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1.  Introduction 

Diagnosis tools are essential in monitoring global Inter-

net routing infrastructure for dependable packet delivery. The 

Internet is divided into a large number of Autonomous 

Systems (AS) and the Border Gateway Protocol (BGP) [15] is 

used to exchange reachability information between these 

Autonomous Systems (AS); a new BGP update message is 

generated whenever a border router’s reachability to any 

destination prefix is changed. Although the BGP specification 

is relatively simple, understanding the global routing 

dynamics has proven to be great challenge. Due to the 

Internet’s sheer size, complexity, and various routing policies, 

it is difficult if not impossible to identify the causes behind 

large volumes of BGP update messages that occur from time 

to time in today’s Internet. 

Most Autonomous Systems monitor their own local data 

and some even provide snapshots to the public. In the last few 

years, a number of passive BGP monitoring/vantage sites, 

such as RIPE [16] and Route Views [14], have been 

established to collect BGP update data from BGP routers 

residing in multiple A Ses. The resulting BGP log data is 

potentially useful for diagnosis purpose. However without a 

set of effective tools, the large volume of raw data obscures 

the actual routing changes. For instance, in April of 2003, the 

data collection points at Route Views logged over 10 

gigabytes of unprocessed data from over 30 routers in 

different geographic locations. An ad-hoc combination of 

intuition, experience, and informal analysis is often used to 

speculate the causes of large swings in BGP updates. In 

addition to the challenge of scale, the underlying Internet 

topology is not known precisely and the monitoring points 

provide views from only a limited set of geographic locations. 

In such an environment, ad-hoc techniques are limited by the 

expertise of the administrator and it is not easy to identify the 

underlying events that cause BGP changes. With the 

increased importance of fault tolerance and survivability, the 

ability to infer the cause of routing changes would immensely 

help in diagnosing the failures and estimating the impact.  

To provide dependable global data de-livery, we need 

analysis tools that can help us understand the BGP system 

and pinpoint the exact cause of connectivity changes. 

In this paper we present a formal approach for analyzing 

routing data to identify the origin of routing changes. Using a 

simplified model of BGP, called Simple Path Vector Protocol 

(SPVP), and a graph model of the Internet, we present the 

MVS Change algorithm set. Note that even a single link 

failure or link addition can result in large number of BGP 

path changes, but finding this failure without knowledge of 

the underlying topology can be a challenge. As a first step 

toward designing a formal set of algorithms for under-

standing Internet route changes, we focus on identifying the 

single link failure or addition that caused an observed set of 

changes. Our approach takes snapshots of routing tables 

collected from multiple vantage points, at two different time 

instances, and without knowing the underlying topology, 

locates the link that initiated the routing changes, as precisely 

as possible. We provide theoretical proof con-firming the 

correctness of our design. While previous work has been done 

in BGP event analysis, the lack of formal algorithms that can 

automatically take route data as input and output results with 

verifiable properties, has remained an open challenge. This 

work is a step in the direction of for-mal algorithms which 

combine views from multiple vantages points to identify 

possible causes in the underlying network connectivity. 

The paper is organized as follows. Section 2 explains the 

current BGP data collection methodology and abstracts the 

practical problem into an analytic model. Section 3 then takes 

the view from a single monitoring point and identifies one 

possible set of link changes that could explain the routing 

dynamics observed from that site. Section 4 shows how this 

possible set of failures is used to prove whether a single link 

failure or single link addition could have triggered the 

changes. If a single link change could have triggered the 

change, we identify all possible failure or addition scenarios 

that could have triggered the observed changes. Section 5 

builds on the single viewpoint faults to combine views from 

different monitoring points to present a global consistent
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explanation of the routing event. Finally section 6 reviews 

related work and Section 7 concludes the paper. 

2. BGP and Routing Model Description 

BGP is a path vector routing protocol used to ex-change 

reachability information between Autonomous Systems. BGP 

routers in neighboring Autonomous Systems exchange 

routing updates. A BGP updates lists the path of Autonomous 

Systems“ ”, used to reach the destination 

prefix. Update messages are transmitted reliably using TCP 

and once the initial routing table has been exchanged, further 

updates are sent only if a route changes. Thus in principle 

each update message should convey new route information 

and should be triggered by some underlying event such as a 

link failure, link addition, or policy change. 

Projects such as University of Oregon’s Route Views[14] 

and RIPE [16] collect BGP updates from a number of 

Autonomous Systems. The monitoring points set up peering 

sessions with collaborating routers and passively collect all 

the updates generated by the routers. To the router being 

monitored, the monitoring point appears to be simply another 

BGP peer router. The monitoring point logs update data and 

does not advertise any paths to other ASs. Figure 1 shows an 

example where AS7018 and AS 1239 are being monitored by 

a single monitoring point. All up-dates received over the 

peering session between 7018 and the monitoring point are 

collected and written to a BGP log. The updates reported to 

the monitoring point provide a complete view of all Internet 

prefixes reachable from AS 7018
1
 and the path information in 

the updates provides a glimpse into AS 7018’s view of the 

Internet topology. Similarly a path announcements from 

AS1239 are also logged. 

2.1. Formal Routing Mode 

We model the Internet as a simple directed connected 

graph where and represents the set of 

destinations and roughly corresponds to Internet prefixes. The 

nodes in   are not considered destinations in network , 

and roughly correspond to the Internet A Sec. Nodes in 

are connected by links in  EN and each edge in EN has the 

form (a,b)  where . The destinations are attached 

to the nodes in VN through edges in ED and each edge in ED 

has the form [d, n] where  and . We assume 

that each destination  attaches to at least one node in VN  and 

some destination may attach to multiple nodes in VN, , i.e. 

some destinations may be multi-homed.  

We model the BGP routing protocol as a Simple Path 

Vector Protocol (SPVP). SPVP is a single path routing 

protocol, in which each node advertises only its best path to 

neighboring nodes. A path from node V to destination d is a 

sequence of nodes where 

 for all , and 

. After receiving and storing a route learned 

from one of its neighbors, node  selects its best path to 

destination  according to some routing policy (i.e. rank-ing 

function). After the initial path exchanges, further up-dates 

are sent only if a node’s best path changes (i.e. there are no 

periodic route announcements). 

We assume that links can fail and new links may be 

added to the network. If a link fails, the nodes adjacent to the 

link detect the failure and all destinations using the link must 

switch to alternate path (or declare the destination un-

reachable). Similarly, the addition of a link is detected by the 

adjacent nodes and as a result, destinations may switch to a 

new shorter path. The link failures and link additions are not 

directly reported to any central database or monitoring site. 

However, by observing the path changes reported by some 

nodes in , one may be able to estimate the number of 

changes, locations of the changes, and how the SPVP 

protocols behaves as a result of the changes. 

Let  denote the set of monitored nodes. At any time, 

we are able to obtain the routing tables from these monitored 

nodes, just as in real BGP data. More precisely, for each node 

, we are given the shortest path tree rooted . Just as the 

Internet topology is not known, we also 
 

assume the topology of graph  is not known by the 

monitoring process. Given only the shortest path trees from 

time  and  , we would like to explain the cause of any 

observed routing changes. 

2.2. Distinctions between BGP Monitoring and Our Model 

The general problem of understanding BGP behavior 

based on observed updates is an open challenge. As a first 

step, we have made a few simplifying assumptions in our 

formal model. 

 We model the edge between two nodes in  is a single link 

 and we assume this link is either avail-able or has failed. 

But in actual BGP operations, the link between two AS can 

be many physical connections. For example, networks of 

large ISPs are connected at many places (packets can be 

exchanged at any of these connection points) and only some 

of these many physical connections are likely to fail at once. 

 We model an AS as a node in  and assume each node has 

one “best” path. In practice, a large AS node is not a single 

atomic entity and different contiguous portions of the AS, 

may select and advertise different best paths. 

 We assume a shortest path routing policy. The BGP routing 

protocol allows arbitrary best path selection policies, but 

some policies can lead to persistent route oscillation [10]. 

Although our SPVP model can work with any routing policy, 

this paper considers only a shortest-path policy, which has 

been proven to con-verge [9]. 

Despite these simplifications, the formal model still 

presents an interesting challenge. The techniques used to find 

faults in our formal model can be applied to the actual BGP 

monitoring data, taking the above assumptions into 

consideration when reviewing the results. 

3. Identifying Faults Using a Single Vantage Point 

We first consider only the view from a single monitoring 

point, and provide an algorithm that gives a possible 

explanation for the routing changes observed at . More 

formally, we are given two shortest path trees rooted at : 

 is the shortest path tree at time and  is 

the shortest path tree at time  . Both  and  were 
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computed in some unspecified graph  and if  , 

some link(s) in  must have failed (or recovered). Our 

objective to identify some scenario of failed (and/or 

recovered) links that ex-plain the change from  to  . 

Toward this end, we present an algorithm that assigns labels 

to each edge and identifies one possible scenario for the route 

change event. We later show how the output of Algorithm 1 

can be easily ex-tended to identify every possible single-event 

scenario and we show how to use the view from multiple 

monitoring points to identify, as precisely as possible, the 

failed (or re-covered) link. 

Algorithm  takes tree and  as 

input and labels each edge in  as either unchanged, 

vanished, or appeared. A vanished link is present in , but 

not present in  . This can occur due the failure of the link or 

the link may vanish as a consequence of some other change. 

We distinguish the actual failed edges from the other 

vanished edges by labeling failed edges as failed. Similarly, 

edges that recovered or whose additions caused route changes 

are marked added. Note that edges marked appeared may not 

have changed state (from down to up), but simply became 

part of the shortest path tree as a consequence of some other 

event. Conceptually, the algorithm is relatively simple. To 

identify a link failure, the algorithm combines  and  and 

then starts by calculating a shortest path tree,  in this 

combined graph. Note that if only a link failure has occurred, 

 and the algorithm progressively trans-forms  by 

removing links that are absent in  . The failed links are 

those whose removal changes  and we adjust  after 

each change. Similarly in the case of a link recovery,  

is transformed to get , to identify the restored link. We are 

not given whether a link failure or link recovery (or both) 

have occurred, but we observe that the two steps can be run in 

parallel as shown in Algorithm 1. 
 

To maintain  and , we define a function called 

. In our model, the edges are un weighted and this 

function can be implemented to run in linear time  as a 

Breadth First Search with appropriate tie-breaking. One 

important property of the shortest path tree is that leaf nodes 

can only be nodes from  (destination set), because in real 

life the monitoring point gets paths only to prefixes and not to 

network nodes. Thus some nodes of  (and even from ) 

might disappear over time, hence in general  (recall  

node appearing in ). 

3.1. Example 

Figure 3 provides an example showing the execution of 

the algorithm. Figure 3-a, shows , the shortest path tree at 

time . Three prefixes, , , and  are advertised from 

AS-4, AS-6 and AS-5 (respectively). Figure 3-b shows  , 

the shortest path tree at time  . Note that the path to prefix 

 has not changed, but an event has changed the shortest 

paths from  to prefixes  and . The algorithm will label 

each edge as unchanged, vanished, or appeared and will 

select one edge as the cause. The algorithm first combines the 

two trees  and to obtain the graph shown in Figure 4-a 

and computes a new shortest path tree in this combined 

graph. Following a 

 

Figure 3. Trees  at time  and  at . 

 

Figure 4. Initial Graph  with  and 

Initial  on . 

a breadth first search on edges, each edge is tested and 

labeled accordingly. Edge  appears in both graphs an dis 

labeled unchanged. Edge  appears only in  an disabled 

as vanished. Furthermore, edge  is in the SPT  and thus 

edge  is marked as a failed link and anew SPT  is 

computed after excluding edge , as shown in Figure 5-b. 

Each of the additional edges are tested in BFS order and are 

either present in both trees and labeled as unchanged or not 

present in  (or ) and labeled as vanished or appeared. 

Note that for edges  and , since they are present in  , 

their membership has to be checked in  and not . The 

resulting labels are shown in Figure 6, where  denotes 

failed,  de-notes appeared,  denotes vanished, and  

denotes un-changed. 

In this example, the algorithm identified link  as failed 

link. All other links did not change state, though they moved 

into or out of the shortest path tree as a consequence of this 
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single failure. While this scenario is a feasible ex-planation 

for the change observed at , it is not the only possible 

explanation. The failure of only link  could have also 

caused the change from  to  . In addition, a 

 

Figure 5.  after removal of  and resulting . 

 

Figure 6. Final labeled graph. 

variety of multi-failure/recovery events could have caused  

the change, such as the recovery of link  combined with 

failure of links  and link . Any one of these events is a 

plausible explanation and the exact cause can-not be 

determined from only  and  . Since we consider edges in 

BFS order, our algorithm selects the edge closest to the 

vantage point as failed. We first show the algorithm always 

produces some feasible explanation and then show how we 

can easily extend this feasible solution to identify all single-

fault explanations. 

3.2. Correctness 

While no algorithm could produce a unique solution 

given only this limited information, it is clear the algorithm 

will always provide an feasible explanation for any input  

and .Let  be the set of links available at time  

respectively in the graph. At a monitoring point , let  

be to Shortest Path Trees rooted at , i.e. let 

. Let  . 

We first claim that the algorithm 1 produces a correct 

explanation of the change. This can be formalized as follows. 

Theorem 1 (Correctness of ). Given  , 

suppose algorithm Find Change() labels set  as failed 

and  as added, i.e. the explanation produced is: 

 and . Then this explanation is 

correct, i.e.  .We will 

need following simple claim in this proof. 

Claim 1.1.  does not use any edge labeled appeared (it 

can use edges of  that are not labeled at the time  is 

constructed). 

Proof. We shall show this by induction on the iterations of the 

for loop. Initially, before the for loop begins, the statement is 

true since no edges are labeled. Suppose the statement is true 

upto  the iteration and now we are considering the th 

iteration. The only way  changes is that we label edge 

 as added and delete it from . Suppose for 

contradiction that edge  labeled appeared now enters 

.  

Since the for loop considers the edges in the BFS order 

over  , and  was considered before , we know that  

cannot be in the sub tree rooted at  (in the tree ). In a 

shortest path tree, deleting an edge can only change paths to 

nodes in the sub tree rooted at that edge. Thus if  is not in the 

sub tree rooted at , path to  does not change and hence 

 cannot be added. Let us consider then the case when  

is there in the sub-tree rooted at . If , then both  are in 

 , so  has two parents  and that is not possible in a tree, 

therefore .  Hence , and be- cause  was 

considered before 

,i.e. ,i.e.

. But in shortest path calculation, for any edge 

 , . Hence this is a contradiction. 

Thus  will not use any edges labeled appeared after 

the recompilation in the th iteration of the for loop, and now 

the proof follows. [end claim]  

ProofofTheorem1.Wewillprovethat 

 the proof for   is similar 

In the algorithm 1, we label all edges in  (the last 

else if block) as either appeared or added. We initialized 

. Since we keep deleting edges that are 

labeled added, at the end of the algorithm, 

. Thus it is sufficient to prove that at the 

end of the algorithm, . But if two trees have the same 

sets of edges, the arrangement of edges is also same. Hence 

we will only show that the set of edges used in  is exactly 

. 

To see this, note that all the edges of  are labeled 

appeared or added by the end of the algorithm. The edges 

labeled added ( ) have already been deleted from  and so 

they cannot be in . And by claim 1.1, edges labeled 

appeared are not used in  at any time. Hence at the end of 

algorithm,  can use only edges from , in fact it will use 

all the edges of  as they are never deleted from . 

4. Dealing with Single-Fault Scenarios 

Although there may be many possible explanations for 

the routing changes observed by , we first seek the simplest 

possible explanation. In the best case, a large number of route 

changes can be caused by a single link failure or recovery. In 

the remainder of the paper, we call the failure or recovery of a 

single link as a single-event explanation. We have shown that 

algorithm  finds one explanation. In this section, 

we show that the algorithm in fact always finds a single-event 

explanation, if such a explanation exists. We then show how, 

given this one single-event explanation, we can easily list all 

possible single-event explanations. 

More formally, given two shortest path trees 

, we define an explanation for the change 

in trees as two sets of edges  where  is the set of failed 

edges and  is the set of recovered edges. In other words, 

 and  where . 

Theorem 2 (Solution-Space Structure Theorem). Suppose 

 (i.e. a single link failure). Then any other single 

event explanation of  change must have  (i.e. any 

other single event explanation is also a link failure). 

Proof .There is a change   only if  we 

already given one explanation. 

   

If some other single event explanation has   then 

 and   say R={f}, for some thus 
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and  for suitably 

chosen Thus  

so   

now shortest path tree over  uses only edges from 

 .  

In this equation, the latter quantity by our pre-ordained 

explanations T0, while the former is explained as T1. Hence 

we arrive at the contradiction,    Therefore we must 

have . 

Now we show that in the single link failure case, 

algorithm  in fact outputs an explanation with 

 and . It is possible that  may include an edge other 

than the actual failed link, but it is important to note that . 

Theorem 3 (Optimality of ). Suppose  

(single link failure). Then  labels exactly one 

edge as failed, and no edge as added. Proof. From theorem 2 

about admissible explanations and the correctness proof in 

theorem 1, algorithm  will never mark any edge 

as added. Thus it remains now to show only the first part of 

the theorem, i.e.  labels exactly one edge as 

failed. 

Let e=(u.v) be the actual failed. Then  

changes. On this path let be the node closest to such that 

 does not change and let (x,y) be the edge on 

we start with and we consider 

edges in the BFS order of EO+E1 (Shortest path tree = Breadth 

First Search Tree for un weighted graph). Thus we find (x,y) 

to be the first edge such that 

 and we mark it failed. By 

deleting (x,y) we will change paths of only the nodes in the 

sub tree rooted at y (That include nodes u,v). When we 

recomputed  call it T, we 

claim that this tree uses edges from E1 only so that all other 

edges of E0-E1 will be marked vanished and not failed. 

If , we have identified the correct fault and we 

are done. Otherwise the only reason  changes for 

 because of  failure is that there is a 

destination node  such that  is along  

and there is no other destination  such that  uses 

node  but not edge . Hence in  , all these nodes must be 

absent. This is true also when we delete only  and so in , 

all these nodes (and hence the edges) are absent. In other 

words, deleting  has the same effect as deleting , i.e. 
 

Now since new  is same as  , it does not have any 

edges from  , so it will not mark anymore edges as 

failed, i.e. the algorithm marks exactly one edge as failed. 

In the case of single link recovery, results analogous to 

theorems 2 and 3 can be proved along the same line of 

reasoning. Combining this with theorem 1, we have proved 

correctness and optimality of algorithm  in the 

case of single event explanations. 

Thus in order to determine if a single-fault event could 

explain the changes at monitoring point , we simply run 

algorithm  and count the number of links 

labeled failed or added. If there is more than one link in this 

set, the change could not have been caused by any single-

fault event. If there is exactly one such link, then we have a 

single-fault explanation. Furthermore, if the link is failed, 

then all single-event explanations involve only one failed 

link. Similarly, if the link is added, then all single-event 

explanations involve only one recovered link. 

4.1. Identifying All Possible Single-Faults 

Given a single plausible failure (recovery) identified 

using , we now show how to easily identify all 

possible single faults. Recall the example in Figures 3-6 

identified link  as the only failed link. Link  could also 

be selected as the only failed link, but the failure of only link 

 would not explain the change in route to prefix . As the 

previous theorem shows, links and  are marked 

appeared, but their recovery alone could not explain the 

changes in the route to either  or . Thus the only possible 

single fault events in the example are the failure of link  or 

the failure of link . 

At the conclusion of , every edge is labeled 

as either unchanged, vanished, or appeared and one edge is 

labeled either failed or added.  starts with this edge 

and moves down the tree until all edges that could have failed 

are marked failed (or in the case of single recovery, all edges 

that could have recovered are marked added).  

returns the entire set of links that constitute this path. The 

failure of any of these links alone would explain the path 

changes from  to  . 
 

5. Combining Views from Multiple Monitoring Points 

Having dealt with route change explanations from single 

view point, we now focus on the problem of combining the 

views from multiple vantage points to better identity the 

single fault scenario. The main objective is to derive a 

globally accepted link or set of links, each of whose failure 

(addition) alone, could explain the change in routes between 

times  to  . Even if all monitoring points offer a single fault 

explanation, some conflict resolution problems remain. In the 

previous steps, a monitoring point as-signed a label to each 

edge visible from that monitoring point and different 

monitoring points may have assigned conflicting labels to an 

edge. Combining views primarily requires some form 

reconciling these differences. 

Note that it is possible to have a single fault explanation 

from one monitoring point, yet have only multiple fault 
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explanation from the combined view. In this case, the 

combined view perspective proves a single fault could not 

explain the changes observed globally. For example, it may 

be the case that monitoring point  identified link  the 

only failed link, but monitoring point  identified link  

as the only failed link. This can easily occur since link  

may have never appeared in the view from and similarly 

 never appeared in the view from . 

Algorithm  details the procedure for finding 

a globally consistent single fault (or single addition) 

explanation. The first part of the algorithm involves finding 

the set of links common to possible failed (added) links from 

all the vantage points in the case of a single failure. The 

second part involves updating the edge labels of the algorithm 

and uses a procedure update Label() to achieve this. The 

algorithm returns the empty set if a single fault explanation is 

not possible in the combined view. 
 

If at every step, , then no monitoring point detected 

any change in routes and the failed (added) edge set is empty. 

If many monitoring points detected changes, then the actual 

failed link is present in paths  from each of the monitoring 

points who observed a change. Thus taking the intersection of 

these paths will highlight one or more links. The intersection 

cannot be empty if only a single fault explanation exists. The 

algorithm outputs a set of links denoted as  and each 

link in this set is a possible sin-gle failure explanation. Note 

that even with the view from multiple monitoring points, our 

algorithm may still identity several possible links whose 

failure could have caused the change. In this case, the actual 

failed link belongs to the set , but given the limited 

views, we cannot pin-point the exact failure. The other task 

achieved by MVS Causes() is to re-label the graph edges to 

achieve a more accurate label for each edge as views from 

different vantage points are added. 

5.1. Re-labeling of Edges 

When combining views, edge labels assigned for an 

individual vantage point, may not be valid when we add an-

other view. For example, an edge   labeled as vanished from 

one point    , could be labeled unchanged from an-other point. 

We address this by maintaining a global labeled graph, that 

contains edge labels based on already re-solved views from 

vantage points. For every view added to this global labeled 

graph, we reliable the conflicting edges. The following rules 

follow from our labeling scheme, when adding a view to the 

global graph. 

1.An unchanged edge would always remain unchanged. 

2.Any failed or vanished edge creating a conflict (with an 

unchanged, appeared, or added edge) is re-labeled unchanged. 

Note that from a point  , an edge can be labeled vanished, 

only when it is present in   , and not present in   . This edge 

can cause a conflict only when it is present in   , viewed from 

another point, and thus this edge can only be labeled 

unchanged. A failed edge can never be relabeled added or 

appeared 

3.An added or appeared edge creating a conflict (with an 

unchanged, vanished, or failed) has to be relabeled 

unchanged. An added link can never be relabeled failed or 

vanished 

Figure 7 shows the possible state transitions while 

combining views. Procedure Update Label() works on the 

rules in this state transition diagram. The states in this 

diagram are the current labels associated with the global 

graph. The labels on the edges are the labels associated with 

the view from    that is being added. The transition from 

vanished to failed can only occur in Find Path(). 

Figure 8 shows how the entire process of combining 

views and edge relabeling works with an example. Figure 8-a 

shows the view from    , based on the example in Figure 4. 

For clarity, the SPTs at times    and    are indicated by dashed 

and solid lines respectively. Similarly, the view from    is 

presented in 8-b. Executing Find Path() on these two graphs 

generates Figures 8-c and 8-d. Find-Path() also produces a 

path containing the possible single link failure candidates, 

shown in figures 8-f and 8-g for    and   respectively. The 

intersection of these two paths 

(as calculated by   MVSA Fault ) results in the failed link as 
 

Figure 7. State Transition Diagram for la-beled edges. 

6. Related Work 

This paper presents a first step towards an analytical sys-

tem for detecting faults at the BGP level. Previous work has 

studied the impact of various stress events on BGP routing, 

including studies of Code-Red [1] and SQL Slammer [3], as 

well as infrastructure failures. While some of the previous 

work was able to provide explanations for these events, the 

explanations relied on human insight along with extensive 

data processing. Code-Red worm and its impact on BGP 

routes was first presented in [2], who reported abnormalities 

in BGP behavior during the worm attack. [19] re-ported the 

presence of monitoring artifacts in the code-red data and 
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provided a second look at the event. According to the study in 

[19], the worm had a large impact on some edge networks, 

and weaknesses in BGP’s design and implementation 

substantially amplified the impact. The impact of SQL 

Slammer worm on BGP routing was also studied in [12] and 

efforts for visualizing BGP updates to get a sense of the 

location of change has been done in [11]. The approach in 

[11] is geared towards summarizing large scale 

 

Figure 8. Example of Combining Views from Two 

Vantage Points. 

 

changes to understand events like major ISP failures. Work in 

[18] is directed at visually capturing the BGP routing 

information, and contains guidelines for gaining insights. 

However, formal algorithms to address the BGP dynamics are 

lacking in previous studies. 

Other studies have used BGP route data to statically infer 

the Internet’s underlying AS level topology. [7], [8] and [4] 

used AS path information from BGP routing tables to map 

and derive characteristics of the Internet inter-domain 

topology. [5] further examined the relationships be-tween A 

Ses using AS path information and classified AS relationships 

into three classes: customer-provider, peering and sibling, 

based on the observation that each AS path contains first a 

sequence of customer-provider and sibling edges, then one or 

zero peer-peer edge, and finally a sequence of provider-

customer and sibling edges. Subramanian et. al. [17] also 

inferred inter-AS relationship, but their approach is based on 

the consistency among multiple routing tables. These studies 

have led to a better understanding of the structure of the 

Internet topology and the commercial relationship between A 

Ses. However, each uses snap-shots of the Internet and tells 

us little about dynamics. The results cannot be trivially 

applied to pin point failures. 

Algorithm 1 Find Change can also be viewed as deter-

mining tree-edit distance when the operations allowed are 

delete and insert and trees are restricted to be Shortest Path 

Trees. But in general finding how to convert one tree into the 

other is NP-hard and many have considered approximate 

solutions [6]. While it is enough for us to compute SPT every 

time a change occurs, many efficient algorithms exist that 

dynamically update Shortest Paths Trees, see for example 

[13]. Their average case complexity is   log    for each update, 

and can be used for graphs involving weighted edges, to 

reduce the complexity of SPT. 

7. Conclusions and Future Work 

In order to build diagnostic tools for the global routing 

infrastructure, this paper developed an algorithmic set, called 

MVS Change, to identify the origin of routing changes caused 

by a single link. Utilizing the information carried in a path 

vector routing protocol and collected from multiple vantage 

points, MVS Change builds graphs of snapshots of the 

network routing connectivity over time, and applies basic 

graph theory approaches to pin down the exact location of the 

link change. Along with the theoretical proof, our preliminary 

simulation experiments have also confirmed the correctness 

of the design. 

We believe that MVS Change represents an important 

first step towards applying formal methods to inter-domain 

routing diagnosis. Our plan for future work includes ex-

tending MVS Change to cover increasingly more complex 

failure cases, such as node failure and multiple simultaneous 

failures. We also plan to incorporate considerations of routing 

policies in order to make MVS Change more applicable to 

Internet deployment. 
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