Dr. Abhinandan R. Gupta and Ratika V. Mahalle / Elixir Civil Engg. 116C (2018) 50336-50342

Available online at www.elixirpublishers.com (Elixir International Journal)

Civil Engineering

Force Development Pattern in Thick and Thin Plate, Computational FEM

Analysis

Dr. Abhinandan R. Gupta¹ and Ratika V. Mahalle² ¹Faculty Department of Civil Engg C.O.E.T. Akola. ²M.E. (Structural Engg.),Department of Civil Engg C.O.E.T. Akola Maharashtra India.

ARTICLE INFO

Article history: Received: 22 February 2018; Received in revised form: 19 March 2018; Accepted: 29 March 2018;

Keywords

Kirchhoff–Love theory, Mindlin–Reissner theory, SAAD-PRO V8i, FEM (Finite Element Method).

ABSTRACT

It is important to make structure safe and secure for inhabitants till its useful life. Being part of construction designing it becomes upmost important to design structure safe and stable. A complete structure consisting of various element like beam, column, foundation as well as slabs one such member slab commonly considered as plate has studied over here for the change in behaviour with respect to thickness. Initially a plate is analyse using classical cosine series expansion method manually, it results is check with computational model analysis so as to find out % error, as the error is in permissible limit so further analysis work is done computationally using STAAD-PRO V8i software for 7 cases with a thickness of 5mm to 250mm of plate. On the basis of analysis related to bending moment, shear stresses, deflections, principal stresses comparative observation tables are prepare. Result shows that in thin plate forces are carried in the form of principal stresses and deflections are high. While in thick plate moment and shear stresses are predominant but deflection is very less. This study shows where to concentrate while designing the plate for practical purpose.

© 2018 Elixir All rights reserved.

1. Introduction

A plate is a planer structure with a very small thickness in comparison to the planer dimensions. If the width to thickness ratio of the plate is 8 to 10 then plate is classified as thick plate. Mindlin-Reissner theory is used for the analysis of such thick plates. If the width to thickness ratio of the plate is 8 to 100 then plate is classified as thin plate. It is intermediate plate also Kirchhoff-Love theory is use for analysis of such thin plates. If this ratio is 80 to100 then it is called membrane. The forces applied on a plate are perpendicular to the plane of the plate. Therefore, plate resists the applied load by means of bending in two directions and twisting moment. A plate theory takes advantage of this disparity in length scale to reduce the full three- dimensional solid mechanics problem to a two dimensional problem. The load carrying action of plates resembles that of beams or cables to a certain extent. Hence plates can be approximated by a grid work of beams or by a network of cables, depending on the flexural rigidity of the structures. Plates are of wide use in engineering industry. Many structures such as ships and containers require complete enclosure of plates without use of additional covering which consequently saves the material and labour. Now a days, plates are generally used in architectural structures, bridges, hydraulic structures, pave ments, containers, airplanes, missiles, ships, instruments and machine parts. Plates are usually subdivided based on their structural action. The aim of plate theory is to calculate the deformation and stresses in a plate subjected to loads. The analyses of plates are categorized into two types based on thickness to breadth ratio: thick plate and thin plate analysis. In any structure each element plays an individual role for dissolving action and maintaining stability of structure, however the skill of designing is in determining the nature of force development in the structural member with change in geometry and there after deciding on the basis of analysis result. One such important structural element is slab/ plate with change in near thickness the nature of failure changes and thus it is very important to study the effect of forces on plate with different thickness.

2. Literature Review

Michael Lee (1). Author provide a viable method to establish the correlation between the deflection and stress results of a shaped (distorted) plate analyzed as a thin shell when compared to the original (flat) thin plate analytical solution. This project analyses an elastic loading of plates with different shapes which are obtained from the loading of the previous (plate) iteration with less deflection. Thus, a relationship between the increasing plate distortion and the resulting stress and deflections can be established. Joseph E (2). Study the reports on a theoretical investigation of the of convergence properties several finite element approximations in current use and assesses the magnitude of the principal errors resulting from their use for certain classes of structural problems. The results of the study provide basic information on the effect of inter element compatibility, unequal size elements, discrepancies in triangular element approximations, flat element approximations to curved structures, and the number of elements required for a desired degree of accuracy. Ray W. Clough et.al (3). A study is made of the relative accuracy provided by seven different types of finite element in the approximation analysis of plate bending. The Kirchhoff plate bending theory is assumed and stiffness matrices for three rectangular and four triangular element are considered. The result of investigation demonstrates the

Tele: E-mail address: ratikamahalle94@gmail.com

^{© 2018} Elixir All rights reserved

rectangular element are somewhat more accurate than the triangular element. Vanam B .C. L (4) Author analyze the static analysis of an isotropic rectangular plate with various boundary conditions and various types of load applications. In this paper, finite element analysis has been carried out for an isotropic rectangular plate by considering the master element as a four noded quadrilateral element. Numerical analysis (finite element analysis, FEA)has been carried out by developing programming in mathematical software MATLAB and the results obtained from MATLAB are giving good agreement with the results obtained by classical method exact solutions. Later, for the same structure, analysis has been carried out using finite element analysis software ANSYS. Wei Zhang et.al (5). Author investigates the elasto plastic buckling behavior of thick rectangular plates by using the Differential Quadrature (DQ) method. Mindlin plate theory is adopted to take the transverse shear effect into considerations. Both incremental theory and deformation theory are employed. Due to the material non-linearity, iteration processes are involved for obtaining solutions. Huu Tai Thai et.al (6). Author introducing analytical solutions for bending, buckling, and vibration analyses of thick rectangular plates with various boundary conditions are presented using two variable refined plate theory. The theory accounts for parabolic variation of transverse shear stress through the thickness of the plate without using shear correction factor. C.E. İmrak et.al (7).Author presents exact solution for Rectangular plates under uniform load, $x = \pm a$, $y = \pm b$, An exact solution in which each term of the series is trigonometric and hyperbolic, and identically satisfies the boundary conditions on all four edges. The solution has three terms in which the first term corresponds to the case of a strip and the other two terms denote the effects of the edges. The method used to obtain the solution is simple and straight forward. In order to illustrate the method the numerical values of the deflections are calculated and compared with those of the previous papers. It is found that there is a reasonable agreement between the results of them and those of this paper.

Verification Problem and Case Consideration Manual Calculation for Maximum Deflection In Plate Using Classical Cosine Series Expansion Method

Fig.3.1. Plan of Rectangular plate which is fixed in all sides.

3.1.1. Case 1: 5mm plate

- Size of plate : $4.5 \times 3.6m$
- Thickness : 5mm (0.005m)
- Material : RC Concrete
- Density of concrete : 24.02 KN/ m3
- Poisons ratio µ: 0.17
- Modulus of elasticity : 21.718×10⁶ KN/m²
- Load Calculation :

- 1. Self wt of plate = density \times area \times thickness
- $= 24.02 \times 4.5 \times 3.6 \times 0.005 = 1.94 \text{ KN}$
- 2. Self wt per unit area = $1.94/4.5 \times 3.6 = 0.119$ KN /m²
- 3. Assume Live load on plate = $1.5 \text{ KN} / \text{m}^2$
- 4. Total Load = $0.119 + 1.5 = 1.61 \text{ KN /m}^2$
- 5. Factored Load = $1.5 \times 1.61 = 2.41$ KN /m²

Maximum Deflection for rectangular plate fixed at all sides under action of uniformly distributed load q kn/m^2

$$W_{x=0} = \alpha \frac{pb^*}{D}$$

Table N	Table No. 3.1. Deflection Coefficient (α) values for various ratio of b/a						
b/a	$\frac{w(0,0)}{pb^4/D}$	Evans pb ⁴ /D	Taylor & Govindjee pb ⁴ / D				
1.0	0.00126725	0.00126	0.00126532				
1.2	0.00172833	0.00172	0.00172487				
1.4	0.00207217	0.00207	0.00206814				
1.6	0.00230399	0.00230	0.00229997				
1.8	0.00244989	0.00245	0.00244616				
2.0	0.00253625	0.00254	0.00253297				
80	0.00260417	0.00260	0.00260417				

Where,

 $\alpha = 0.00181833$ for (b/a) = 2.25/1.8 = 1.25

q = Factored load per unit area on plate

D = Flexural rigidity $D = E^{t3} = 0.2$

$$P = \frac{E t3}{12 (1-\mu^2)} = 0.232$$

by putting values in above formula we get maximum deflection at centre

 $W_{max} = 484.09 \text{ mm}$

3.1.2. Case 2: 10mm plate

- Size of plate : 4.5×3.6 m
- Thickness : 10mm (0.01m)
- Material : RC Concrete
- Density of concrete : 24.02 KN/ m3
- Poisons ratio *µ*: 0.17
- Modulus of elasticity : $21.718 \times 10^{6} \text{ KN/m}^{2}$
- Load Calculation :
- 1. Self wt of plate = density × area × thickness
- $= 24.02 \times 4.5 \times 3.6 \times 0.01 = 3.89$ KN
- 2. Self wt per unit area = $3.89/4.5 \times 3.6 = 0.24$ KN /m²
- 3. Assume Live load on plate = $1.5 \text{ KN}/\text{m}^2$
- 4. Total Load = 0.24 + 1.5 = 1.74 KN /m²
- 5. Factored Load = $1.5 \times 1.74 = 2.61$ KN /m²

Maximum Deflection for rectangular plate fixed at all sides under action of uniformly distributed load q kN/m^2

$$W_{\substack{x=0\\y=0}} = \alpha \frac{pb^*}{D},$$

Where,

- $\alpha = 0.00181833$ for (b/a) = 2.25/1.8 = 1.25
- q = Factored load per unit area on plate
- $\hat{D} = Flexural rigidity$

$$D = \frac{E t^3}{12 (1-\mu^2)} = 1.863$$

by putting values in above formula we get maximum deflection at centre

 $W_{max} = 65.28 mm$

50338 Dr. Abhinandan R. Gupta and Ratika V. Mahalle / Elixir Civil Engg. 116C (2018) 50336-50342

3.1.3. Computational FEM Analysis for 5mm plate

Fig.3.2. Deflection occurs in 5mm plate.

As such 5mm thickness of plate is analyze on STAAD-PRO V8i software showing the result of maximum deflection occurs at node no. 27 is 426.121mm.

3.1.4. Computational FEM Analysis for 10mm plate

Fig. 3.3. Deflection occurs in 10mm Plate.

Similarly 10 mm thickness of plate is analyze on STAAD-PRO V8i software showing the result of maximum deflection occurs at node no. 27 is 57.18 mm.

3.1.5. Comparative Table

Sr. No.	Туре	Thickness (mm)	Maximum Deflection(mm)	% Difference
1.	Manual	5mm	484.09	`
	Computational		426.12	13.60%
2.	Manual	10mm	65.28	
	Computational		57.18	14.16%

Since the % difference is very less further all cases are done computational on STAAD-PRO V8i software.

4. Observations and Remark

To find out the behavior of plate with change in thickness various plate model are created and analyze. To study the moment, stresses, deflection development pattern for this the various cases under consideration are -

Case 1:Rectangular plate of size 4.5×3.6 m with thickness of 5mm.

Case 2:Rectangular plate of size 4.5×3.6 m with thickness of 10mm.

Case 3:Rectangular plate of size 4.5×3.6 m with thickness of 50mm.

Case 4:Rectangular plate of size 4.5×3.6 m with thickness of 100mm.

Case 5:Rectangular plate of size 4.5×3.6 m with thickness of 150mm.

Case 6:Rectangular plate of size 4.5×3.6 m with thickness of 200mm.

Case 7:Rectangular plate of size 4.5×3.6 m with thickness of 250mm.

The various values along X and Y direction are study and results are tabulated in table as below

Fig.4.1. Isometric view of plate.

Table No. 4.1. Moment Development.

Node No.27	Location	Mx	My	Mxy
		(KNm/m)	(KNm/m)	(KNm/m)
Case 1		0.038	0.190	0.053
Case 2		0.040	0.204	0.057
Case 3		0.064	0.315	0.087
Case 4	at Centre	0.099	0.455	0.126
Case 5		0.146	0.599	0.164
Case 6		0.210	0.747	0.201
Case 7		0.295	0.898	0.239
Node No.				
26,28				
Case 1		0.069	0.184	0.071
Case 2		0.074	0.198	0.076
Case 3	at a distance	0.117	0.305	0.117
Case 4	of 0.75m	0.176	0.439	0.169
Case 5	from centre	0.246	0.572	0.222
Case 6	along X-axis	0.333	0.705	0.275
Case 7		0.439	0.836	0.328
Node				
No.24,29				
Case 1		0.123	0.114	0.058
Case 2	at a distance	0.132	0.123	0.062
Case 3	of 1.5m from	0.205	0.188	0.095
Case 4	centre along	0.297	0.267	0.135
Case 5	X-axis	0.392	0.341	0.172
Case 6		0.488	0.409	0.205
Case 7		0.585	0.472	0.234
Node				
No.20,34			-	-
Case 1		-0.027	-0.188	0.069
Case 2	at a distance	-0.029	-0.202	0.074
Case 3	of 0.6m from	-0.049	-0.311	0.114
Case 4	centre along	-0.056	-0.448	0.164
Case 5	Z-axis	-0.059	-0.584	0.214
Case 6		-0.048	-0.719	0.264
Case 7		-0.016	-0.850	0.312
Node No.				
11,4				
Case 1		-0.092	-0.561	-0.187
Case 2	at a distance	-0.099	-0.602	-0.201
Case 3	of 1.2 m	-0.118	-0.875	-0.299
Case 4	from centre	-0.216	-1.340	-0.446
Case 5	along Z-axis	-0.274	-1.753	-0.582
Case 6		-0.323	-2.167	-0.716
Case 7		-0.360	-2.578	-0.848
Node No. 19,21,33,35				
Case 1	from end	0.050	-0.170	-0.048
Case 2	support at a	0.054	-0.182	-0.052

Dr. Abhinandan R. Gupta and Ratika V. Mahalle / Elixir Civil Engg. 116C (2018) 50336-50342

00000	Divitentia	<i>iuun</i> 10 0 <i>i</i>	più unu nu	intu i i i i i i i i i i i i i i i i i i i
Case 3	distance of	0.086	-0.281	-0.079
Case 4	1.5m along	0.133	-0.407	-0.111
Case 5	X-axis &	0.193	-0.576	-0.138
Case 6	1.2m along	0.270	-0.626	-0.158
Case 7	Z-axis.	0.366	-0.728	-0.171
Node No.			•	•
9,13,40,42				
Case 1	from end	-0.050	-0.547	0.143
Case 2	support at a	-0.053	-0.587	0.153
Case 3	distance of	-0.080	-0.904	0.235
Case 4	1.5m along	-0.108	-1.298	0.333
Case 5	X-axis &	-0.125	-1.679	0.422
Case 6	0.6m along	-0.129	-2.052	0.502
Case 7	Z-axis.	-0.139	-2.411	0.569
Node No.				
17,22,31,36				
Case 1	from end	0.072	-0.062	0.100
Case 2	support at a	0.077	-0.066	0.108
Case 3	distance of	0.118	-0.102	0.167
Case 4	0.75m along	0.165	-0.148	0.246
Case 5	X-axis &	0.205	-0.196	0.331
Case 6	1.2m along	0.235	-0.245	0.424
Case 7	Z-axis.	0.252	-0.296	0.528
Node No.				
6,15,38,43				
Case 1	from end	0.048	-0.226	0.079
Case 2	support at a	0.051	-0.242	0.085
Case 3	distance of	0.078	-0.374	0.132
Case 4	0.75m along	0.111	-0.540	0.196
Case 5	X-axis &	0.140	-0.707	0.268
Case 6	0.6m along	0.164	-0.876	0.349
Case 7	Z-axis.	0.180	-1.048	0.442
Case 5 Case 6 Case 7	X-axis & 0.6m along Z-axis.	0.140 0.164 0.180	-0.707 -0.876 -1.048	0.268 0.349 0.442

When we observe the values of Table No. 6.1.it can be seen that plate center moments value increases with increase in thickness i.e. (Mx =0.038KNm/m for 5mm plate and 0.295KNm/m for 250mm plate). Similarly for My and Mxy value also increases with thickness. When the distance increases from center of plate i.e. 0.75m in X-direction the moment values Mx becomes double where as My and Mxy values there are negligible changes. Similarly when Zdirection is considered the values are negative in nature and increases with increases in thickness

Table No. 4.2. Shear Stress Development.

140		e veropinen	.
Node No.27	Location	SQx	SQy
		(N/mm^2)	(N/mm^2)
Case 1		-0.014	-0.159
Case 2		-0.007	-0.085
Case 3	at Centre	-0.002	-0.026
Case 4		-0.002	-0.019
Case 5		-0.001	-0.017
Case 6		-0.001	-0.015
Case 7		-0.001	-0.015
Node			
No.26,28			
Case 1		-0.014	-0.152
Case 2		-0.067	-0.081
Case 3	At a distance of 0.75m	-0.002	-0.025
Case 4	from centre along X-axis	-0.002	-0.018
Case 5		-0.001	-0.016
Case 6		-0.001	-0.014
Case 7		-0.001	-0.014
Node			
No.24,29			
Case 1		-0.002	-0.091
Case 2	at a distance of 1.5m	-0.001	-0.049
Case 3	from centre along X-axis	-0.000	-0.015
Case 4		0.000	-0.011

Case 5		0.000	-0.009
Case 6		0.001	-0.008
Case 7		0.001	0.007
Node			
No.20,34			
Case 1		-0.013	-0.159
Case 2	-	-0.007	-0.085
Case 3	at a distance of 0.6m	-0.002	-0.026
Case 4	from centre along Z-axis	-0.002	-0.018
Case 5		-0.002	-0.017
Case 6		-0.001	-0.015
Case 7	1	-0.001	-0.015
Node			
No.11.41			
Case 1		-0.009	-0.472
Case 2		-0.005	-0.253
Case 3	at a distance of 1.2 m	-0.002	-0.075
Case 4	from centre along Z-axis	-0.001	-0.056
Case 5		-0.001	-0.049
Case 6	1	-0.001	-0.046
Case 7	4	-0.001	-0.044
Node No		0.001	0.011
19 21 33 35			
Case 1		-0.011	-0.150
Case 2	-	-0.006	-0.080
Case 3	from end support at a	-0.002	-0.030
Case 4	distance of 1.5m along	-0.002	-0.023
Case 5	X-axis & 1.2m along Z-	-0.001	-0.015
Case 5	axis.	-0.001	-0.013
Case 0		0.000	-0.014
Node No		0.000	-0.015
$0.12 \ 40 \ 42$			
9,13,40,42		0.010	0.452
Case 1	-	-0.019	-0.433
Case 2	from end support at a	-0.010	-0.243
Case 3	distance of 1 5m along	-0.003	-0.073
Case 4	X-axis & 0 6m along Z-	-0.002	-0.034
Case 5	axis	-0.002	-0.040
Case 0	-	-0.001	-0.043
Case /		-0.001	-0.040
17 22 31 36			
Case 1		0.169	0.054
	4	-0.108	-0.034
Case 2	from end support at a	-0.090	-0.029
Case 3	distance of 0.75m along	-0.028	-0.009
Case 4	X-axis & 1 2m along 7-	-0.021	-0.000
Case 5	axis.	-0.018	-0.006
Case 6	unis.	-0.018	-0.005
Case /		-0.01/	-0.005
Node No.			
0,15,58,45		0.120	0.172
Case 1	£	-0.129	-0.1/2
Case 2	distance of 0.75	-0.069	-0.092
Case 3	V avia & 0 fm along	-0.021	-0.029
Case 4	Λ -axis α 0.0m along Z-	-0.016	-0.021
Case 5	ax15	-0.014	-0.018
Case 6	4	-0.013	-0.016
Case 7	1	-0.013	-0.016

Table No. 6.2 shows the shear development values from which it can be shows that shear in X direction (SQx = -0.001 N/mm^2 for plate of thickness 250 mm and -0.014 N/mm^2 for plate of 5mm). For Y direction (SQy = -0.159 N/mm^2 plate of thickness 250 mm and -0.015 N/mm^2 for plate of 5mm) with increase in distance from center there is increase in the shear value SQy. Overall it can be observe that shear in X and Y-direction is more for plate with maximum thickness i.e. in terms of minus.

Dr. Abhinandan R. Gupta and Ratika V. Mahalle / Elixir Civil Engg. 116C (2018) 50336-50342

	Table I	No. 4.3. Defl	ection.		
Node	Location	Resultant	Rotational Deflection in		
No.27		Deflection	(mm)		
		in (mm)	Rx	Rx	Rx
Case 1		426.121	0.000	0.000	-0.000
Case 2		57 181	0.000	0.000	-0.000
Case 2		0.721	0.000	0.000	-0.000
Case 5	at Contro	0.721	0.000	0.000	-0.000
Case 4	at Centre	0.138	0.000	0.000	-0.000
Case 5		0.059	0.000	0.000	-0.000
Case 6		0.034	0.000	0.000	-0.000
Case 7		0.024	0.000	0.000	-0.000
Node					
No.26.28					
Case 1		405 924	0.000	0.000	-0.072
Case 2	Ato	54 469	0.000	0.000	-0.072
Case 2	Ala	54.468	0.000	0.000	-0.010
Case 3	distance	0.685	0.000	0.000	-0.000
Case 4	of 0.75m	0.131	0.000	0.000	-0.000
Case 5	from	0.055	0.000	0.000	-0.000
Case 6	centre	0.032	0.000	0.000	-0.000
Case 7	along X-	0.022	0.000	0.000	-0.000
Cube /	axis	0.022	0.000	0.000	0.000
Node		-			
No.24.29					
Case 1		232 140	0.000	0.000	-0 300
	ata	232.140	0.000	0.000	-0.398
Case 2	at a	31.148	0.000	0.000	-0.053
Case 3	distance	0.391	0.000	0.000	-0.001
Case 4	of 1.5m	0.074	0.000	0.000	-0.000
Case 5	from	0.031	0.000	0.000	-0.000
Case 6	centre	0.018	0.000	0.000	-0.000
Case 7	along X-	0.012	0.000	0.000	-0.000
Case /	axis	0.012	0.000	0.000	-0.000
Node					
No 20 34					
N0.20,34		270 101	0.000	0.000	0.000
Case I		3/8.181	0.000	0.000	-0.000
Case 2	at a	50.745	0.000	0.000	-0.000
Case 3	distance	0.639	0.000	0.000	-0.000
Case 4	of 0.6m	0.122	0.000	0.000	-0.000
Case 5	from	0.052	0.000	0.000	-0.000
Case 6	centre	0.030	0.000	0.000	-0.000
Case 7	along Z-	0.021	0.000	0.000	0.000
Case /	axis	0.021	0.000	0.000	-0.000
Node					1
No.11.41					
N0.11,41		225 225	0.000	0.000	0.000
Case 1	ata	235.225	0.000	0.000	-0.000
Case 2	distance	31.565	0.000	0.000	-0.000
Case 3	of 1.2 m	0.398	0.000	0.000	-0.000
Case 4	from	0.076	0.000	0.000	-0.000
Case 5	centre	0.032	0.000	0.000	-0.000
Case 6	along Z-	0.019	0.000	0.000	-0.000
Case 7	axis	0.013	0.000	0.000	-0.000
Node No		0.015	0.000	0.000	-0.000
10 21 22 25					
19,21,33,33	c -	000 015	0.005	0.005	0.05
Case 1	from end	380.312	0.000	0.000	-0.061
Case 2	support at	48.415	0.000	0.000	-0.008
Case 3	a distance	0.609	0.000	0.000	-0.000
Case 4	of 1.5m	0.116	0.000	0.000	-0.000
Case 5	along X-	0.049	0.000	0.000	-0.000
Case 6	axis &	0.029	0.000	0.000	0.000
Case 0	1.2m	0.020	0.000	0.000	-0.000
Case /	along 7	0.020	0.000	0.000	-0.000
	arong Z-				
NT 1 NT	axis.	1			
Node No.					
9,13,40,42		T			I
Case 1	from end	225.346	0.000	0.000	-0.035
Case 2	support at	30.238	0.000	0.000	-0.005
Case 3	a distance	0.380	0.000	0.000	-0.000
Case 4	of 1.5m	0.073	0.000	0.000	-0.000
Case 5	along X-	0.073	0.000	0.000	0.000
Case 5	avic &	0.031	0.000	0.000	-0.000
Case 6	anis a	0.018	0.000	0.000	-0.000

0.011	0.012	$(J,(\Lambda,\Lambda))$		
		2.200	5.000	-0.000
along Z-				
axis.				
from end	209.636	0.000	0.000	-0.351
support at	28.128	0.000	0.000	-0.047
a distance	0.234	0.000	0.000	-0.001
of 0.75m	0.044	0.000	0.000	-0.000
along X-	0.019	0.000	0.000	-0.000
axis &	0.011	0.000	0.000	-0.000
1.2m	0.007	0.000	0.000	-0.000
along Z-				
axis.				
from end	138.546	0.000	0.000	-
support at				0.2060
a distance	18.589	0.000	0.000	-0.028
of 0.75m	0.234	0.000	0.000	-0.000
along X-	0.044	0.000	0.000	-0.000
axis &	0.019	0.000	0.000	-0.000
0.6m	0.011	0.000	0.000	-0.000
along Z-	0.007	0.000	0.000	-0.000
axis				
	from end support at a distance of 0.75m along X- axis & 1.2m along Z- axis. from end support at a distance of 0.75m along X- axis & 0.6m along Z- axis	axis. 209.636 support at 28.128 a distance 0.234 of $0.75m$ 0.044 along X- 0.019 axis & 0.011 1.2m 0.007 along Z- 0.007 axis. 0.007 along Z- 0.007 axis. 0.007 along Z- 0.007 axis. 0.007 axis. 0.007 axis. 0.011 along X- 0.044 axis & 0.019 $0.6m$ 0.011 along Z- 0.007 axis & 0.019 $0.6m$ 0.011 0.007 0.007	axis. 209.636 0.000 support at 28.128 0.000 a distance 0.234 0.000 of 0.75m 0.044 0.000 axis & 0.019 0.000 axis & 0.011 0.000 axis & 0.007 0.000 axis. 0.007 0.000 axis. 0.007 0.000 axis. 0.007 0.000 adistance 0.234 0.000 adistance 0.234 0.000 of 0.75m 0.234 0.000 axis & 0.019 0.000 0.044 0.000 0.011 0.001 0.000 0.001	axis. 209.636 0.000 0.000 support at 28.128 0.000 0.000 a distance 0.234 0.000 0.000 of 0.75m 0.044 0.000 0.000 along X- 0.019 0.000 0.000 axis & 0.011 0.000 0.000 1.2m 0.007 0.000 0.000 along Z- 0.007 0.000 0.000 atis. 138.546 0.000 0.000 from end 138.589 0.000 0.000 adistance 0.234 0.000 0.000 of 0.75m 0.234 0.000 0.000 along X- 0.044 0.000 0.000 axis & 0.019 0.000 0.000 axis & 0.011 0.000 0.000 0.007 0.000 0.000 0.000

When Table No. 6.3.is observed for deflection values it can be seen that maximum deflection occurs at center plate is of 426.121mm for minimum thickness i.e. 5mm. With increase in thickness from 5mm to 10 mm the deflection values decreased by 90%. i.e 57.181mm. Similarly there is rapid fall when the thickness changes to 10mm to 50mm. i.e. 0.721mm. The rotational deflection is almost negligible.

Table No 4.4. Principal Stresses Development.

PlateNo.16	Positions	S _{max}	S _{min}	T _{max}
		(N/mm^2)	(N/mm^2)	(N/mm^2)
Case 1	Тор	4.969	0.832 2.068	
	Bottom	-0.832	-4.969	2.068
Case 2	Тор	1.334	0.223	0.555
	Bottom	-0.223	-1.334	0.555
Case 3	Тор	0.086	0.014	0.035
	Bottom	-0.014	-0.086	0.014
Case 4	Тор	0.035	0.005	0.014
	Bottom	-0.005	-0.035	0.010
Case 5	Тор	0.024	0.004	0.010
	Bottom	-0.004	-0.024	0.008
Case 6	Тор	0.021	0.003	0.009
	Bottom	-0.003	-0.021	0.009
Case 7	Тор	0.020	0.003	0.008
	Bottom	-0.003	-0.020	0.008
PlateNo.10			•	
Case 1	Тор	3.66	0.521	1.567
	Bottom	-0.521	-3.655	1.567
Case 2	Тор	0.981	0.139	0.420
	Bottom	-0.139	-0.981	0.420
Case 3	Тор	0.063	0.009	0.027
	Bottom	-0.009	-0.063	0.027
Case 4	Тор	0.026	0.003	0.011
	Bottom	-0.003	-0.026	0.011
Case 5	Тор	0.018	0.002	0.007
	Bottom	-0.002	-0.018	0.007
Case 6	Тор	0.015	0.002	0.0065
	Bottom	-0.002	-0.015	0.0065
Case 7	Тор	0.014	0.002	0.0064
	Bottom	0.002	-0.014	0.0064
Plate No. 4				
Case 1	Тор	1.614	-0.102	0.858
	Bottom	0.102	-1.614	0.858
Case 2	Тор	0.433	-0.027	0.230

Dr. Abhinandan R. Gupta and Ratika V. Mahalle / Elixir Civil Engg. 116C (2018) 50336-50342

	Bottom	0.027	-0.433	0.230
Case 3	Тор	0.028	-0.001	0.014
	Bottom	0.001	-0.025	0.014
Case 4	Top	0.011	-0.0007	0.006
Cube	Bottom	0.0007	-0.011	0.006
Case 5	Top	0.0007	0.0005	0.000
Case 5	Detterre	0.008	-0.0005	0.004
~ .	Bottom	0.0005	-0.008	0.004
Case 6	Тор	0.0069	-0.0004	0.0037
	Bottom	0.0004	-0.0069	0.0037
Case 7	Тор	0.0066	-0.0004	0.0035
	Bottom	0.0004	-0.0066	0.0035
PlateNo.15		•	•	
Case 1	Top	23.021	3.838	9.591
	Bottom	-3.838	-23.021	9 591
Case 2	Ton	6.176	1.029	2 573
	Dottom	1.020	6 176	2.575
0 2	Bottom	-1.029	-0.170	2.373
Case 3	Тор	0.384	0.064	0.160
	Bottom	-0.064	-0.384	0.160
Case 4	Тор	0.141	0.023	0.059
	Bottom	-0.023	-0.141	0.059
Case 5	Тор	0.085	0.014	0.035
	Bottom	-0.014	-0.085	0.035
Case 6	Top	0.062	0.010	0.025
20000	Bottom	-0.010	-0.062	0.025
Case 7	Ton	-0.010	-0.002	0.025
Case /		0.049	0.008	0.020
D1	Bottom	-0.008	-0.049	0.020
Plate No. 9	ļ			I .
Case 1	Тор	17.928	2.187	7.870
	Bottom	-2.187	-17.928	7.870
Case 2	Тор	4.809	0.586	2.111
	Bottom	-0.586	-4.809	2.111
Case 3	Top	0.299	0.036	0.131
cube c	Bottom	-0.036	-0.299	0.131
Case 4	Ton	0.030	0.013	0.048
Case 4	Detterre	0.111	0.013	0.048
a .	Bottom	-0.013	-0.111	0.048
Case 5	Тор	0.067	0.007	0.029
	Bottom	-0.007	-0.067	0.029
Case 6	Тор	0.049	0.005	0.021
	Bottom	-0.005	-0.049	0.021
Case 7	Тор	0.039	0.003	0.017
	Bottom	-0.003	-0.039	0.017
Plate No. 3		•	•	•
Case 1	Ton	9.083	-1.618	5 351
Cube I	Bottom	1.618	-9.083	5 351
Case 2	Ton	2 /27	-7.005	1 /26
Case 2		2.437	-0.434	1.430
<u> </u>	Bottom	0.434	-2.437	1.430
Case 3	Тор	0.158	-0.027	0.090
	Bottom	0.027	-0.152	0.090
Case 4	Тор	0.057	-0.111	0.034
	Bottom	0.011	-0.057	0.034
Case 5	Тор	0.035	-0.0075	0.021
	Bottom	0.007	-0.0353	0.021
Case 6	Top	0.026	-0.006	0.016
2450 0	Bottom	0.006	-0.0026	0.016
Case 7	Ton	0.000	0.0020	0.010
Case /	10p	0.022	-0.0038	0.013
DI (N. 14	BOTTOM	0.005	-0.0022	0.015
PlateNo.14	-		a=	1 4 4
Case 1	Тор	-4.710	-27.951	11.620
	Bottom	27.951	4.710	11.620
Case 2	Тор	-1.264	-7.500	3.118
	Bottom	7.500	1.264	3.118
Case 3	Ton	-0.079	-0.469	0.195
20000	Bottom	0.469	0.079	0.195
Case 4	Top	_0.70	_0.176	0.173
Case 4	10p	-0.029	-0.170	0.073
<u> </u>	Bottom	0.176	0.029	0.073
Case 5	Тор	-0.018	-0.109	0.045
	Bottom	0.109	0.018	0.045
Case 6	Тор	-0.014	-0.083	0.034

	88			
	Bottom	0.083	0.014	0.034
Case 7	Тор	-0.011	-0.069	0.028
	Bottom	0.069	0.011	0.028
Plate No. 8				
Case 1	Тор	-3.082	-21.209	9.063
	Bottom	21.209	3.082	9.063
Case 2	Тор	-0.827	-5.691	2.432
	Bottom	5.691	0.827	2.432
Case 3	Тор	-0.051	-0.356	0.152
	Bottom	0.356	0.051	0.152
Case 4	Тор	-0.019	-0.134	0.057
	Bottom	0.134	0.019	0.057
Case 5	Тор	-0.012	-0.083	0.035
	Bottom	0.083	0.012	0.035
Case 6	Тор	-0.009	-0.063	0.026
	Bottom	0.063	0.009	0.026
Case 7	Тор	-0.007	-0.052	0.022
	Bottom	0.052	0.007	0.022
Plate No. 2			-	
Case 1	Тор	0.608	-9.585	5.096
	Bottom	9.585	-0.608	5.096
Case 2	Тор	0.163	-2.572	1.367
	Bottom	2.572	-0.163	1.367
Case 3	Тор	0.010	-0.161	0.085
	Bottom	0.161	-0.010	0.085
Case 4	Тор	0.003	-0.060	0.032
	Bottom	0.060	-0.003	0.032
Case 5	Тор	0.002	-0.037	0.020
	Bottom	0.030	-0.002	0.020
Case 6	Тор	0.0018	-0.028	0.015
	Bottom	0.028	-0.0018	0.015
Case 7	Тор	0.0015	-0.023	0.012
	Bottom	0.023	-0.0015	0.012

Table No. 4.4 shows the value of principal stresses in which it can be seen that stresses at top as well as bottom is maximum for plate with 5mm thickness as compare to the plate with 250mm thickness. The shear stress value (T_{max}) is again maximum for plate with minimum thickness. On the basis of this observations value conclusions are drawn in next chapter.

5. Conclusions

To study the behavior of plate with change in thickness subjected to same boundary conditions and load, 7 cases of plate modeling with thickness from 5mm, 10mm, 50mm, 100mm, 150mm, 200mm, 250mm is analyzed computationally. From the various values as observed in tables in chapter no.5. Various things can be conclude like The plate with less thickness has shown that the moment along X and Y-axis as well as twisting moment (Mxy) is having less value as compare to plate with more thickness. Even when the shear stress value are marked it can be seen that shearing is predominant with increase in thickness. The values of principal stresses are high for plate with less thickness. However deflection is maximum for plate which have very less thickness this shows that when the forces are acting on thin plate it get transfer in the form of prominent principal stresses and negligible shear stresses where as for the thick plates bending and shear stress development is more as compared to in-plane forces.

6. References

1. Michael Lee. A Finite Element Analysis Method for Determining the Effect of Plate Distortion on Structural Analysis 50342

2. Joseph E (1970). Accuracy Of Finite Element Approximations To Structural Problems Report no NASA TN 0-5728.

3. Ray W. Clough. Finite Element Stiffness Matrices For Analysis Of Plate Bending. P.P.66-80.

4. Vanam B. C. L.1*, Rajyalakshmi M.1 (2012). Static analysis of an isotropic rectangular plate using finite element analysis (FEA). Journal of Engineering Research Vol. 4(4), pp. 148-162.

5. Wei Zhang (2011). Elastoplastic buckling analysis of thick rectangular plates by using the differential quadreatic method. P.P.44-61

6. Huu Tai Thai (2013). Analytical solutions of refined plate theory for bending, buckling and vibration analyses of thick plate. P.P. 8310-8323

7. C.E. İmrak (2007). An Exact Solution for the Deflection of a Clamped Rectangular Plate under Uniform Load. Journal of Applied Mathematical Sciences, Vol. 1, no. 43, P-P- 2129 – 2137