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1. Introduction 

Let   be a pure octic field   √ 
 

  over the field   of rational numbers with a square free integer     and    the ring of 

integers in  . The purpose of this paper is to determine whether    has a power integral basis over the ring   of rational integers 

or does not in the case of            . For the case of                we have already proved the monogenity of   in 

[12].  With the proof of non-monogenity of   in the case of              we will complete the classification of   with respect 

to monogenity, thus partially solving the problem 6 of [18] which states “Find a necessary and sufficient condition for a field to 

have index 1”.   

For a finite field extension     of degree  , an element       is said to give a relative power integral basis  

                 for   over   if    coincides with a   -module   [ ]             
       

    of rank  . When 

a field   has a power integral basis over E, the field F is said to be relatively monogenic over  . In the case of    , we say that 

   has a power integral basis or equivalently   is monogenic. 

On the characterization of monogenity for non-abelian extensions with degree not less than 4, there are a few works for the 

pure extensions [3], [5], [6], [10] and composites of polynomial orders of number fields [7]. If the fields   are abelian extensions 

over  , the explicit integral bases of   have been determined by H. W. Loepoldt [13] and there exist infinitely many monogenic 

cyclic cubic and cyclic quartic extensions   of composite conductors over    [2], [16] and non- monogenic characterizations [9], 

[16]. It is known that the fields   belonging  to the family of cyclic quartic extensions of prime conductor not equal to 5, 2-

elementary abelian extensions of degree [    ]     
not  equal  to  the  24

th
 cyclotomic field            √   √   √   , 

which is a complex multiplication field over the maximal real subfield          
    and the other types of abelian extensions are 

non-monogenic [17], [15], [14], [16], [20].  Recently, A. Pethö and M.E. Pohst obtained a generalization of [14] for 

multiquadratic fields   and precise classification of   according to the values of field indices       [19]. Here the index      is 

defined by        
        for the module index               [ ]  of a submodule  [ ] in   . Modern expositions on 

this area are found in [10], [4], [8] and [6]. 

2. Notations and Terminologies 

For a finite extension field     of degree      and               with                    denote the field 

discriminant of   and the discriminant of numbers           with  respect  to  the  extension    , respectively. If           

for a number    , we denote              by       , which is the discriminant of  . Then         is equal to the value of 

√
|     |

  

 [1]. Let   be a pure octic field      over   with   √ 
 ,   a square free integer   , where          if       

and              if       . We prove that for              , the ring    of integers in   have power integral basis 

over the ring   and in Section 3 that for            , the ring    does not have any power integral basis. For the proof of 

non-monogenity of  , we work in the relative extension  ̃  , where  ̃  denotes the Galois closure of the algebraic number field   

over   and   denotes the biquadratic field   √    
  .  Then we consider the relative norms   ̃  ⁄         

   of the  partial 

differents        
         of the  different       of an integer   in  , where    denotes the automorphism of  ̃ induced  by 

 √ 
 

     √ 
 

      
. 
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ABSTRACT 

Let 𝒎  𝟏  be a square free integer. The aim of this paper is to prove that the infinite 

family of pure octic field 𝑳  𝑸 √𝒎
𝟖

  is non-monogenic if 𝒎   𝟏  𝒎𝒐𝒅 𝟒 , 

ultimately, to complete the classification of pure octic fields 𝑳  𝑸 √𝒎
𝟖

  with respect to 

monogenity. We prove our results by considering the relative norms of the partial 

differents 𝝃  𝝃𝝈
𝒋
 of an integer 𝝃 from the Galois closure 𝑳̃ of L to Dirichlet optimum 

subfields of 𝑳, where 𝝈 is the isomorphism which maps  √𝒎
𝟖

  to 𝜻𝟖√𝒎
𝟖

 of L with 

𝜻𝟖  𝒆
𝟐𝝅𝜾

𝟖  𝜾  √ 𝟏 , and j = 4, 2, 1                                                                                   
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Let    be the nth cyclotomic field      over   with a primitive nth root
      

   

  
of unity.Then 

 ̃          √ 
 

     has degree 32 over the field   for a square free integer           We denote the Galois group 

   ̃    of  ̃ over   by  . The Group is generated by three automorphisms     and   whose actions on   and     are depicted in 

table 1: 

Table 1. The Actions of Automorphisms of  ̃ on   and   . 

     
 

     
   

 

      
   

      
  

Thus                                                  is the Galois group with the identity map   of  ̃. 

In the following Hasse diagram, we identify an isomorphism       and its restriction map       to any subfield   of  ̃. Then 

we have the subfield structure of  ̃ and the corresponding subgroup structure of Galois group   for a square free integer    

       in Fig. 1. 

 

Fig.  1. The Subfield Structure of Galois Closure of     √ 
 

  for        . 

Here we denote              √  ,            √   ,        ,           √ 
 

 ,        

  √ 
 

 ,             √  √   ,             √ 
 

  √   ,            √ 
 

 √     and ̃        

         The corresponding Galois groups are              ,             ,    
         ,     

          ,  

           ,           ,         ,           ,         and        .Here            for  

             denotes  the  subgroup  of    generated  by          
Let        be the generator of power integral basis for L, then there exist         such that       . This is typical 

throughout the paper unless stated otherwise.  Elements of quadratic subfield   of   are denoted by       and the integers in   are 

denoted by         with        . 

3. Monogenity of Pure Octic Fields   √ 
 

  with Square Free Integers       

For an eighth root     √ 
  of a square free integer    , let        be a pure octic field,                 its 

quartic and quadratic subfields respectively. Basing on the integral bases of pure quartic fields determined by T. Funakara [3], we 

obtained the integral basis of the pure octic field   and ascertained relative monogenity over its subfields in [11] as stated below. 

3.1 Theorem.  [11].  For an eighth root    √ 
 

 of a square free integer    , let   be a pure octic field      and    be the 

ring of integers in  . Then for 
  

    

 

 integral bases for    and field discriminants of   for different classes of   are as follows 

   

{
 
 
 
 

 
 
 
 

 [ ]    [ ]    [ 
 ][ ]                                                            

 [                      ]                                                  

   [ ]    [ 
 ][ ]                                                                                            

 [        
    

 
          

    

 
]                                 

 [        
    

 
          

    

 

   

 
]                      

 

and hence 
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{
 
 

 
                 

                        

                
                      

                
                         

                
                        

 

We also determined the monogenity of the pure octic fields        for               in [12]. Thus, for the complete 

classification on monogenity of pure octic fields we are left with the proof of monogenity or non-monogenity of   for   
         . for which the following lemma is fundamental. 

3.2   Lemma.  Let        be a pure octic field with   √ 
  and            . Let           and           be 

quartic and quadratic subfields of   respectively. Let          with      . If   is monogenic with   a generator of 

power integral bases of   , then 

a.          for                 . 

b.      for               , with         
  and         . 

     for             with 
         

    

 

   

 
    

. 

Proof. The case a. 

Since there is no relative integral basis of    over    for the case of             by [11], we deal with the following 

two cases separately; 

(i)                and (ii)            . 

The case (i)               . 

By theorem 3.1 it holds that      [ ]   [                      ], then for        with      , we have  

     
                   . 

Moreover for            [ 
 ] we take         

  and         
  with                , such that  

     
        

          
    (                 )      

                     

              .  

For             with             and 
  

    

 
 
, the next partial different becomes    

          
        

                 

          
      –   

                         ̃  by   –  
              

 . 

We use 
     

  (     
)
  

      
       

         
 
 
and      

       
         

 so that 

                         (     
) (     

)  (     
)(     

)        
                    

               ⁄                                                                              .  

By         , we conclude that β should be a unit in K. 

The case (ii)            . 

In this case 
     [ ]   [        

    

 
           

    

 
]
. 

For        with       , we take 
            

     
    

 

 and 
            

    
    

 

 with  

               , so that       
     and       

                    
  . 

From 
     

                   
          (

    

 
 

    

 
 )

 

                                               
       

     

 
     

, it follows that   

      
              

     

 
                  

. 

Put 
  

     

 
       

. Then   is an integer of the field N, because the relative norm 
   ⁄         

  
    

 
     

 

       and the relative trace    ⁄         are integers in D. Thus, we may put 
   

 –   

 
            

 with 

suitable integers         .With this substitution,we proceed further to have    ⁄             
 
      

         (   
  

        
  

)       ⁄                ⁄ (    
  

)       ⁄                    

    , which is denoted by    with              . 

The next relative norm of    until the biquadratic field     √    
   gives    ⁄           

  
      

        
 

      
           

        
            

       
           

      
            

, which is 

denoted by    with    
            . 

Next we have     ⁄           
                                                       

                                                                       with       
    

       , because of      
   

 
           . By 

    ⁄ (
     

 
)            

, it holds that 
  (

     

 
)  
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          . Thus 
  ∏ (

      

 
) 

                  
 
       

, which gives                    
 . But         

    by theorem 3.1. Thus, it holds that         . 

The case b. 

From the case a(i), since   is a unit of  , we put             
    with         . Thus, we have  

     
        

                         
         [          ]        

Here   [      ]      which is a factor of      . Put             , then   must be a unit of   ̃ . Here  

  ̃  ⁄            [          ] ,which we denote by   .Then   ̃  ⁄          ̃  ⁄            
   

 [          ]  [             ]  [           
     ]

 
 [     

     ]
  holds, whose value is denoted by 

  . 

Similarly,    ⁄               
 
  [   

     ]
 Holds. Put    

      =   . For     , as   
          [   ] 

, we put   
         with      , Such that                                                 

          

 
. Here    

 
         with      .Thus                                        

                            holds if and only if     and    , namely      follows. If    , then 

   ⁄                [         ][          ]     (        
   

 
)               holds. 

Therefore, by            
   

 
   and         , we have            . For             we have 

         which is impossible. For the case of +1, consider again    ⁄      [   
       ][   

  
        ]    , 

namely  

  [      ]
         

    
  

       .This implies   

     
   

  
      

    
  

     
   

  
      

   
  

    
   

  
     

   
  

       [      ] , and hence         . 

Since       is an integral basis of    then          if and only if     . 

The case c. 

For             , we have 
    *         

    

 
          

    

 

   

 
+
.For     , we use        

      
    

 
 
   

 

  with        and     , and hence 
     

        
    

 
 
, and      

      
 (      

  ) 

   ( 
    

 

   

 
  

    

 

     

 
)
. Put 

            
      

    

 

 and             
           with     

  and      . Then      
     

                           ,      
                    

    
                     . If    is even, then   ( –   

)             and  –    
                     

hold. Thus for       we write  –   
              

. Then    ⁄    –    
                          

         
  

                    holds, which is denoted by    for            . Proceeding in the same way, 

we have    ⁄            
  

                                             
, which is denoted by 

      with              .Then we obtain     ⁄           
                             

                                                          for             .  

Then we have     ⁄       
            

         . 

Thus if    is even, then by 
     

 (   
  )

  , it follows that    ∏ (        
 ) 

                  , which 

contradicts the fact that 2
10

 is a maximal even divisor of   . Then    is an odd number, say      ; namely  

                  
    

 

   

 
       

    

 

   

 
 
 for some integers         . Therefore Lemma 3.2 has been 

proved.                                    

We are now in a position to prove the non-monogenity of a family of pure octic fields. 

4. Non-monogenity of Pure Octic Fields    √    with Square Free Integers      

4.1. Theorem.  The ring    of integers in     √ 
 

  with a square free integer             and     has no power 

integral basis. Proof. First we consider the case of                . 

Assume that     [ ] holds for some integer     . Then for the different       and the field discriminant    it should 

hold that           . 

For              
    ,  by Lemma 3.2a and 3.2b we have     and     . Hence we put        

           with           . Then         
          holds. By the proof of Lemma 3.2a,          

should be equal to a unit. If     , then                  and since        is a prime ideal in   , therefore        

is not a unit in  ̃.  Thus     . 

Put  ̃  
    

 
    

        
,then   ̃  ⁄     ̃  [   

         ][   
         ]       ̃  ⁄    ̃  

  ̃  ⁄    ̃     . 
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Put      ̃  ⁄    ̃      
       ,so that    ⁄           

  
      

              
         

    
        

        
         

  √              
  √    , which is denoted by   .Then we have  

   ⁄               
 
    

  √     
 
     

  √    
            

  √  , which we denote by   .  

Finally, we have     ⁄        
          

       which should be a unit in    
       . Namely it holds that 

  
      

             or −17. Since | |  |  |  therefore |  
      

        |          which is a 

contradiction. Thus, for the case of               ,    has no power integral basis.  

Next, we consider the case of            . 

In this case 
     [ ]   [        

    

 
          

    

 
]
 and          hold by Theorem 3.1. 

Assume     [ ] for some integer     . Then       with 
        

      
    

 

 ,                    

by Lemma 3.2.  In this case   –    
    and hence   (     

)             holds. By      
     

         

                          , we put                   . Then we have    ⁄           
   

                   which is denoted by    .  Then    ⁄           
  

                  , which is 

denoted by   . The relative norm    ⁄           
   of    then gives                   ̅                    

         ̅           . If            , then         , so that      
                   and hence 

   ∏ (      
) 

                  , which is impossible as       . Thus          , and the relative norm becomes 

   ⁄      (   
          

    

 
)
 

                        . Therefore by    

 
 ≡ 0(mod 2), we get  

   ⁄        (   
         

  
   

 
)
 

                   
 and hence not in          , Which is a 

contradiction. Thus for             ,    has no power integral basis. 

Finally, we consider the case of            . 

In this case, 
    [        

    

 
          

    

 

   

 
]
 and            

Let     [ ]. Then by Lemma 3.2c we may put           with              
       ,       

    
 , 

     
    

 

 and 
    

    

 

   

 

. Thus      
          holds. Put (     

    = 2  +   =    , then     (    

=    
   =  

 ,Which is denoted by   .Then it follows that     (   =    (   =    
  =[          

            

    
    

  
] = [   

      
      

  
       

 (  
  

    )       
  

] .  

Here   
   is equal to 

 
    

 

, so that      
   =     

  
          and     

  
  

 

 
            

 with  

          . Moreover using    = 2                
 

 
         

,          [   ] and the above 

relations, we have  

    (    =4                                                          (4.1) 

In the case of    , we take the process from the biquadratic field   to the quadratic subfield   as shown in fig 1, such that 

    (             +                    

 
. If       , then      

(             . If         then 

by    

 
       

with       we have |    (      | =              +              ¼ +4     4. Thus, it is 

deduced that  

   ⁄                                                                (4.2) 

For      we evaluate the        as follows: 

   ⁄                                               . Here                

therefore    ⁄                    

Thus                     and               √         . Thus, in both the cases  

                                               (4.3) 

Next, we evaluate norm of      
       along the field tower            Consider       

 

 
  

   

 (     
 

 
  

  
  ) with        

                
     and          

 .Thus on the integer  

          
  

 (      
  

)     for       ⁄       we have  

         ⁄       (      
  

)         
  

      |      
  

| |      
  

|  . Thus we have the inequality 

   ⁄       |      
  

| |      
  

|                                                   (4.4) 

 Here by       
  

     
                  

 we notice that        
  

         . Then it follows that 

        ⁄ (     ⁄     )     |       
  

        
  

  
 
        

  
  |   for       ⁄     ,  
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        ⁄       ⁄         |       
  

           
        

  
       

   |    for       ⁄      and hence 

             |       
  

                      
| |        

  
            

|   . Here we denote        by         for 

any     ̃  and           ̃    ⁄  

Since 2 is completely decomposed in the quadratic subfield k, we put 2     for a prime ideal  , Which devides    Using 

                        and hence           ) by            
  

  
 

 
                     

for         and
  

              
     

    

 
    

   
       

 
                       

           we deduce that  

        
  

       
     

       
  

    
  

       
  

          
   

   
   

   (  (  
  

  )    ) (  
  

  (  
  

   )   
  

(    
  

)   
  

)     
  

   
             namely              

Thus, we obtain  

                              
  

            
                

 
                       

               Therefore                   thus  

                                                                                     (4.5) 

By   (     
)     (      

)  
 
   (      

)            and from inequalities (4.3), (4.4) and (4.5) we conclude 

that                                 
          

From inequality (4.4), the equality holds if and if        
         

   However,        
         

  

because        
    and        

     Thus                  which is a contrary to |         |                           

Thus partial solution to the problem 6 of [18] follows: 

4.2. Theorem. 

Let     be a square free integer. The pure octic field     √    is monogenic if and only if                
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