}^{2} \theta^{6}-2 i=a_{1}^{4} m \sqrt{m}-2 i-2(1+i) a_{1}^{2} \sqrt{m} \theta^{2}$, which is denoted by ε_{N}.Then we have $N_{N / D}\left(\varepsilon_{N}\right)=\left(\varepsilon_{N}\right)\left(\varepsilon_{N}\right)^{\sigma^{2}}=\left(a_{1}^{4} m \sqrt{m}-2 i\right)^{2}-\mathbf{8 i a} a_{1}^{4} m \sqrt{m}=a_{1}^{4} m^{3}-4-12 i a_{1}^{4} m \sqrt{m}$, which we denote by ε_{D}.

Finally, we have $N_{D / k_{4}}\left(\varepsilon_{D}\right)=a_{1}^{16} \boldsymbol{m}^{6}+\mathbf{1 3 6} a_{1}^{8} \boldsymbol{m}^{\mathbf{3}}+\mathbf{1 6}$ which should be a unit in $\boldsymbol{U}_{k_{4}} \cap Q=\{ \pm 1\}$. Namely it holds that $a_{1}^{8} m^{3}\left(a_{1}^{8} m^{3}+136\right)=-15$ or -17 . Since $|m|^{3} \geq|-3|^{3}$ therefore $\left|a_{1}^{8} \boldsymbol{m}^{3}\left(a_{1}^{8} m^{3}+136\right)\right|=0$ or >27 which is a contradiction. Thus, for the case of $\boldsymbol{m} \equiv 5,13(\bmod 16), \boldsymbol{Z}_{L}$ has no power integral basis.

Next, we consider the case of $\boldsymbol{m} \equiv \mathbf{9}(\boldsymbol{m o d} 16)$.
In this case $\boldsymbol{Z}_{L}=\boldsymbol{Z}_{K}[\boldsymbol{\theta}]=\boldsymbol{Z}\left[\mathbf{1}, \boldsymbol{\omega}, \boldsymbol{\theta}^{2}, \boldsymbol{\omega} \frac{1+\boldsymbol{\theta}^{2}}{2}, \boldsymbol{\theta}, \boldsymbol{\omega} \boldsymbol{\theta}, \boldsymbol{\theta}^{3}, \boldsymbol{\omega} \frac{\boldsymbol{\theta}+\boldsymbol{\theta}^{3}}{2}\right]$ and $\boldsymbol{d}=-\mathbf{2}^{12} \boldsymbol{m}^{\mathbf{7}}$ hold by Theorem 3.1.
Assume $\boldsymbol{Z}_{L}=\boldsymbol{Z}[\boldsymbol{\eta}]$ for some integer $\boldsymbol{\eta} \in \boldsymbol{Z}_{L}$. Then $\boldsymbol{\eta}=\boldsymbol{\alpha}+\boldsymbol{\theta}$ with $\alpha=\alpha_{0}+\boldsymbol{a}_{2} \boldsymbol{\theta}^{2}+\boldsymbol{a}_{3} \boldsymbol{\omega} \frac{1+\boldsymbol{\theta}^{2}}{2}, \boldsymbol{\alpha}_{0} \in Z_{k}, a_{s} \in Z, \boldsymbol{s}=2,3$ by Lemma 3.2. In this case $\boldsymbol{\eta}-\boldsymbol{\eta}^{\boldsymbol{\sigma}^{4}}=\boldsymbol{2 \boldsymbol { \theta }}$ and hence $\boldsymbol{N}_{\boldsymbol{L}}\left(\boldsymbol{\eta}-\boldsymbol{\eta}^{\boldsymbol{\sigma}^{4}}\right) \equiv \mathbf{0}\left(\boldsymbol{\operatorname { m o d }} \boldsymbol{2}^{8}\right)$ holds. By $\boldsymbol{\eta}-\boldsymbol{\eta}^{\boldsymbol{\sigma}^{2}}=\mathbf{2} \boldsymbol{a}_{\mathbf{2}} \boldsymbol{\theta}^{2}+\boldsymbol{a}_{3} \boldsymbol{\omega} \boldsymbol{\theta}^{2}$ $+(\mathbf{1}-\boldsymbol{i}) \boldsymbol{\theta}=\boldsymbol{\theta}\left(2 \boldsymbol{a}_{2} \boldsymbol{\theta}+\boldsymbol{a}_{\mathbf{3}} \boldsymbol{\omega} \boldsymbol{\theta}+(\mathbf{1}-\boldsymbol{i})\right)$, we put $\mu_{M}=\mathbf{2} \boldsymbol{a}_{2} \boldsymbol{\theta}+\boldsymbol{a}_{\mathbf{3}} \boldsymbol{\omega} \boldsymbol{\theta}+(\mathbf{1}-\boldsymbol{i})$. Then we have $\boldsymbol{N}_{M / N}\left(\mu_{M}\right)=\mu_{M} \cdot \boldsymbol{\mu}_{M}^{\boldsymbol{\sigma}^{4}}$ $=-\left(2 a_{2} \boldsymbol{\theta}+\boldsymbol{a}_{3} \omega \boldsymbol{\theta}\right)^{2}-\mathbf{2 i}$ which is denoted by $-\mu_{N}$. Then $\boldsymbol{N}_{N / \boldsymbol{D}}\left(\mu_{N}\right)=\mu_{N} \cdot \boldsymbol{\mu}_{N}^{\sigma^{2}}=-\left(\left(2 a_{2}+\boldsymbol{a}_{3} \omega\right)^{4} \boldsymbol{\theta}^{4}+\mathbf{4}\right)$, which is denoted by μ_{D}. The relative norm $\boldsymbol{N}_{D / E}\left(\mu_{D}\right)=\mu_{D} \cdot \mu_{D}^{\sigma \tau}$ of μ_{D} then gives $\left\{\left(2 \boldsymbol{a}_{2}+\boldsymbol{a}_{3} \boldsymbol{\omega}\right)\left(\mathbf{2} \boldsymbol{a}_{2}+\boldsymbol{a}_{3} \bar{\omega}\right)\right\}^{4}(-\boldsymbol{m})-\left\{\left(\mathbf{2} \boldsymbol{a}_{2}+\boldsymbol{a}_{3} \boldsymbol{\omega}\right)^{4}\right.$ $\left.-\left(2 a_{2}+a_{3} \bar{\omega}\right)^{4}\right\} 4 \theta^{4}+\mathbf{1 6}$. If $2 a_{2}+a_{3} \omega=0$, then $\boldsymbol{a}_{2}=a_{3}=\mathbf{0}$, so that $\boldsymbol{\eta}-\boldsymbol{\eta}^{\sigma^{2}}=(\mathbf{1}-\boldsymbol{i}) \theta \equiv \mathbf{0}(\bmod \mathbf{1}-\boldsymbol{i})$ and hence $N_{L}\left(\prod_{j=1}^{3}\left(\boldsymbol{\eta}-\boldsymbol{\eta}^{\boldsymbol{\sigma}^{j} j}\right) \equiv \mathbf{0}\left(\boldsymbol{\operatorname { m o d }} \mathbf{2}^{4+8+4}\right)\right.$, which is impossible as $\mathbf{2}^{16} \nmid \boldsymbol{d L}$. Thus $2 \boldsymbol{a}_{2}+\boldsymbol{a}_{3} \boldsymbol{\omega} \neq \mathbf{0}$, and the relative norm becomes $\boldsymbol{N}_{D / E}\left(\mu_{D}\right)=\left(4 a_{2}^{2}+2 a_{2} a_{3}+\boldsymbol{a}_{3}^{2} \frac{1-m}{4}\right)^{2}(-\boldsymbol{m})+\mathbf{1 6}-\{\boldsymbol{s}+\boldsymbol{t} \boldsymbol{\omega}-(\boldsymbol{s}+\boldsymbol{t} \boldsymbol{\omega})\}^{4} \boldsymbol{\theta}^{4}$. Therefore by $\frac{1-\boldsymbol{m}}{4} \equiv 0(\bmod 2)$, we get $N_{D / E}\left(\mu_{D}\right)=-\mathbf{4}\left(2 a_{2}^{2}+a_{2} a_{3}+a_{3}^{2} \frac{1-m}{8}\right)^{2} \boldsymbol{m}+\mathbf{1 6}-\mathbf{4 t m} \equiv \mathbf{0}\left(\boldsymbol{\operatorname { m o d }} 4 Z_{E}\right)$ and hence not in $\boldsymbol{U}_{E} \cap Z=\{ \pm 1\}$, Which is a contradiction. Thus for $\boldsymbol{m} \equiv \mathbf{9}(\bmod 16), \boldsymbol{Z}_{L}$ has no power integral basis.

Finally, we consider the case of $\boldsymbol{m} \equiv \mathbf{1}(\boldsymbol{m o d} 16)$.
In this case, $\boldsymbol{Z}_{L}=\boldsymbol{Z}\left[\mathbf{1}, \boldsymbol{\omega}, \boldsymbol{\theta}^{2}, \boldsymbol{\omega} \frac{1+\theta^{2}}{2}, \boldsymbol{\theta}, \boldsymbol{\omega} \boldsymbol{\theta}, \boldsymbol{\theta}^{3}, \boldsymbol{\omega} \frac{1+\theta^{2}}{2} \frac{1+\theta}{2}\right]$ and $\boldsymbol{d}_{L}=-\mathbf{2}^{10} \boldsymbol{m}^{7}$
Let $\boldsymbol{Z}_{L}=\boldsymbol{Z}[\boldsymbol{\eta}]$. Then by Lemma 3.2 c we may put $\boldsymbol{\eta}=\boldsymbol{\alpha}+\boldsymbol{\beta} \boldsymbol{\theta}+\boldsymbol{\eta}_{7}$ with $\boldsymbol{\alpha}=\boldsymbol{\alpha}_{\mathbf{0}}+\boldsymbol{\alpha}_{1} \boldsymbol{\omega}+\boldsymbol{\alpha}_{2} \boldsymbol{\theta}^{2}+\boldsymbol{\alpha}_{3} \boldsymbol{\eta}_{3}, \boldsymbol{\beta}=\boldsymbol{\beta}_{0}+$ $\boldsymbol{b}_{2} \boldsymbol{\theta}^{2}$,
$\boldsymbol{\eta}_{3}=\boldsymbol{\omega} \frac{1+\boldsymbol{\theta}^{2}}{2}$ and $\boldsymbol{\eta}_{\boldsymbol{7}}=\boldsymbol{\omega} \frac{1+\boldsymbol{\theta}^{2}}{2} \frac{1+\boldsymbol{\theta}}{2}$. Thus $\boldsymbol{\eta}-\boldsymbol{\eta}^{\boldsymbol{\sigma}^{4}}=\left(\mathbf{2} \boldsymbol{\beta}+\boldsymbol{\eta}_{3}\right) \boldsymbol{\theta}$ holds. Put $\left(\boldsymbol{\eta}-\boldsymbol{\eta}^{\boldsymbol{\sigma}^{4}}\right) / \boldsymbol{\theta}=2 \boldsymbol{\beta}+\boldsymbol{\eta}_{3}=\xi_{M}$, then $\boldsymbol{N}_{M / N}\left(\xi_{M}\right)$ $=\xi_{M} \xi_{M}{ }^{\sigma^{4}}=\xi_{M}{ }^{2}$, Which is denoted by ξ_{N}.Then it follows that $\boldsymbol{N}_{M / \boldsymbol{D}}\left(\xi_{M}\right)=\boldsymbol{N}_{N / D}\left(\xi_{N}\right)=\xi_{N} \xi_{N}{ }^{\sigma^{2}}=\left[\left(\mathbf{2} \boldsymbol{\beta}_{\mathbf{0}}+\mathbf{2} \boldsymbol{b}_{\mathbf{2}} \boldsymbol{\theta}^{2}+\boldsymbol{\eta}_{3}\right)\left(\mathbf{2} \boldsymbol{\beta}_{\mathbf{0}}+\right.\right.$ $\left.\left.2 b_{2} \boldsymbol{\theta}^{2}+\boldsymbol{\eta}_{3}{ }^{\sigma^{2}}\right]^{2=}\left[4 \beta_{0}^{2}-\mathbf{4} b_{2}^{2} \boldsymbol{\theta}^{4}+\boldsymbol{\eta}_{3}{ }^{\sigma^{2}}\right)+2 b_{2} \boldsymbol{\theta}^{2}\left(\boldsymbol{\eta}_{3}{ }^{\sigma^{2}}-\eta_{3}\right)+\boldsymbol{\eta}_{3} \boldsymbol{\eta}_{3}{ }^{\sigma^{2}}\right]^{2}$.

Here $\boldsymbol{\eta}_{3} \sigma^{2}$ is equal to $\omega \frac{1-\boldsymbol{\theta}^{2}}{2}$, so that $\boldsymbol{\eta}_{3}+\boldsymbol{\eta}_{3} \boldsymbol{\sigma}^{2}=\omega, \boldsymbol{\eta}_{3}{ }^{\sigma^{2}}-\boldsymbol{\eta}_{3}=-\boldsymbol{\omega} \boldsymbol{\theta}^{2}$ and $\boldsymbol{\eta}_{3} \boldsymbol{\eta}_{3} \boldsymbol{\sigma}^{2}=\frac{1}{2} \omega^{2} \boldsymbol{\omega}^{\sigma}=-\mathbf{2} \boldsymbol{m}_{1} \omega$ with $\boldsymbol{m}=1+\mathbf{1 6} m_{1}$. Moreover using $\theta^{4}=2 \omega-1, \omega^{2}=\omega+4 m_{1}, \frac{1}{2} \omega \omega^{\sigma}=-2 m_{1}, \gamma=c+d \omega \in Z[1, \omega]$ and the above relations, we have
$\boldsymbol{N}_{M / D}\left(\xi_{M}\right)=4(2 \gamma+\boldsymbol{b} \boldsymbol{\omega})^{2}$
In the case of $\boldsymbol{m}<\mathbf{0}$, we take the process from the biquadratic field \boldsymbol{D} to the quadratic subfield \boldsymbol{K} as shown in fig 1, such that $N_{D / k}(2 \gamma+b \omega)=(2 c)^{2}+2 c(2 d+b)+(2 d+b)^{2} \frac{1-m}{4}$. If $2 d+b=0$, then $N_{D / k_{4}}\left(\xi_{M}\right) \equiv 0\left(\bmod 2^{8}\right)$. If $2 d+b \neq 0$, then by $\frac{1-m}{4}=\mathbf{4} m_{1}$ with $m_{1}>0$, we have $\left|N_{M / D}(2 \gamma+b \omega)\right|=(2 c(2 d+b) / 2)^{2}+(2 d+b)^{2}, 4 m_{1} \geqq 1 / 4+4 m_{1} \geqq 4$. Thus, it is deduced that
$N_{M / D}\left(\xi_{M}\right) \geqq\left(2^{2} .2^{2}\right)^{2}$
For $\boldsymbol{m}>\mathbf{0}$ we evaluate the $\boldsymbol{N}_{M}\left(\xi_{M}\right)$ as follows:
$N_{D / K}(2 \gamma+b \omega)=(2 \gamma+b \omega)(2 \gamma+b \omega)^{\sigma}=4 \gamma \gamma^{\sigma}+b^{2} \omega \omega^{\sigma}+2 b\left(\gamma \omega^{\sigma}+\gamma^{\sigma} \omega\right)$. Here $\quad \omega \omega^{\sigma}=-4 m_{1}, m_{1}>0$, therefore $N_{D / K}(2 \gamma+b \omega) \equiv 0(\bmod 2)$.

Thus $\boldsymbol{N}_{M}\left(\xi_{M}\right) \equiv \mathbf{0}\left(\bmod \mathbf{4}^{4} \cdot \mathbf{2}^{4}\right)$ and $\boldsymbol{N}_{L}\left(\xi_{M}\right) \equiv \mathbf{0}\left(\bmod \sqrt{\mathbf{4}^{4} \cdot \mathbf{2}^{4}}=\mathbf{2}^{6}\right)$. Thus, in both the cases $N_{L}\left(\xi_{M}\right) \geqq \mathbf{2}^{6}$

Next, we evaluate norm of $\xi-\xi^{\sigma^{2}}=\boldsymbol{\eta}_{\boldsymbol{M}} \in \boldsymbol{L}$ along the field tower $\boldsymbol{M} \supset \boldsymbol{L} \supset \boldsymbol{K} \supset \boldsymbol{k} \supset \boldsymbol{Q}$. Consider $\boldsymbol{\eta}_{\boldsymbol{M}}=\boldsymbol{\alpha}_{\boldsymbol{M}}-\frac{1}{2} \boldsymbol{\eta}_{3}^{\sigma^{2}}$ $-\left(\boldsymbol{\beta}_{K} \boldsymbol{\theta} \boldsymbol{i}+\frac{1}{2} \boldsymbol{\eta}_{3}^{\sigma^{2}} \boldsymbol{\theta} \boldsymbol{i}\right)$ with $\alpha_{M}=2 a_{2} \boldsymbol{\theta}^{2}+2 a_{3} \omega \boldsymbol{\theta}^{2}+\boldsymbol{\beta}_{0} \boldsymbol{\theta}+\boldsymbol{b}_{2} \boldsymbol{\theta}^{3}+\boldsymbol{\eta}_{7} \quad$ and $\boldsymbol{\beta}_{K}=\boldsymbol{\beta}_{0}-\boldsymbol{b}_{2} \boldsymbol{\theta}^{2}$. Thus on the integer $2 \boldsymbol{\eta}_{M}=2 \alpha_{M}-\eta_{3}^{\sigma^{2}}-\left(2 \beta_{K}+\eta_{3}^{\sigma^{2}}\right) \boldsymbol{\theta}$, for $\boldsymbol{\eta}_{L}=N_{M / L}\left(\eta_{M}\right)$, we have $\mathbf{2}^{2} \boldsymbol{\eta}_{L}=\boldsymbol{N}_{M / L}\left(2 \boldsymbol{\eta}_{\mathrm{M}}\right)=\left(2 \boldsymbol{\alpha}_{M}-\boldsymbol{\eta}_{3}^{\sigma^{2}}\right)+\left(\mathbf{2} \boldsymbol{\beta}_{K}+\boldsymbol{\eta}_{3}^{\sigma^{2}}\right)^{2} \boldsymbol{\theta}^{2} \geqq 2\left|2 \boldsymbol{\alpha}_{M}-\boldsymbol{\eta}_{3}^{\sigma^{2}}\right|\left|2 \boldsymbol{\beta}_{K}+\boldsymbol{\eta}_{3}^{\sigma^{2}}\right| \boldsymbol{\theta}$. Thus we have the inequality $N_{M / L}\left(\eta_{M}\right) \geqq 2\left|2 \alpha_{M}-\eta_{3}^{\sigma^{2}}\right|\left|2 \beta_{K}+\eta_{3}^{\sigma^{2}}\right| \theta$

Here by $2 \alpha_{M}-\boldsymbol{\eta}_{3}^{\sigma^{2}}=\mathbf{2} \boldsymbol{a}_{2} \boldsymbol{\theta}^{2}+\boldsymbol{a}_{3} \boldsymbol{\omega} \boldsymbol{\theta}^{2}+\boldsymbol{\beta} \boldsymbol{\theta}+\boldsymbol{\omega} \boldsymbol{\theta}^{2}+\boldsymbol{\eta}_{3} \boldsymbol{\theta}$ we notice that $2 \boldsymbol{\alpha}_{\boldsymbol{M}}-\boldsymbol{\eta}_{3}^{\sigma^{2}} \equiv \mathbf{0}(\boldsymbol{\operatorname { m o d } \boldsymbol { \theta }} \boldsymbol{\theta}$. Then it follows that $2^{4} \eta_{K}=N_{L / K}\left(2^{2} N_{L / K}\left(\eta_{M}\right)\right) \geqq 2.2 \mid\left(2 \alpha_{M}-\eta_{3}^{\sigma^{2}}\right)\left(2 \alpha_{M}-\boldsymbol{\eta}_{3}^{\sigma^{2}}\right)^{\sigma^{4}}\left(\left(2 \boldsymbol{\beta}_{K}-\boldsymbol{\eta}_{3}^{\sigma^{2}}\right)^{2} \mid \boldsymbol{\theta}^{2 \text { for }} \boldsymbol{\eta}_{K}=N_{L / K}\left(\eta_{L}\right)\right.$,
$\left.\left.2^{8} \boldsymbol{\eta}_{K}=N_{K / k}\left(2^{4} N_{M / K}\left(\eta_{M}\right)\right) \geqq 2^{4} \mid\left(2 \alpha_{M}-\eta_{3}^{\sigma^{2}}\right)^{i+\sigma^{4}+\sigma^{2}+\sigma^{6}}\left(\left(2 \beta_{K}+\eta_{3}^{\sigma^{2}}\right)^{2}\right)^{i+\sigma^{2}}\right)^{2}\right) \mid \theta^{4} \quad$ for $\quad \eta_{K}=N_{K / k}\left(\eta_{K}\right)$ and hence $\mathbf{2}^{16} N_{k}\left(\eta_{K}\right) \geqq 2^{8}\left|\left(2 \alpha_{M}-\eta_{3}^{\sigma^{2}}\right)^{i+\sigma^{4}+\sigma^{2}+\sigma^{6}+\sigma+\sigma^{5}+\sigma^{3}+\sigma^{7}}\right|\left|\left(\left(2 \beta_{K}+\eta_{3}^{\sigma^{2}}\right)^{2}\right)^{i+\sigma^{2}+\sigma+\sigma^{3}}\right| \theta^{8}$. Here we denote $\xi^{\rho_{1}} \xi^{\rho_{2}}$ by $\xi^{\rho_{1}+\rho_{2}}$ for any $\xi \in \tilde{L}$ and $\boldsymbol{\rho}_{1}, \boldsymbol{\rho}_{\mathbf{2}} \in \boldsymbol{G}(\tilde{\boldsymbol{L}} / \boldsymbol{Q})$.

Since 2 is completely decomposed in the quadratic subfield k , we put $2 \cong \mathfrak{B} \mathfrak{B}^{\boldsymbol{\sigma}}$ for a prime ideal \mathfrak{B}, Which devides $\boldsymbol{\omega}$. Using $\left.\omega \omega^{\sigma}= \pm 4 m_{1} \equiv \mathbf{0}\left(\bmod \mathfrak{B}^{2} \mathfrak{B}^{\sigma}\right)^{2}\right)$, and hence $\omega \equiv \mathbf{0}\left(\bmod \mathfrak{B}^{2}\right)$ by $\omega+\omega^{\sigma}=1, \eta_{3} \eta_{3}^{\sigma^{2}} \omega \omega \frac{1}{2} \omega^{\sigma}=\omega\left(\pm 2 m_{1}\right) \equiv \mathbf{0}(\bmod 2 \mathfrak{B})$ for $\quad m=1+16 m_{1}$ and $\beta_{K}^{2} \eta_{3}=a \omega+a_{1} \omega+a_{2} \theta^{2}+a_{3} \omega \frac{1+\theta^{2}}{2}, 4 \beta_{K}^{2} \eta_{3}^{2}+4(4)^{\sigma^{2}}=8 a_{0} \omega+8 a_{1} \omega \omega+4 \omega \theta^{4}+4 a q 3 \omega \equiv$ $\mathbf{0}(\bmod 4 \boldsymbol{\omega})$, we deduce that
$\left(\left(\mathbf{2} \boldsymbol{\beta}_{\boldsymbol{k}}+\boldsymbol{\eta}_{3}^{\boldsymbol{\sigma}^{2}}\right)^{2}\right)^{\mathbf{1 +}} \boldsymbol{\sigma}^{2}=\left(\mathbf{4} \boldsymbol{\beta}_{K}^{2}+\mathbf{4} \boldsymbol{\beta}_{\boldsymbol{k}} \boldsymbol{\eta}_{3}^{\boldsymbol{\sigma}^{2}}+\left(\boldsymbol{\eta}_{3}^{\boldsymbol{\sigma}^{2}}\right)^{\mathbf{2}}\right)\left(\mathbf{4} \boldsymbol{\beta}_{K}^{\boldsymbol{\sigma}^{2}}\right)^{2}+\left(\boldsymbol{v} \boldsymbol{\eta}_{3}+\boldsymbol{\eta}_{3}^{2}\right) \equiv$

Thus, we obtain
$\left.\left.N_{K}\left(2^{8} \eta_{K}\right)=2^{16} N_{K}\left(\eta_{K}\right) \geqq 2^{8} N_{K}\left(2 \beta_{K}+\eta_{3}^{\sigma^{2}}\right)^{2}\right)^{i+\sigma^{2}+\sigma+\sigma^{3}} \equiv 0\left(\bmod 2^{8}\left(4 \mathfrak{B}^{2}\right)^{\sigma^{2}}\right)^{2}\right) \equiv 0\left(\bmod 2^{8}\left(4^{2} \cdot 2^{2}\right)^{2} \equiv\right.$
$0\left(\bmod 2^{8+8+4}\right)$. Therefore $N_{K}\left(\eta_{K}\right) \equiv 0\left(\bmod 2^{4}\right)$, thus
$N_{L}\left(\eta_{M}\right) \geqq 2^{2}$
$\left.{ }^{\text {By }} \boldsymbol{N}_{L}\left(\boldsymbol{\eta}-\boldsymbol{\eta}^{\sigma^{6}}\right)=\boldsymbol{N}_{L}\left(-\boldsymbol{\eta}-\boldsymbol{\eta}^{\sigma^{2}}\right)\right)^{\sigma^{6}}, \boldsymbol{N}_{L}\left(-\boldsymbol{\eta}-\boldsymbol{\eta}^{\sigma^{i}}\right), \boldsymbol{i}=\mathbf{1}, \mathbf{3}, \mathbf{5} 7$ and from inequalities (4.3), (4.4) and (4.5) we conclude that $N_{L}\left(\partial_{L}(\eta)\right) \geqq 1.2^{2} \cdot 1 \cdot 2^{6} \cdot 1 \cdot 2^{2}$.1. $N_{L}\left(\theta^{7}\right)=2^{10} m^{7}$.

From inequality (4.4), the equality holds if and if $2 \alpha_{M}-\boldsymbol{\eta}_{3} \boldsymbol{\sigma}^{2}=\mathbf{2} \boldsymbol{\beta}_{\boldsymbol{k}}+\boldsymbol{\eta}_{3} \boldsymbol{\sigma}^{2}$. However, $2 \alpha_{M}-\boldsymbol{\eta}_{3} \boldsymbol{\sigma}^{\mathbf{2}} \neq \mathbf{2} \boldsymbol{\beta}_{\boldsymbol{k}}+\boldsymbol{\eta}_{3} \boldsymbol{\sigma}^{\mathbf{2}}$ because $\mathbf{2} \alpha_{M}-\eta_{3} \sigma^{\mathbf{2}} \notin K$ and $\mathbf{2} \beta_{\boldsymbol{k}}+\boldsymbol{\eta}_{3} \sigma^{\mathbf{2}} \in K$. Thus $N_{L}\left(\boldsymbol{\partial}_{L}(\eta)\right)>\mathbf{2}^{\mathbf{1 0}} \boldsymbol{m}^{\mathbf{7}}$, which is a contrary to $\left|d_{L} / \boldsymbol{N}_{L}(\theta)^{\mathbf{7}}\right|=\mathbf{2}^{\mathbf{1 0}}$.

Thus partial solution to the problem 6 of [18] follows:

4.2. Theorem.

Let $\boldsymbol{m} \neq \mathbf{1}$ be a square free integer. The pure octic field $\boldsymbol{L}=\boldsymbol{Q}(\sqrt[8]{\boldsymbol{m}})$ is monogenic if and only if $\boldsymbol{m} \equiv 2,3,(\boldsymbol{m o d} 4)$.

5. Acknowledgments

- We thank Prof. Ken Yamamura [National Defense Academy of Japan] for his Bibliography on monogenity of orders of algebraic number fields, Nov. 2017, updated ed., [171 papers with MR\# are included].
- The second author is partially supported by grant \# 20540019 from the Japan Society for the Promotion of Science.

References
[1]Şabin Alaca and Kenneth. S. Williams, Introductory algebraic number theory, Cambridge University Press, 2004, www.Cambridge.org/9780521832502.
[2]David S. Dummit and Hershy Kisilevsky, Indices in cyclic cubic fields, in: Number Theory and Algebra, Academic Press, New York/San Francisco/London, 1977, pp. 29-42.
[3]Takeo Funakura, On integral bases of pure quartic fields, Math. J. Okayama Univ., 26 (1984), 27-41.
[4]István Gaál, Diophantine equations and power integral bases, New Computational Methods, Boston-Basel-Berlin, Birkhauser, 2002.
[5]István Gaál, Power integral bases in orders of families of quartic fields, Publ. Math. (Debre- cen), 42 (1993), 253-263
[6]István Gaál and Lázló Remete, Binomial Thue equations and power integral bases in pure quadratic fields, JP Journal of Algebra, Number Theory and Applications, 32(1) (2014), 49-61
[7]István Gaál, Péter Olajos and Michael E. Pohst, Power integral bases in orders of composite fields, Experiment. Math., 11(2002), no.1, 87-90.
[8]István Gaál and Tímea Szabó, Relative power integral bases in infinite families of quartic extensions of quadratic fields, JP Journal of Algebra, Number Theory and Applications, 29(1) (2013), 31-43
[9]Marie-Nicole Gras, Non monogénéité de l'anneau des entiers de degré premier A ≤ 5, J. Number Theory 23 (1986), 347-353.
[10]Kálmán Györy, Discriminant form and index form equations, Algebraic Number Theory and Diophantine Analysis (F. HalterKoch and R. F. Tichy. Eds.), Walter de Gruyter, Berlin-New York (2000), 191-214.
[11]Abdul Hameed and Toru Nakahara, Integral Bases and Relative Monogenity of Pure Octic Fields, Bull. Math. Soc. Sci. Math. Roumanie Tome, 58(106) (2015), 419-433
[12]Abdul Hameed, Toru Nakahara, Syed. M. Husnine and Shahzad Ahmad, On existence of canonical number system in certain classes of pure algebraic number fields, J. Prime Research in Mathematics, 7 (2011), 19-24.
[13]Heinrich-Wolfgang Leopoldt, Über die Hauptordnung der ganzen Elemente eines abelishen Zahlkörpers, J. Reine Angew. Math. 201(1959), 119-149.
[14]Yasuo Motoda and Toru Nakahara, Power integral bases in algebraic number fields whose Galois groups are 2-elementary abelian, Arch. Math., 83 (2004), 309-316.
[15]Yauos Motoda, Toru Nakahara and Syed I. A. Shah, On a problem of Hasse, J. Number Theory 96 (2002), 326-334.
[16]Yasuo Motoda, Toru Nakahara, Syed I. A. Shah and Tsuyoshi Uehara, On a problem of Hasse for certain imaginary abelian fields, RIMS Kôkyûroku Bessatsu, B12 (2009) 209-221.
[17]Toru Nakahara, On cyclic biquadratic fields related to a problem of Hasse, Monatsh. Math., 94(1982), 125-132.
[18]Władysław Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, Springer- Verlag, Third edition, Berlin-Heidelberg-New York; PWM-Polish Scientific Publishers, Warszawa, 2007.
[19]Attila Pethö and Michael E. Pohst, On the indices of multiquadratic number fields, Acta Arith. 153 (2012), 393-414.
[20]Blair K. Spearman and Kenneth S. Williams, The index of cyclic quartic field, Monatsh. Math., 140 (2003), 19-70.

