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I. INTRODUCTION 

 Opportunistic routing for multihop wireless ad hoc 

networks has seen recent research interest to overcome 

deficiencies of conventional routing [1]–[6] as applied in 

wireless setting. Motivated by classical routing solutions in 

the Internet, conventional routing in ad hoc networks attempts 

to find a fixed path along which the packets are forwarded 

[7]. Such fixed -path schemes fail to take advantage of 

broadcast nature and opportunities provided by the wireless 

medium and result in unnecessary packet retransmissions. 

The opportunistic routing decisions, in contrast, are made in 

an online manner by choosing the next relay based on the 

actual transmission outcomes as well as a rank ordering of 

neighboring nodes. Opportunistic routing mitigates the 

impact of poor wireless links by exploiting the broadcast 

nature of wireless transmissions and the path diversity. 

The authors in [1] and [6] provided a Markov decision 

theoretic formulation for opportunistic routing. In particular, 

it is shown that the optimal routing decision at any epoch is to 

select the next relay node based on a distance-vector summa-

rizing the expected-cost-to-forward from the neighbors to the 

destination. This “distance” is shown to be computable in a 

distributed manner and with low complexity using the proba-

bilistic description of wireless links. The study in [1] and [6] 

provided a unifying framework for almost all versions of op-

portunistic routing such as SDF [2], Geographic Random For-

warding (GeRaF) [3], and ExOR [4], where the variations in 

[2]–[4] are due to the authors’ choices of cost measures to 

optimize. For instance, an optimal route in the context of 

ExOR [4] is computed so as to minimize the expected number 

of trans-missions (ETX), while GeRaF [3] uses the smallest 

geographical distance from the destination as a criterion for 

selecting the next-hop. 

The opportunistic algorithms proposed in [1]–[6] depend 

on a precise probabilistic model of wireless connections and 

local topology of the network. In a practical setting, however, 

these probabilistic models have to be “learned” and 

“maintained.” In other words, a comprehensive study and 

evaluation of any opportunistic routing scheme requires an 

integrated approach to the issue of probability estimation. 

Authors in [8] provide a sensitivity analysis for the 

opportunistic routing algorithm given in [6]. However, by and 

large, the question of learning/estimating channel statistics in 

conjunction with opportunistic routing re-mains unexplored. 

In this paper, we first investigate the problem of 

opportunistically routing packets in a wireless multihop 

network when zero or erroneous knowledge of transmission 

success proba-bilities and network topology is available. 

Using a reinforcement learning framework, we propose a 

distributed adaptive opportunistic routing algorithm (d-

AdaptOR) that minimizes the expected average per-packet 

cost for routing a packet from a source node to a destination. 

This is achieved by both suffi-ciently exploring the network 

using data packets and exploiting the best routing 

opportunities. 

Our proposed reinforcement learning framework allows 

for a low-complexity, low-overhead, distributed 

asynchronous implementation. The significant characteristics 

of d-AdaptOR are that it is oblivious to the initial knowledge 

about the network, it is distributed, and it is asynchronous. 

The main contribution of this paper is to provide an 

opportunistic routing algorithm that:1)assumes no knowledge 

about the channel statistics and network, but 2) uses a 

reinforcement learning framework in order to enable the 

nodes to adapt their routing strategies, and 3) optimally 

exploits the statistical opportunities and receiver diversity. In 

doing so, we build on the Markov decision formulation in [6] 

and an important theorem in Q-learning proved in [9]. There 

are many learning-based routing solutions(both heuristic or 

analytically driven) for conventional routing in wireless or 

wired networks [10]–[15]. None of these solutions exploits 

the receiver diversity gain in the context of opportunistic 

routing. However, for the sake of completeness, we provide a 

brief overview of the existing approaches. The authors in 

[10]–[14] focus on heuristic routing algorithms that 

adaptively identify the least congested path in a wired 

network. If the network congestion, hence delay, were to be 

replaced by time-invariant quantities,1 the heuristics in [10]–

[14] would be-come a special case of d-AdaptOR in a 

network with deterministic channels and with no receiver 
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diversity. In this light, Theorem 1 in Section IV provides 

analytic guarantees for the heuristics obtained in [10]–[14]. In 

[15], analytic results for ant routing are obtained in wired 

networks without opportunism. Ant routing uses ant-like 

probes to find paths of optimal costs such as expected hop 

count, expected delay, and packet loss probability.2 This 

dependence on ant-like probing represents astark difference 

with our approach where d-AdaptOR relies solely on data 

packet for exploration. 

The rest of the paper is organized as follows. In Section 

II, we discuss the system model and formulate the problem. 

Section III formally introduces our proposed adaptive routing 

algorithm, d-AdaptOR. We then state and prove the 

optimality theorem for d-AdaptOR in Section IV. In Section 

V, we present the imple-mentation details and practical issues 

of d-AdaptOR. We perform simulation study of d-AdaptOR 

in Section VI. Finally, we conclude the paper and discuss 

future work in Section VII. 

II. SYSTEM MODEL 

We consider the problem of routing packets from a 

source critical and is only assumed for ease of exposition). A 

packet ered to model the amount of energy used for 

transmission, the expected time to transmit a given packet, or 

the hop count when the cost is set to unity. We consider an 

opportunistic routing set-ting with no duplicate copies of the 

packets. In other words, at a given time only one node is 

responsible for routing any given packet. Given a successful 

packet transmission from node   to the set of neighbor nodes , 

the next (possibly randomized) routing decision includes: 1) 

retransmission by node ; 2) re-laying the packet by a node  

; or 3) dropping the packet altogether. If node   is selected 

as a relay, then it transmits the 

We define the termination event for packet m  to be the 

event that packet m is either received at the destination or is 

dropped by a relay before reaching the destination. We denote 

this ter among the termination events as follows. We assume 

that upon the termination of a packet at the destination 

(successful de-livery of a packet to the destination), a fixed 

and given positive 

i.e., either zero if the packet is dropped prior to reaching the 

destination node or  if the packet is received at the 

destination. mission (equal to zero if at time  packet  is not 

transmitted). The routing scheme can be viewed as selecting a 

(random) sequence of nodes {i nm}for relaying packets 

m=1,2,3 As such, the expected average per-packet reward 

associated with time  and the expectation is taken over the 

events of transmission decisions, successful packet 

receptions, and packet generation times. 

Problem (  ): Choose a sequence of relay nodes  {  } in 

the absence of knowledge about the network topology such 

that  is maximized as . 

In Section III, we propose the d-AdaptOR algorithm, 

which solves Problem  . The nature of the algorithm allows 

nodes to make routing decisions in distributed, asynchronous, 

and adaptive manner. 

Remark 1: The problem of opportunistic routing for 

multiple source–destination pairs, without loss of generality, 

can be de-composed to the single source–destination problem 

described 

III. DISTRIBUTED ALGORITHM 

Before we proceed with the description of d-AdaptOR, 

we provide the following notations. Let  denote the set of 

neighbors of node  including node  itself. Let  denote the 

set of potential reception outcomes due to a transmission 

from node , i.e.,  . We refer to  as the 

state space for node ’s transmission. Furthermore, let 

 . Let  denote the space of all allowable 

actions available to node  upon successful reception at nodes 

in . Finally, for each node , we define a reward function 

on states  and potential decisions  as 

A. Overview of d-AdaptOR 

As discussed before, the routing decision at any given 

time is made based on the reception outcome and involves 

retransmission, choosing the next relay, or termination. Our 

proposed 

TABLE I. NOTATIONS USED IN THE 

DESCRIPTION OF THE ALGORITHM. 

 

scheme makes such decisions in a distributed manner via the 

following three-way handshake between node  and its 

neighbors N(i). 

1) At time , node  transmits a packet. 

2) The set of nodes  who have successfully received the 

packet from node , transmit acknowledgment (ACK) packets 

to node . In addition to the node’s identity, the 

acknowledgment packet of node  includes a control 

message known as estimated best score (EBS) and denoted 

by   . 

3) Node  announces node  as the next transmitter or 

announces the termination decision  in a forwarding (FO) 

packet. 

B. Detailed Description of d-AdaptOR 

The operation of d -AdaptOR can be described in terms 

of initialization and four stages of transmission, reception and 

acknowledgment, relay, and adaptive computation as shown 

in Fig. 1. For simplicity of presentation, we assume a 

sequential timing for each of the stages. We use  to denote 

some 
 

Fig. 1.  Flow of the algorithm. The algorithm follows a 

four-stage procedure: transmission, acknowledgment, 

relay, and update. 
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Initialization: 

For all  

 

While 

 

1) Transmission Stage: 

Transmission stage occurs at time  in which node  

transmits if it has a packet. 

2) Reception and acknowledgment Stage: 

Let  denote the (random) set of nodes that have 

received the packet transmitted by node . In the reception and 

acknowledgment stage, successful reception of the packet 

transmitted by node  is acknowledged to it by all the nodes in 

 . We assume that the delay for the acknowledgment stage 

is small enough (not more than the duration of the time slot) 

such that node  infers  by time  . For all nodes  , the 

ACK packet of node  to node  includes the EBS message    

. Upon reception and acknowledgment, the counting random 

variable  is incremented as follows: 
 

•  With probability   

 

is selected uniformly with probability  

Node  transmits FO, a control packet that information about 

routing decision  at some time strictly between  and 

 . If , then node  pre-pares for forwarding in the 

next time slot, while nodes  expunge the packet. If 

termination action is chosen, i.e., , all nodes in  

expunge the packet. 

Upon selection of routing action, the counting variable  

is updated 

 

4) Adaptive Computation Stage:  

 

 

                                (2) 

C. Computational Issues 

The computational complexity and control overhead of d-

AdaptOR is low. 

1) Complexity: To execute stochastic recursion (2), the 

number of computations required per packet is order of 

 at each time slot. The space complexity of d-

AdaptOR is exponential in the number of neighbors, i.e., 

 for each node. The reduction in storage 

requirement using approximation techniques in [16] is left as 

future work. 

2) Control Overhead: The number of acknowledgments per 

packet is order of  , independent of network 

size. 

 

3) Exploration Overhead: The adaptation to the optimal   

performance in the network is guaranteed via a controlled 

randomized routing strategy that can be viewed as cost of 

exploration. The cost of exploration is proportional to the 

total number of packets whose routes deviates from the 

optimal path. In proof of Theorem 1, we show that this cost 

increases sublinearly with the number of delivered packets, 

hence the per-packet exploration cost diminishes as the 

number of delivered packets grows.  to the genie-aided or 

greedy-based schemes such as ExOR or SR. 

IV. ANALYTIC OPTIMALITY OF D-ADAPTOR 

We will now state the main result establishing the 

optimality of the proposed d-AdaptOR algorithm under the 

assumptions of a time-invariant model of packet reception 

and reliable control packets. More precisely, we have the 

following assumptions. 

Assumption 1: The probability of successful reception of a 

 packet transmitted by node  at set  of nodes is  , 

independent of time and all other routing decisions. 

The probabilities  in Assumption 1 characterize a packet 

reception model that we refer to as local broadcast model. 

Note that for all , successful reception at  

Remark 2: Assumption 1 is in line with the experimentally 

tested state of the art routing protocols MORE [17] and ExOR 

[4]. These studies seem to indicate that reasonably simple 

probabilistic models provide good abstractions of media 

access control (MAC) and physical (PHY) layers at the 

routing layer. 

Remark 3: In practice, Assumption 2 is hard to satisfy. But as 

we will see in Section VI, when the rates and power of the 

control packets are set to maximize the reliability, the impact 

of violating this assumption can be kept extremely low. 

Remark 4: In Section VI, we address the severity as well as 

the implications of Assumptions 1 and 2. In particular, via a 

set of QualNet simulations, we will show that d-AdaptOR 

exhibits many of its desirable properties in a realistic setup 

despite the relaxation of the analytical assumptions. 

Given Assumptions 1 and 2, we are almost ready to 

present Theorem 1 regarding the optimality of d- AdaptOR 

among the class of policies that are oblivious to the net-work 

topology and/or channel statistics. More precisely, let 
 

set of such  -admissible policies. Theorem 1 states that d-

AdaptOR, denoted by , is an optimal  -admissible 

policy. 

Theorem 1: Suppose  and Assumptions 1 

and 2 hold. Then, for all  
 

where  and  are the expectations taken with respect to 

policies  and , respectively.5  

Next, we prove the optimality of d-AdaptOR in two 

steps. In the first step, we show that  converges in an 

almost sure sense. In the second step, we use this 

convergence result to show that d-AdaptOR is optimal for 

Problem  . 
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A. Convergence of   An 

Let  be an operator on vector  such 

that 

 

Using the convergence of  , we show that the expected 

average per-packet reward under d-AdaptOR is equal to the 

optimal expected average per-packet reward obtained for a 

genie-aided system where the local broadcast model is known 

perfectly. In other words, we take cue from known results 

associated with a closely related Auxiliary Problem (  ). In 

this Auxiliary Problem (  ), there exists a centralized 

controller with full knowledge of the local broadcast model 

 as well as the transmission outcomes across the network 

[1], [6]. The objective in the Auxiliary Problem (  ) is a 

single-packet variation of that in Problem (  ): the reward 

 

for routing a single packet  from the source to the 

destination is maximized over a set  of (AP)-admissible 

policies, where this set  of (AP)-admissible policies is a 

superset of (P) admissible policies  that also includes all 

topology-aware and 

centralized policies. This Auxiliary Problem (  ) has been 

extensively studied in [1], [6], and [19], where a Markov 

decision formulation provides the following important result. 

Fact 1 [6, Theorem 2.1]: Consider the unique solution 

 to the following fixed-point equation: 

                                                                      (6) 

 (7) 

There exists an optimal topology-aware and centralized admis 

sible policy  such that 

 

The proof is given in Appendix- C. Lemmas 2 and 3 imply 

that  [which is (P)-admissible by construction] is an optimal 

policy under which 
 

exists and is equal to  establishing the proof of Theorem 

1. 

Corollary 1: When , the network is connected, and  

is greater than the worst-case routing cost,7 d-AdaptOR 

minimizes 

                          (9) 

 

 

 

 

 

 

 

the expected per-packet delivery time as . 

This is because when  is sufficiently large, and the 

network is connected 

 

V. PROTOCOL DESIGN AND IMPLEMENTATION 

ISSUES 

In this section, we describe an 802.11 compatible 

implementation for d-AdaptOR. 

A. 802.11 Compatible Implementation 

The implementation of d-AdaptOR, analogous to any 

opportunistic routing scheme, involves the selection of a relay 

node among the candidate set of nodes that have received and 

acknowledged a packet successfully. One of the major 

challenges in the implementation of an opportunistic routing 

algorithm in general, and the d -AdaptOR algorithm in 

particular, is the de-sign of an 802.11 compatible 

acknowledgment mechanism at the MAC layer. We propose a 

practical and simple way to implement acknowledgment 

architecture. 

The transmission at any node  is done according to an 

802.11 CSMA/CA mechanism. Specially, before any 

transmission, transmitter  performs channel sensing and 

starts transmission after the backoff counter is decremented to 

zero. For each neighbor node  , the transmitter node  

then reserves a virtual time slot of duration  , 

where  is the duration of the acknowledgment packet 

and  is the duration of Short InterFrame Space (SIFS) 

[20]. Transmitter  then piggybacks a priority ordering of 

nodes  with each data packet transmitted. The priority 

ordering determines the virtual time slot in which the 

candidate nodes transmit their acknowledgment. Nodes in the 

set  that have successfully received the packet then transmit 

acknowledgment packets sequentially in the order determined 

by the transmitter node. node  transmits a Forwarding control 

packet (FO). The FO packets contain the identity of the next 

forwarder, which may be node  again or any node  . If  

expires and no FO packet is received (FO packet reception is 

unsuccessful), then the corresponding candidate nodes drop 

the received data packet. If the transmitter  does not receive 

any acknowledgment, node  retransmits the packet. The 

backoff window is doubled after every retransmission. 

Furthermore, the packet is dropped if the retry limit (set to 7) 

is reached. 

In addition to the acknowledgment scheme, d-AdaptOR 

requires modifications to the 802.11 MAC frame format. Fig. 

2 shows the modified MAC frame formats required by d-

AdaptOR. The reserved bits in the type/subtype fields of the 

frame control field of the 802.11 MAC specification are used 

to indicate whether the rest of the frame is a d -AdaptOR data 

frame, a d-AdaptOR ACK, or a, FO.8 The data frame 

contains 
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Fig. 2. Frame structure of the data packets, 

acknowledgment packets, and FO packets. 

the candidate set in priority order, the payload, and the 802.11 

Frame Check Sequence. The acknowledgment frame includes 

the data frame sender’s address and the feedback EBS . 

The FO packet is exactly the same as a standard 802.11 short 

control frame that uses different subtype value. 

d-AdaptOR in a Realistic Setting 

1) Loss of ACK and FO Packets: Interference or low signal-

to-noise ratio (SNR) can cause loss of ACK and FO packets. 

Loss of an ACK packet results in an incorrect estimation of 

nodes that have received the packet, and thus affects the 

performance of the algorithm. Loss of FO packet negatively 

impacts the throughput performance of the network. In 

particular, loss of an FO packet can result in the drop of data 

packets at all the potential relays, reducing the throughput 

performance. Hence, in our design, FO packets are 

transmitted at lower rates to ensure a reliable transmission. 

2) Increased Overhead: As it is the case with any 

opportunistic scheme, d-AdaptOR adds a modest additional 

overhead to the standard 802.11 due to the added 

acknowledgment/hand-shake structure. This overhead 

increases linearly with the number of neighbors. Assuming a 

802.11b physical layer operating at 11 Mb/s with an SIFS 

time of 10 s, preamble duration of 20 s, Physical Layer 

Convergence Protocol (PLCP) header duration of 4 s, and 

512-B frame payloads, Table II compares the overhead in the 

data packet due to piggybacking and the control overhead due 

to ACK and FO packets for unicast 802.11, genie-aided 

opportunistic scheme, and d-AdaptOR. d-AdaptOR requires 

communication overhead of 4 extra bytes (for EBS) per ACK 

packet compared to the genie-aided opportunistic scheme, 

while unicast 802.11 does not require such overhead. 

Note that the overhead cost can be reduced by restricting 

the number of nodes in the candidate list of MAC header to a 

given number, MAX-NEIGHBOUR. The unique ordering for 

the nodes in the candidate set is determined by prioritizing the 

nodes with respect to  and then 

TABLE II. OVERHEAD COMPARISONS. 

 

 

 

 

 

 

 

choosing the MAX-NEIGHBOUR highest priority nodes.9 

Such a limitation will sacrifice the diversity gain and, hence, 

the performance of any opportunistic routing algorithm for 

lower overhead. In practice, we have seen that limiting the 

neighbor set to 4 provides most of the diversity gain. 

VI. SIMULATIONS 

In this section, we provide simulation studies in realistic 

wire-less settings where the theoretical assumptions of our 

study do not hold. These simulations not only demonstrate a 

robust performance gain under d-AdaptOR in a realistic 

network, but also provide significant insight in the 

appropriate choice of the design parameters such as damping 

sequence  , delivery re-ward , etc. We first investigate 

the performance of d-AdaptOR with respect to the design 

parameters and network parameters in a grid topology of 16 

nodes. We then use a realistic topology of 36 nodes with 

random placement to demonstrate robustness of d-Adaptor to 

the violation of the analytic Assumptions 1 and 2. 

A. Simulation Setup 

In Sections VI-B and VI-C, using the appropriate choice 

of the design parameters, we compare the performance of d-

AdaptOR against suitably chosen candidates. As a bench-

mark, when appropriate, we have compared the performance 

against a genie-aided policy that relies on full network 

topology information when selecting routes. This is nothing 

but  dis-cussed in Section IV-B. We also compare against 

Stochastic Routing (SR) [1] (SR is the distributed 

implementation of policy  ) and ExOR [4] (an opportunistic 

routing policy with ETX metric) in which the empirical 

probabilistic structure of the network is used to implement 

opportunistic routing algorithms. As a result, their 

performance will be highly de-pendent on the precision of 

empirical probability associated with link  . To provide a 

fair comparison, we have considered simple greedy versions 

of SR and ExOR. These algorithms adapt  to the history 

of packet reception outcomes and rely on the updates to make 

routing decisions assuming error-free  . We have also 

compared our performance against a conventional routing 

SRCR [21] with full knowledge of topology. In this setting, a 

conventional route is selected with perfect knowledge of link 

success probability at any given node. This comparison in 

effect provides a simple benchmark for all learning -based 

conventional routing policies in the literature such as Q-

routing [10] and predictive Q-routing [12] when congestion is 

taken to be small enough (such that finding least congested 

paths coincides with finding the path with minimum expected 

number of transmissions). 

Our simulations are performed in QualNet. We consider 

two sets of topologies in our experimental study. 

1) Grid Topology: In Section VI-B, we study a grid topology 

consisting of 16 indoor nodes such that the nearest neighbors 

are separated by distance  meters. If unspecified,  is chosen 

to be 25 m. The source and the destination are chosen at the 

maximal distance (on diagonal) from each other. 

2) Random Topology: In Section VI-C, we study a random 

topology consisting of 36 indoor nodes placed in an area of 

150  150 m  . Here, we investigate the performance under a 

multisource multidestination setting as the number of flows in 

the network is varied and each flow is specified 

via a randomly selected pair of source and destination. 

The nodes are equipped with 802.11b radios placed in indoor 

environment transmitting at 11 Mb/s with transmission power 

15 dBm. Note that the choice of indoor environment is 
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motivated by the findings in [22], where opportunistic routing 

is found to provide significant diversity gains. The wireless 

medium model includes Rician fading with K-factor of 4 and 

log -normal shadowing with mean 4 dB. The path loss 

follows the two-ray model in [23] with path exponent of 3. 

The acknowledgment packets are short packets of length 24 B 

transmitted at 11 Mb/s, while FO packets are of length 20 B 

and transmitted at a lower rate of 1 Mb/s to ensure reliability. 

If unspecified, packets are generated according to a constant 

bit rate (CBR) source with rate 20 packets/s. The packets are 

assumed to be of length 512 B equipped with simple cyclic 

redundancy check (CRC) error detection. The cost of 

transmission is assumed to be one unit, and the reward  is 

set to 40. 

We have chosen  as the exploration parameter 

of choice.  

B. Effects of Design and Network Parameters 

Here, we investigate the role and criticality of various 

design parameters of d- AdaptOR with respect to the 

expected number of transmission criterion. Let us start with 

design parameters  and R. 

1) Exploration Parameter Sequence  

The convergence rate of stochastic recursion (2) depends 

strongly on the choice of gence is fast but results in large 

variance in the estimates of 

 

d-AdaptOR is slower to adapt to the optimal performance it 

shows a slightly smaller variance. This is because the choice 

of       controls the rate with which greedy versus (randomly 

chosen) exploration actions are utilized. The optimization of 

the choice of     is an interesting topic of study in stochastic 

approximation [24], [25], far beyond the scope of this work. 

2) Per-Packet Delivery Reward : To ensure an acceptable 

performance of d-AdaptOR, the value of delivery reward, , 

must be chosen sufficiently high. This would ensure the 

existence of routes under which the value of delivering a 

packet (as represented in ) is worth (i.e., larger than) the 

cost of 

 

Fig. 3. Comparison for  

 

Fig. 4.  Expected number of transmissions versus time as   

is varied. 

relaying and routing that packet. A reasonable choice of  is 

any value larger than the worst-case expected transmission 

cost. Increasing  beyond such a value does not affect the 

asymptotic optimality of the algorithm. Next, we study the 

performance of d-AdaptOR with respect to the convergence 

rate and delivery ratio. 

Fig. 4 plots the expected number of transmissions rate as 

time progresses for various values of . As seen in Fig. 4, if 

 increases beyond a threshold  (in the example provided 

here, this threshold is 18, but in general it depends on the 

network diameter), the expected number of transmissions per 

packet achieve the optimal value of  . In contrast, for  

, the expected number of transmissions approaches zero as the 

packets not worth obtaining routing reward are dropped.10 

Fig. 4 also shows that the convergence rate of the expected 

number of transmissions for routing per packet under d-

AdaptOR decreases as  increases. The slow convergence for 

 for large  is due to the flexibility of exploring longer 

paths. The slow convergence to zero for  near  is 

attributed to the fact that it takes a longer time for d-AdaptOR 

to realize that the packet is not worth relaying. 

Fig. 5 plots the delivery ratio as  is varied. Fig. 5 shows 

that as  increases beyond a threshold  , the delivery ratio 

remains fixed. However, for sufficiently small , nearly all 

the packets are dropped as the cost of transmission of the 

packet as well as relaying is not worth the obtained delivery 

reward. Due to very 

 

Fig. 5. Delivery ratio as   is varied. 

 

Fig. 6.  d-AdaptOR performance as packet length is 

varied. 
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Fig. 7.  Performance of d-AdaptOR as CBR traffic is 

varied. 

slow convergence rate around  for  , we observe that 

a non negligible number of packets is delivered in the 

duration of experiment. 

Next, we investigate the performance of d-AdaptOR with 

respect to other candidate protocols for the network 

parameters such as packet length, traffic rate, neighbor 

distance, and time-varying costs. 

3) Packet Length: We have repeated our simulations for 

1024-B packets. Fig. 6 plots the performance as the packet 

length is varied from 512 to 1024 B. Note that due to the de-

creasing packet transmission reliabilities, the expected 

routing cost per packet is increased with the packet size. 

However, the optimality of d-AdaptOR does not depend on 

the packet length. 

4) Traffic Rate: Fig. 7 plots the mean number of 

transmissions versus CBR rate for candidate algorithms. Even 

though the performance gain for d-AdaptOR decreases 

somewhat with increase in the load, there is always a non 

negligible advantage over greedy solutions. 

5) Average Hop Length : In an attempt to understand the 

performance gap between various opportunistic algorithms, 

specifically the gap between d-AdaptOR versus learning-

based conventional routing algorithms [10]–[13] whose 

performance is bounded by SRCR, one needs to gain insight 

about the diver-sity gain achieved by opportunistic routing. 

Fig. 8 compares the expected transmission cost for the three 

opportunistic routing algorithms (d-AdaptOR, ExOR, and 

SR) and SRCR as the 

 

Fig. 8.  Small hops provide significant receiver diversity 

gain. 

 

 

 

Fig. 9.  Time-varying cost: Nodes go into sleep mode at 

time 300 s. 

distance between the neighboring nodes in the grid topology, 

measured in  meters, is varied from 10 to 30 m. Note that 

for high values of , the receiver diversity is low due to 

retransmission packet losses giving nearly similar 

performance for candidate protocols, while small  

corresponds to a network with large receiver diversity gain. 

As expected, when  is small, all opportunistic routing 

schemes provide a significant improvement over conventional 

routing, but perhaps what is more interesting is the 

performance gain of learning-based d-AdaptOR over the 

greedy-based solutions in medium ranges. 

6) Time-Varying Cost: In our analytical setup, we assume the 

transmission costs are fixed. Next, we discuss a simple 

scenario where the nodes have time-varying transmission 

costs. Consider a network in which nodes may go into an 

energy-saving mode when they do not participate in routing 

(e.g., to recharge their energy sources). Assume that upon 

entering the energy-saving mode, a node announces a high 

cost of trans-mission (100 instead of usual transmission cost 

of 1). Fig. 9 plots the expected average cost of d-AdaptOR 

when two nodes at the center of the grid move into an energy-

saving mode. It shows that d-AdaptOR can track the genie-

aided solution after the nodes move into the energy-saving 

mode. 

C. Case Study: Random Network 

Here, we study a random network scenario consisting of 

36 wireless nodes placed randomly, with the remaining 

parameters kept the same as the default parameters. 

Fig. 10 plots the expected number of transmissions and 

the expected average per-packet reward for the candidate 

routing algorithms versus network operation time when a 

single flow is present in the random topology. We fi rst note 

that, as expected, SRCR performs poorly compared to the 

opportunistic schemes as it fails to utilize the receiver 

diversity gain. This underlines our contribution over all 

existing learning-based solutions [10]–[13] that ignore 

receiver diversity. Furthermore, 

 

Fig. 10. Expected number of transmissions and average 

per-packet reward as function of operation time. 
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Fig. 11. d-AdaptOR versus distributed SR, ExOR, and 

SRCR performance for multiple flows. 

Fig. 10 shows that the d-AdaptOR algorithm outperforms 

the greedy opportunistic schemes given sufficient number of 

packet deliveries. This is because the greedy versions of SR 

and ExOR fail to explore possible choices of routes and often 

result in strictly suboptimal routing policies. Fig. 10 also 

shows that the randomized routing decisions employed by d -

AdaptOR work as a double-edged sword. On the one hand, 

they form a mechanism through which network opportunities 

are exhaustively explored until the globally optimal decisions 

are constructed, resulting in an improved long-term 

performance while these randomized decisions lead to a 

short-term performance loss. This, in fact, is reminiscent of 

the well-known exploration/exploitation tradeoff in stochastic 

control and learning literature. 

Next, we study the performance of d-AdaptOR as the 

number of flows in the network is varied, where each flow is 

specified via a randomly selected pair of source and 

destination. Fig. 11 plots the expected number of 

transmissions and expected average reward for the candidate 

routing algorithms for the random topology. As seen in Fig. 

11, d-AdaptOR maintains an optimal performance. However, 

Fig. 11 also shows that the gap between d-AdaptOR and the 

greedy version of SR significantly decreases with an increase 

in number of flows where the natural pattern of traffic flow 

renders the (randomized) exploration phase less critical. In 

other words, while Fig. 11 is consistent with the Remark 1 in 

Section II regarding the decomposition of multiple flow 

scenario to multiple single-flow scenarios, it also suggests 

that a joint design in which the multiplicity of flows provide a 

natural (and greedy) exploration of the network might be 

beneficial with regard to the transient/short-term performance 

measures of interest. 

VII. CONCLUSION AND FUTURE WORK 

In this paper, we proposed d-AdaptOR, a distributed, 

adaptive, and opportunistic routing algorithm whose 

performance is shown to be optimal with zero knowledge 

regarding network topology and channel statistics. More 

precisely, under idealized assumptions, d-AdaptOR is shown 

to achieve the performance of an optimal routing with perfect 

and centralized knowledge about network topology, where 

the performance is measured in terms of the expected per-

packet reward. Furthermore, we show that d-AdaptOR allows 

for a practical distributed and asynchronous 802.11 

compatible implementation, whose performance was 

investigated via a detailed set of QualNet simulations under 

practical and realistic networks. Simulations show that d -

AdaptOR consistently outperforms existing adaptive routing 

algorithms in practical settings. 

The long-term average reward criterion investigated in 

this paper inherently ignores the short-term performance. To 

cap-ture the performance of various adaptive schemes, 

however, it is desirable to study the performance of the 

algorithms over a finite horizon. One popular way to study 

this is via measuring the incurred “regret” over a finite 

horizon. Regret is a function of horizon  that quantifies the 

loss of the performance under a given adaptive algorithm 

relative to the performance of the topology-aware optimal 

one. More specifically, our results so far implies that the 

optimal rate of growth of regret is strictly sublinear in , but 

fails to provide a conclusive understanding of the short- term 

behavior of d-AdaptOR. An important area of future work 

comprises developing adaptive algorithms that en-sure 

optimal growth rate of regret. 

The design of routing protocols requires a consideration 

of congestion control along with the throughput performance 

[26], [27]. Our work, however, does not consider this closely 

related issue. Incorporating congestion control in op-

portunistic routing algorithms to minimize expected delay 

without the topology and the channel statistics knowledge is 

an area of future research. 
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