
M.Srikanth et al./ Elixir Comp. Engg. 116 (2018) 50196-50203 50196

1. Introduction

Diagnosis tools are essential in monitoring global Inter-

net routing infrastructure for dependable packet delivery. The

Internet is divided into a large number of Autonomous

Systems (AS) and the Border Gateway Protocol (BGP) [15] is

used to exchange reachability information between these

Autonomous Systems (AS); a new BGP update message is

generated whenever a border router’s reachability to any

destination prefix is changed. Although the BGP specification

is relatively simple, understanding the global routing

dynamics has proven to be great challenge. Due to the

Internet’s sheer size, complexity, and various routing policies,

it is difficult if not impossible to identify the causes behind

large volumes of BGP update messages that occur from time

to time in today’s Internet.

Most Autonomous Systems monitor their own local data

and some even provide snapshots to the public. In the last few

years, a number of passive BGP monitoring/vantage sites,

such as RIPE [16] and Route Views [14], have been

established to collect BGP update data from BGP routers

residing in multiple A Ses. The resulting BGP log data is

potentially useful for diagnosis purpose. However without a

set of effective tools, the large volume of raw data obscures

the actual routing changes. For instance, in April of 2003, the

data collection points at Route Views logged over 10

gigabytes of unprocessed data from over 30 routers in

different geographic locations. An ad-hoc combination of

intuition, experience, and informal analysis is often used to

speculate the causes of large swings in BGP updates. In

addition to the challenge of scale, the underlying Internet

topology is not known precisely and the monitoring points

provide views from only a limited set of geographic locations.

In such an environment, ad-hoc techniques are limited by the

expertise of the administrator and it is not easy to identify the

underlying events that cause BGP changes. With the

increased importance of fault tolerance and survivability, the

ability to infer the cause of routing changes would immensely

help in diagnosing the failures and estimating the impact.

To provide dependable global data de-livery, we need

analysis tools that can help us understand the BGP system

and pinpoint the exact cause of connectivity changes.

In this paper we present a formal approach for analyzing

routing data to identify the origin of routing changes. Using a

simplified model of BGP, called Simple Path Vector Protocol

(SPVP), and a graph model of the Internet, we present the

MVS Change algorithm set. Note that even a single link

failure or link addition can result in large number of BGP

path changes, but finding this failure without knowledge of

the underlying topology can be a challenge. As a first step

toward designing a formal set of algorithms for under-

standing Internet route changes, we focus on identifying the

single link failure or addition that caused an observed set of

changes. Our approach takes snapshots of routing tables

collected from multiple vantage points, at two different time

instances, and without knowing the underlying topology,

locates the link that initiated the routing changes, as precisely

as possible. We provide theoretical proof con-firming the

correctness of our design. While previous work has been done

in BGP event analysis, the lack of formal algorithms that can

automatically take route data as input and output results with

verifiable properties, has remained an open challenge. This

work is a step in the direction of for-mal algorithms which

combine views from multiple vantages points to identify

possible causes in the underlying network connectivity.

The paper is organized as follows. Section 2 explains the

current BGP data collection methodology and abstracts the

practical problem into an analytic model. Section 3 then takes

the view from a single monitoring point and identifies one

possible set of link changes that could explain the routing

dynamics observed from that site. Section 4 shows how this

possible set of failures is used to prove whether a single link

failure or single link addition could have triggered the

changes. If a single link change could have triggered the

change, we identify all possible failure or addition scenarios

that could have triggered the observed changes. Section 5

builds on the single viewpoint faults to combine views from

different monitoring points to present a global consistent

ARTICLE INFO

Article history:

Received: 15 February 2018;

Received in revised form:

9 March 2018;

Accepted: 19 March 2018;

Keywords

Fault Tolerant Algorithms,

Fault Diagnosis,

Routing,

Graph Theory.

An Algorithmic Approach to Identifying Link Failures
M.Srikanth, M.Nagalakshmi, K.Vani, T.Yagneswarareddy and M.Lakshmi Durga

Department of Computer Science Engineering, Tirumala Engineering College.

ABSTRACT

Due to the Internet’s sheer size, complexity, and various routing policies, it is difficult if

not impossible to locate the causes of large volumes of BGP update messages that occur

from time to time. To provide dependable global data delivery we need diagnostic tools

that can pinpoint the ex-act connectivity changes. In this paper we describe an algorithm,

called MVS Change that can pin down the origin of routing changes due to any single

link failure or link restoration. Using a simplified model of BGP, called Simple Path

Vector Protocol (SPVP), and a graph model of the Internet, MVS Change takes as input

the SPVP update messages collected from multiple vantage points and accurately locates

the link that initiated the routing changes. We provide theoretical proof for the the

correctness of the design.

 © 2018 Elixir All rights reserved.

Elixir Comp. Engg. 116 (2018) 50196-50203

Computer Engineering

Available online at www.elixirpublishers.com (Elixir International Journal)

M.Srikanth et al./ Elixir Comp. Engg. 116 (2018) 50196-50203 50197

explanation of the routing event. Finally section 6 reviews

related work and Section 7 concludes the paper.

2. BGP and Routing Model Description

BGP is a path vector routing protocol used to ex-change

reachability information between Autonomous Systems. BGP

routers in neighboring Autonomous Systems exchange

routing updates. A BGP updates lists the path of Autonomous

Systems“ ”, used to reach the destination

prefix. Update messages are transmitted reliably using TCP

and once the initial routing table has been exchanged, further

updates are sent only if a route changes. Thus in principle

each update message should convey new route information

and should be triggered by some underlying event such as a

link failure, link addition, or policy change.

Projects such as University of Oregon’s Route Views[14]

and RIPE [16] collect BGP updates from a number of

Autonomous Systems. The monitoring points set up peering

sessions with collaborating routers and passively collect all

the updates generated by the routers. To the router being

monitored, the monitoring point appears to be simply another

BGP peer router. The monitoring point logs update data and

does not advertise any paths to other ASs. Figure 1 shows an

example where AS7018 and AS 1239 are being monitored by

a single monitoring point. All up-dates received over the

peering session between 7018 and the monitoring point are

collected and written to a BGP log. The updates reported to

the monitoring point provide a complete view of all Internet

prefixes reachable from AS 7018
1
 and the path information in

the updates provides a glimpse into AS 7018’s view of the

Internet topology. Similarly a path announcements from

AS1239 are also logged.

2.1. Formal Routing Mode

We model the Internet as a simple directed connected

graph where and represents the set of

destinations and roughly corresponds to Internet prefixes. The

nodes in are not considered destinations in network ,

and roughly correspond to the Internet A Sec. Nodes in

are connected by links in EN and each edge in EN has the

form (a,b) where . The destinations are attached

to the nodes in VN through edges in ED and each edge in ED

has the form [d, n] where and . We assume

that each destination attaches to at least one node in VN and

some destination may attach to multiple nodes in VN, , i.e.

some destinations may be multi-homed.

We model the BGP routing protocol as a Simple Path

Vector Protocol (SPVP). SPVP is a single path routing

protocol, in which each node advertises only its best path to

neighboring nodes. A path from node V to destination d is a

sequence of nodes where

 for all , and

. After receiving and storing a route learned

from one of its neighbors, node selects its best path to

destination according to some routing policy (i.e. rank-ing

function). After the initial path exchanges, further up-dates

are sent only if a node’s best path changes (i.e. there are no

periodic route announcements).

We assume that links can fail and new links may be

added to the network. If a link fails, the nodes adjacent to the

link detect the failure and all destinations using the link must

switch to alternate path (or declare the destination un-

reachable). Similarly, the addition of a link is detected by the

adjacent nodes and as a result, destinations may switch to a

new shorter path. The link failures and link additions are not

directly reported to any central database or monitoring site.

However, by observing the path changes reported by some

nodes in , one may be able to estimate the number of

changes, locations of the changes, and how the SPVP

protocols behaves as a result of the changes.

Let denote the set of monitored nodes. At any time,

we are able to obtain the routing tables from these monitored

nodes, just as in real BGP data. More precisely, for each node

, we are given the shortest path tree rooted . Just as the

Internet topology is not known, we also

assume the topology of graph is not known by the

monitoring process. Given only the shortest path trees from

time and , we would like to explain the cause of any

observed routing changes.

2.2. Distinctions between BGP Monitoring and Our Model

The general problem of understanding BGP behavior

based on observed updates is an open challenge. As a first

step, we have made a few simplifying assumptions in our

formal model.

 We model the edge between two nodes in is a single link

 and we assume this link is either avail-able or has failed.

But in actual BGP operations, the link between two AS can

be many physical connections. For example, networks of

large ISPs are connected at many places (packets can be

exchanged at any of these connection points) and only some

of these many physical connections are likely to fail at once.

 We model an AS as a node in and assume each node has

one “best” path. In practice, a large AS node is not a single

atomic entity and different contiguous portions of the AS,

may select and advertise different best paths.

 We assume a shortest path routing policy. The BGP routing

protocol allows arbitrary best path selection policies, but

some policies can lead to persistent route oscillation [10].

Although our SPVP model can work with any routing policy,

this paper considers only a shortest-path policy, which has

been proven to con-verge [9].

Despite these simplifications, the formal model still

presents an interesting challenge. The techniques used to find

faults in our formal model can be applied to the actual BGP

monitoring data, taking the above assumptions into

consideration when reviewing the results.

3. Identifying Faults Using a Single Vantage Point

We first consider only the view from a single monitoring

point, and provide an algorithm that gives a possible

explanation for the routing changes observed at . More

formally, we are given two shortest path trees rooted at :

 is the shortest path tree at time and is

the shortest path tree at time . Both and were

M.Srikanth et al./ Elixir Comp. Engg. 116 (2018) 50196-50203 50198

computed in some unspecified graph and if ,

some link(s) in must have failed (or recovered). Our

objective to identify some scenario of failed (and/or

recovered) links that ex-plain the change from to .

Toward this end, we present an algorithm that assigns labels

to each edge and identifies one possible scenario for the route

change event. We later show how the output of Algorithm 1

can be easily ex-tended to identify every possible single-event

scenario and we show how to use the view from multiple

monitoring points to identify, as precisely as possible, the

failed (or re-covered) link.

Algorithm takes tree and as

input and labels each edge in as either unchanged,

vanished, or appeared. A vanished link is present in , but

not present in . This can occur due the failure of the link or

the link may vanish as a consequence of some other change.

We distinguish the actual failed edges from the other

vanished edges by labeling failed edges as failed. Similarly,

edges that recovered or whose additions caused route changes

are marked added. Note that edges marked appeared may not

have changed state (from down to up), but simply became

part of the shortest path tree as a consequence of some other

event. Conceptually, the algorithm is relatively simple. To

identify a link failure, the algorithm combines and and

then starts by calculating a shortest path tree, in this

combined graph. Note that if only a link failure has occurred,

 and the algorithm progressively trans-forms by

removing links that are absent in . The failed links are

those whose removal changes and we adjust after

each change. Similarly in the case of a link recovery,

is transformed to get , to identify the restored link. We are

not given whether a link failure or link recovery (or both)

have occurred, but we observe that the two steps can be run in

parallel as shown in Algorithm 1.

To maintain and , we define a function called

. In our model, the edges are un weighted and this

function can be implemented to run in linear time as a

Breadth First Search with appropriate tie-breaking. One

important property of the shortest path tree is that leaf nodes

can only be nodes from (destination set), because in real

life the monitoring point gets paths only to prefixes and not to

network nodes. Thus some nodes of (and even from)

might disappear over time, hence in general (recall

node appearing in).

3.1. Example

Figure 3 provides an example showing the execution of

the algorithm. Figure 3-a, shows , the shortest path tree at

time . Three prefixes, , , and are advertised from

AS-4, AS-6 and AS-5 (respectively). Figure 3-b shows ,

the shortest path tree at time . Note that the path to prefix

 has not changed, but an event has changed the shortest

paths from to prefixes and . The algorithm will label

each edge as unchanged, vanished, or appeared and will

select one edge as the cause. The algorithm first combines the

two trees and to obtain the graph shown in Figure 4-a

and computes a new shortest path tree in this combined

graph. Following a

Figure 3. Trees at time and at .

Figure 4. Initial Graph with and

Initial on .

a breadth first search on edges, each edge is tested and

labeled accordingly. Edge appears in both graphs an dis

labeled unchanged. Edge appears only in an disabled

as vanished. Furthermore, edge is in the SPT and thus

edge is marked as a failed link and anew SPT is

computed after excluding edge , as shown in Figure 5-b.

Each of the additional edges are tested in BFS order and are

either present in both trees and labeled as unchanged or not

present in (or) and labeled as vanished or appeared.

Note that for edges and , since they are present in ,

their membership has to be checked in and not . The

resulting labels are shown in Figure 6, where denotes

failed, de-notes appeared, denotes vanished, and

denotes un-changed.

In this example, the algorithm identified link as failed

link. All other links did not change state, though they moved

into or out of the shortest path tree as a consequence of this

M.Srikanth et al./ Elixir Comp. Engg. 116 (2018) 50196-50203 50199

single failure. While this scenario is a feasible ex-planation

for the change observed at , it is not the only possible

explanation. The failure of only link could have also

caused the change from to . In addition, a

Figure 5. after removal of and resulting .

Figure 6. Final labeled graph.

variety of multi-failure/recovery events could have caused

the change, such as the recovery of link combined with

failure of links and link . Any one of these events is a

plausible explanation and the exact cause can-not be

determined from only and . Since we consider edges in

BFS order, our algorithm selects the edge closest to the

vantage point as failed. We first show the algorithm always

produces some feasible explanation and then show how we

can easily extend this feasible solution to identify all single-

fault explanations.

3.2. Correctness

While no algorithm could produce a unique solution

given only this limited information, it is clear the algorithm

will always provide an feasible explanation for any input

and .Let be the set of links available at time

respectively in the graph. At a monitoring point , let

be to Shortest Path Trees rooted at , i.e. let

. Let .

We first claim that the algorithm 1 produces a correct

explanation of the change. This can be formalized as follows.

Theorem 1 (Correctness of). Given ,

suppose algorithm Find Change() labels set as failed

and as added, i.e. the explanation produced is:

 and . Then this explanation is

correct, i.e. .We will

need following simple claim in this proof.

Claim 1.1. does not use any edge labeled appeared (it

can use edges of that are not labeled at the time is

constructed).

Proof. We shall show this by induction on the iterations of the

for loop. Initially, before the for loop begins, the statement is

true since no edges are labeled. Suppose the statement is true

upto the iteration and now we are considering the th

iteration. The only way changes is that we label edge

 as added and delete it from . Suppose for

contradiction that edge labeled appeared now enters

.

Since the for loop considers the edges in the BFS order

over , and was considered before , we know that

cannot be in the sub tree rooted at (in the tree). In a

shortest path tree, deleting an edge can only change paths to

nodes in the sub tree rooted at that edge. Thus if is not in the

sub tree rooted at , path to does not change and hence

 cannot be added. Let us consider then the case when

is there in the sub-tree rooted at . If , then both are in

 , so has two parents and that is not possible in a tree,

therefore . Hence , and be- cause was

considered before

,i.e. ,i.e.

. But in shortest path calculation, for any edge

 , . Hence this is a contradiction.

Thus will not use any edges labeled appeared after

the recompilation in the th iteration of the for loop, and now

the proof follows. [end claim]

ProofofTheorem1.Wewillprovethat

 the proof for is similar

In the algorithm 1, we label all edges in (the last

else if block) as either appeared or added. We initialized

. Since we keep deleting edges that are

labeled added, at the end of the algorithm,

. Thus it is sufficient to prove that at the

end of the algorithm, . But if two trees have the same

sets of edges, the arrangement of edges is also same. Hence

we will only show that the set of edges used in is exactly

.

To see this, note that all the edges of are labeled

appeared or added by the end of the algorithm. The edges

labeled added () have already been deleted from and so

they cannot be in . And by claim 1.1, edges labeled

appeared are not used in at any time. Hence at the end of

algorithm, can use only edges from , in fact it will use

all the edges of as they are never deleted from .

4. Dealing with Single-Fault Scenarios

Although there may be many possible explanations for

the routing changes observed by , we first seek the simplest

possible explanation. In the best case, a large number of route

changes can be caused by a single link failure or recovery. In

the remainder of the paper, we call the failure or recovery of a

single link as a single-event explanation. We have shown that

algorithm finds one explanation. In this section,

we show that the algorithm in fact always finds a single-event

explanation, if such a explanation exists. We then show how,

given this one single-event explanation, we can easily list all

possible single-event explanations.

More formally, given two shortest path trees

, we define an explanation for the change

in trees as two sets of edges where is the set of failed

edges and is the set of recovered edges. In other words,

 and where .

Theorem 2 (Solution-Space Structure Theorem). Suppose

 (i.e. a single link failure). Then any other single

event explanation of change must have (i.e. any

other single event explanation is also a link failure).

Proof .There is a change only if we

already given one explanation.

If some other single event explanation has then

 and say R={f}, for some thus

M.Srikanth et al./ Elixir Comp. Engg. 116 (2018) 50196-50203 50200

and for suitably

chosen Thus

so

now shortest path tree over uses only edges from

 .

In this equation, the latter quantity by our pre-ordained

explanations T0, while the former is explained as T1. Hence

we arrive at the contradiction, Therefore we must

have .

Now we show that in the single link failure case,

algorithm in fact outputs an explanation with

 and . It is possible that may include an edge other

than the actual failed link, but it is important to note that .

Theorem 3 (Optimality of). Suppose

(single link failure). Then labels exactly one

edge as failed, and no edge as added. Proof. From theorem 2

about admissible explanations and the correctness proof in

theorem 1, algorithm will never mark any edge

as added. Thus it remains now to show only the first part of

the theorem, i.e. labels exactly one edge as

failed.

Let e=(u.v) be the actual failed. Then

changes. On this path let be the node closest to such that

 does not change and let (x,y) be the edge on

we start with and we consider

edges in the BFS order of EO+E1 (Shortest path tree = Breadth

First Search Tree for un weighted graph). Thus we find (x,y)

to be the first edge such that

 and we mark it failed. By

deleting (x,y) we will change paths of only the nodes in the

sub tree rooted at y (That include nodes u,v). When we

recomputed call it T, we

claim that this tree uses edges from E1 only so that all other

edges of E0-E1 will be marked vanished and not failed.

If , we have identified the correct fault and we

are done. Otherwise the only reason changes for

 because of failure is that there is a

destination node such that is along

and there is no other destination such that uses

node but not edge . Hence in , all these nodes must be

absent. This is true also when we delete only and so in ,

all these nodes (and hence the edges) are absent. In other

words, deleting has the same effect as deleting , i.e.

Now since new is same as , it does not have any

edges from , so it will not mark anymore edges as

failed, i.e. the algorithm marks exactly one edge as failed.

In the case of single link recovery, results analogous to

theorems 2 and 3 can be proved along the same line of

reasoning. Combining this with theorem 1, we have proved

correctness and optimality of algorithm in the

case of single event explanations.

Thus in order to determine if a single-fault event could

explain the changes at monitoring point , we simply run

algorithm and count the number of links

labeled failed or added. If there is more than one link in this

set, the change could not have been caused by any single-

fault event. If there is exactly one such link, then we have a

single-fault explanation. Furthermore, if the link is failed,

then all single-event explanations involve only one failed

link. Similarly, if the link is added, then all single-event

explanations involve only one recovered link.

4.1. Identifying All Possible Single-Faults

Given a single plausible failure (recovery) identified

using , we now show how to easily identify all

possible single faults. Recall the example in Figures 3-6

identified link as the only failed link. Link could also

be selected as the only failed link, but the failure of only link

 would not explain the change in route to prefix . As the

previous theorem shows, links and are marked

appeared, but their recovery alone could not explain the

changes in the route to either or . Thus the only possible

single fault events in the example are the failure of link or

the failure of link .

At the conclusion of , every edge is labeled

as either unchanged, vanished, or appeared and one edge is

labeled either failed or added. starts with this edge

and moves down the tree until all edges that could have failed

are marked failed (or in the case of single recovery, all edges

that could have recovered are marked added).

returns the entire set of links that constitute this path. The

failure of any of these links alone would explain the path

changes from to .

5. Combining Views from Multiple Monitoring Points

Having dealt with route change explanations from single

view point, we now focus on the problem of combining the

views from multiple vantage points to better identity the

single fault scenario. The main objective is to derive a

globally accepted link or set of links, each of whose failure

(addition) alone, could explain the change in routes between

times to . Even if all monitoring points offer a single fault

explanation, some conflict resolution problems remain. In the

previous steps, a monitoring point as-signed a label to each

edge visible from that monitoring point and different

monitoring points may have assigned conflicting labels to an

edge. Combining views primarily requires some form

reconciling these differences.

Note that it is possible to have a single fault explanation

from one monitoring point, yet have only multiple fault

M.Srikanth et al./ Elixir Comp. Engg. 116 (2018) 50196-50203 50201

explanation from the combined view. In this case, the

combined view perspective proves a single fault could not

explain the changes observed globally. For example, it may

be the case that monitoring point identified link the

only failed link, but monitoring point identified link

as the only failed link. This can easily occur since link

may have never appeared in the view from and similarly

 never appeared in the view from .

Algorithm details the procedure for finding

a globally consistent single fault (or single addition)

explanation. The first part of the algorithm involves finding

the set of links common to possible failed (added) links from

all the vantage points in the case of a single failure. The

second part involves updating the edge labels of the algorithm

and uses a procedure update Label() to achieve this. The

algorithm returns the empty set if a single fault explanation is

not possible in the combined view.

If at every step, , then no monitoring point detected

any change in routes and the failed (added) edge set is empty.

If many monitoring points detected changes, then the actual

failed link is present in paths from each of the monitoring

points who observed a change. Thus taking the intersection of

these paths will highlight one or more links. The intersection

cannot be empty if only a single fault explanation exists. The

algorithm outputs a set of links denoted as and each

link in this set is a possible sin-gle failure explanation. Note

that even with the view from multiple monitoring points, our

algorithm may still identity several possible links whose

failure could have caused the change. In this case, the actual

failed link belongs to the set , but given the limited

views, we cannot pin-point the exact failure. The other task

achieved by MVS Causes() is to re-label the graph edges to

achieve a more accurate label for each edge as views from

different vantage points are added.

5.1. Re-labeling of Edges

When combining views, edge labels assigned for an

individual vantage point, may not be valid when we add an-

other view. For example, an edge labeled as vanished from

one point , could be labeled unchanged from an-other point.

We address this by maintaining a global labeled graph, that

contains edge labels based on already re-solved views from

vantage points. For every view added to this global labeled

graph, we reliable the conflicting edges. The following rules

follow from our labeling scheme, when adding a view to the

global graph.

1.An unchanged edge would always remain unchanged.

2.Any failed or vanished edge creating a conflict (with an

unchanged, appeared, or added edge) is re-labeled unchanged.

Note that from a point , an edge can be labeled vanished,

only when it is present in , and not present in . This edge

can cause a conflict only when it is present in , viewed from

another point, and thus this edge can only be labeled

unchanged. A failed edge can never be relabeled added or

appeared

3.An added or appeared edge creating a conflict (with an

unchanged, vanished, or failed) has to be relabeled

unchanged. An added link can never be relabeled failed or

vanished

Figure 7 shows the possible state transitions while

combining views. Procedure Update Label() works on the

rules in this state transition diagram. The states in this

diagram are the current labels associated with the global

graph. The labels on the edges are the labels associated with

the view from that is being added. The transition from

vanished to failed can only occur in Find Path().

Figure 8 shows how the entire process of combining

views and edge relabeling works with an example. Figure 8-a

shows the view from , based on the example in Figure 4.

For clarity, the SPTs at times and are indicated by dashed

and solid lines respectively. Similarly, the view from is

presented in 8-b. Executing Find Path() on these two graphs

generates Figures 8-c and 8-d. Find-Path() also produces a

path containing the possible single link failure candidates,

shown in figures 8-f and 8-g for and respectively. The

intersection of these two paths

(as calculated by MVSA Fault) results in the failed link as

Figure 7. State Transition Diagram for la-beled edges.

6. Related Work

This paper presents a first step towards an analytical sys-

tem for detecting faults at the BGP level. Previous work has

studied the impact of various stress events on BGP routing,

including studies of Code-Red [1] and SQL Slammer [3], as

well as infrastructure failures. While some of the previous

work was able to provide explanations for these events, the

explanations relied on human insight along with extensive

data processing. Code-Red worm and its impact on BGP

routes was first presented in [2], who reported abnormalities

in BGP behavior during the worm attack. [19] re-ported the

presence of monitoring artifacts in the code-red data and

M.Srikanth et al./ Elixir Comp. Engg. 116 (2018) 50196-50203 50202

provided a second look at the event. According to the study in

[19], the worm had a large impact on some edge networks,

and weaknesses in BGP’s design and implementation

substantially amplified the impact. The impact of SQL

Slammer worm on BGP routing was also studied in [12] and

efforts for visualizing BGP updates to get a sense of the

location of change has been done in [11]. The approach in

[11] is geared towards summarizing large scale

Figure 8. Example of Combining Views from Two

Vantage Points.

changes to understand events like major ISP failures. Work in

[18] is directed at visually capturing the BGP routing

information, and contains guidelines for gaining insights.

However, formal algorithms to address the BGP dynamics are

lacking in previous studies.

Other studies have used BGP route data to statically infer

the Internet’s underlying AS level topology. [7], [8] and [4]

used AS path information from BGP routing tables to map

and derive characteristics of the Internet inter-domain

topology. [5] further examined the relationships be-tween A

Ses using AS path information and classified AS relationships

into three classes: customer-provider, peering and sibling,

based on the observation that each AS path contains first a

sequence of customer-provider and sibling edges, then one or

zero peer-peer edge, and finally a sequence of provider-

customer and sibling edges. Subramanian et. al. [17] also

inferred inter-AS relationship, but their approach is based on

the consistency among multiple routing tables. These studies

have led to a better understanding of the structure of the

Internet topology and the commercial relationship between A

Ses. However, each uses snap-shots of the Internet and tells

us little about dynamics. The results cannot be trivially

applied to pin point failures.

Algorithm 1 Find Change can also be viewed as deter-

mining tree-edit distance when the operations allowed are

delete and insert and trees are restricted to be Shortest Path

Trees. But in general finding how to convert one tree into the

other is NP-hard and many have considered approximate

solutions [6]. While it is enough for us to compute SPT every

time a change occurs, many efficient algorithms exist that

dynamically update Shortest Paths Trees, see for example

[13]. Their average case complexity is log for each update,

and can be used for graphs involving weighted edges, to

reduce the complexity of SPT.

7. Conclusions and Future Work

In order to build diagnostic tools for the global routing

infrastructure, this paper developed an algorithmic set, called

MVS Change, to identify the origin of routing changes caused

by a single link. Utilizing the information carried in a path

vector routing protocol and collected from multiple vantage

points, MVS Change builds graphs of snapshots of the

network routing connectivity over time, and applies basic

graph theory approaches to pin down the exact location of the

link change. Along with the theoretical proof, our preliminary

simulation experiments have also confirmed the correctness

of the design.

We believe that MVS Change represents an important

first step towards applying formal methods to inter-domain

routing diagnosis. Our plan for future work includes ex-

tending MVS Change to cover increasingly more complex

failure cases, such as node failure and multiple simultaneous

failures. We also plan to incorporate considerations of routing

policies in order to make MVS Change more applicable to

Internet deployment.

 References

[1] C. A. CA-2001-19. ”Code Red” Worm Exploit-ing Buffer

OverflowInIISIndexingServiceDLL.http://www.cert.org/advi

sories/CA-2001-19.html.

[2] J. Cowie, A. Ogielski, B. J. Premore, and Y. Yuan. Global

routing instabilities triggered by Code Red II and Nimda

worm attacks. Technical report, Renesys Corporation, Dec

2001.

[3] D. M. et. al. The spread of the Sapphire/Slammer worm.

http://www.cs.berkeley.edu/ nweaver/sapphire/.

[4] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-

law relationships of the internet topology. In Proceedings of

the ACM SIGCOMM ’99, August/September 1999.

[5] L. Gao. On inferring autonomous system relationships in

the internet. IEEE/ACM Transactions on Networking,

9(6):733–745, 2001.

[6] M. Garofalakis and A. Kumar. Correlating xml data

streams using tree-edit distance embeddings. In Proceedings

of the twenty-second ACM SIGMOD-SIGACT-SIGART

sym-posium on Principles of database systems, pages 143–

154. ACM Press, 2003.

[7] R. Govindan and A. Reddy. An analysis of inter-domain

topology and routing stability. In Proceedings of the IEEE

INFOCOM ’97, Apr. 1997.

[8] R. Govindan and H. Tangmunarunkit. Heuristics for inter-

net map discovery. In IEEE INFOCOM 2000, pages 1371–

1380, Tel Aviv, Israel, March 2000. IEEE.

[9] T. Griffin and G. T. Wilfong. A safe path vector protocol.

In Proceedings of INFOCOM, pages 490–499, 2000.

[10] T. G. Griffin and G. T. Wilfong. An analysis of BGP

con-vergence properties. In Proceedings of SIGCOMM,

pages 277–288, Cambridge, MA, August 1999.

[11]M. Lad, D. Massey, and L. Zhang. Link-Rank: A

Graphical Tool for capturing BGP Routing Dynamics. In

UCLA CSD Technical Report, Aug. 2003.

M.Srikanth et al./ Elixir Comp. Engg. 116 (2018) 50196-50203 50203

[12]M. Lad, B. Zhang, X. Zhao, D. Massey, and L. Zhang.

Analysis of BGP Update Surge during Slammer attack. In

Proceedings of 5th International Workshop on Distributed

Computing, Dec. 2003.

[13]P. Narvaez, K.-Y. Siu, and H.-Y. Tzeng. New dynamic

SPT algorithm based on a ball-and-string model. In

INFOCOM (2), pages 973–981, 1999.

[14]U.ofOregon.TheRouteViewsProject.http://www.routevie

ws.org.

[15]Y. Rekhter and T. Li. A border gateway protocol (BGP-

4).Request for Comment (RFC): 1771, Mar. 1995.

[16]RIPE.RoutingInformationServiceProject.http://www.ripe.

net/ripencc/pub-services/np/ris-index.html.

[17]L. Subramanian, S. Agarwal, J. Rexford, and R. H. Katz.

Characterizing the internet hierarchy from multiple vantage

points. In Proceedings of the IEEE INFOCOM ’02, New

York, NY, June 2002.

[18]S. T. Teoh, K.-L. Ma, and S. F. Wu. A Visual

Exploration Process for the Analysis of Internet Routing

Data. In Proc. IEEE Visualization, 2003.

[19]L. Wang, X. Zhao, D. Pei, R. Bush, D. Massey, A.

Mankin, S. Wu, and L. Zhang. Observation and analysis of

BGP be-havior under stress. In Proceedings of the ACM

SIGCOMM Internet Measurement Workshop 2002, Nov.

2002.

