

Jain Smita and Banerjee Shakti / Elixir Statistics 116 (2018) 50107-50113 Available online at www.elixirpublishers.com (Elixir International Journal)

Statistics

Elixir Statistics 116 (2018) 50107-50113

Some Contributions in Quasi Symmetric 2–Designs With Three Intersection Numbers

Jain Smita and Banerjee Shakti

School of Statistics, Devi Ahilya University, Indore , India.

ARTICLE INFO	ABSTRACT
Article history:	Some construction methods of quasi - symmetric 2- designs with no repeated blocks
Received: 29 January 2018;	and three intersection numbers $\varkappa = 0$, y and z between the blocks are proposed with
Received in revised form:	illustrations.
28 February 2018;	© 2018 Elixir All rights reserved.
Accepted: 10 March 2018;	
Keywords	-
Balanced Incomplete Block	_
Design,	
Symmetric Design,	
Quasi-Symmetric 2-Design,	
Block Intersection,	
Galois Field,	
Difference set.	

1. Introduction

In the early 1930's R.A. Fisher and F. Yates gave the concept of design of experiments. A fundamental method of constructing 2- designs (and also the first systematic construction method) is due to Bose [5]. It is known as the method of differences. Suppose an abelian group (G, +). For a subset $B \subseteq G$, |B| = k, consider the k(k-1) ordered differences of its elements. We get a collection of m subsets B_1, B_2, \dots, B_m of G, a set of initial blocks if among the mk(k-1) differences arising from these m blocks, each non-zero element of G occurs exactly a constant number λ times. Several series of BIB designs have been constructed by Sprott (1954, 1956), using the method of differences. Teirlinck [28] has proved that non – trival t – designs without repeated blocks exist for all t. In the early 1970's Richard Wilson did the most significant improvement in the design theory. He [30]-[32] also gave some useful results on an existence theory for pairwise balanced designs. Hanani [13] has shown that the obvious necessary conditions for the existence of a 2- (v, k, λ) design are $\lambda(v-1) = 0$ {mod(k-1)} and $\lambda v(v-1)= 0$ {mod k(k-1)} to be sufficient for the k = 3,4 and 5, and every λ , except v= 15, k = 5, $\lambda = 2$.

A balanced incomplete block design is an arrangement of v treatments in b blocks, of size k where each treatment replicated r times , and every pair of treatment appears together in λ blocks. A BIB design is symmetric iff v = b and r = k. It is also denoted as 2- (v, k, λ).

Quasi Symmetric Design - Let S be a finite set of v objects (points), and γ be a finite family of distinct k subsets of S (blocks). Then the pair D = { S, γ } is called a block design (or 2-design) with parameters (v, b, r, k, λ). For $0 \le \chi < k$, where an

intersection number of D is χ , if there exist B, B' $\in \gamma$ such that $|B \cap B'| = \chi$. A 2-design D is quasi-symmetric design

with two numbers of intersection χ and y and $0 \le \chi < y < k$ if every two distinct blocks intersect in either χ or y points.

Ray et al.(see [23]) proved that for a 0- design with t- intersection number $b \le \binom{v}{t}$. Pawale [17] proved that for a fixed block

size k, there exist finitely many parametrically feasible t – designs with t – numbers of intersection and $\lambda > 1$. Quasi-symmetric designs and its classification has been important in the study of design theory over the last several years. Sane and Shrikhande gave many important results for quasi-symmetric designs. Goethals et al. [11] gave the concept of graph of a quasi-symmetric design which is strongly regular.

Our main objective in this paper is to study the relations for quasi-symmetric 2- designs with three intersection numbers. So here we consider a multiple solution of symmetrical BIB designs, with no repeated blocks which is also quasi-symmetric 2-designs with three type of intersection numbers $\chi = 0$, y and z.

Some results which are useful for the development of the paper are discussed below .

Proposition 1.1 [4, 7, 27] If D with standard parameter set (v, b, r, k, λ ; χ , y) is a quasi-symmetric design, then the relations

between parameters are: (1) vr = bk and $\lambda (v-1) = r(k-1)$,

(2) $k(r-1)(\chi+y-1) - \chi y(b-1) = k(k-1)(\lambda-1)$

(3) y- χ divides k - χ and r- λ

(4) $r(-r + kr + \lambda) = bk\lambda$.

Proposition 1.2 [27] If D with standard parameter set (v, b, r, k, λ ; χ , y) is a quasi symmetric design and (b - 1- α) and α are

the number of blocks which intersect given block in χ and y number of points, then

$$\alpha = \frac{k^2(\lambda - 1) + k(r - rx + x - \lambda)}{y(y - x)}$$

Proposition 1.3 [8] Consider the balanced incomplete block design D_{*} with parameter set

v = 4t + 1, $b_* = 2(4t + 1)$, $r_* = 4t$, k = 2t, $\lambda_* = 2t-1$

where v is a prime and primitive element of GF (v) is χ , and the solution of design D_{*} with above given parameter set is

(*)

(3)

obtained by initial blocks $(x^0, x^2, x^4, \dots, \dots, x^{4t-2})$ $(x, x^3, x^5, \dots, x^{4t-1})$

Thus, we get the complete solution of the design D_* , by developing given initial block set.

To illustrate this result, we consider the following example.

Example 1.4 Let t = 4 in D_{*}, so that the parameters are v = 17, b_{*} = 34, r_{*} = 16, k = 8, $\lambda_* = 7$. Since $\gamma = 3$ is primitive element

of GF (17), the initial blocks are $(3^{0}, 3^{2}, 3^{4}, 3^{6}, 3^{8}, 3^{10}, 3^{12}, 3^{14}) = (1, 9, 13, 15, 16, 8, 4, 2)$ and $(3^{1}, 3^{3}, 3^{5}, 3^{7}, 3^{9}, 3^{11}, 3^{13}, 3^{15}) = (1, 9, 13, 15, 16, 8, 4, 2)$ 3, 10, 5, 11, 14, 7, 12, 6). By developing the sets of initial block, we get complete solution of the this design.

2. CONSTRUCTION OF 2-MULTIPLE BALANCED INCOMPLETE BLOCK DESIGNS

Theorem 2.1 The existence of the series of symmetrical balanced incomplete block design D with parameters v = 4t - 1 = b, r = 12t - 1 = k, $\lambda = t-1$, where v(=4t-1) = pⁿ is a prime or prime power and χ is a primitive element of GF(pⁿ), implies the existence

of D* a 2-multiple balanced incomplete block design with no repeated blocks with parameters v = 4t - 1, $b^* = 2(4t - 1) = 2b$, $r^*=2(2t-1)=2r$, k=2t-1, $\lambda^*=2(t-1)=2\lambda$.

Proof :- Consider as symmetrical BIB designs with r = (v-1)/2. Then we have

 $\lambda(v-1) = r(k-1) = \{(v-1)/2\} \{(v-3)/2\}.$

Since $v = 4\lambda + 3$ and if we take $\lambda = t - 1$, then the parameters of the design under consideration became v = 4t - 1 = b, r = 2t - 1 = k, $\lambda = t - 1$.

We obtained the solution of the design D with parameters in (1) if $v = p^n$ is a prime or prime power. Since γ is a primitive

element and all the no zero elements of $GF(p^n)$ can be shown as $\boldsymbol{x}^0 = 1, \boldsymbol{x}, \boldsymbol{x}^2, \dots, \boldsymbol{x}^{4t-3},$

Then,

$$\mathbf{x}^{v-1} = \mathbf{x}^{4t-2} = 1 \text{ and } \mathbf{x}^{2t-1} = -1.$$
 (2)

Consider the initial block

$$D_1 = (x^0, x^2, x^4 \dots \dots x^{4t-4})$$

The differences from this initial block can be written in this form $\pm (x^2 - x^0), \pm (x^4 - x^2), \dots, \pm (x^0 - x^{4t-4});$ $\pm (x^4 - x^0) \pm (x^6 - x^2)$ $\pm (x^2 - x^{4t-4})$

$$(x^{-} - x^{-}), = (x^{-} - x^{-}), \dots, = (x^{-} - x^{--}),$$

$$(x^{2t-2}-x^0), \pm (x^{2t}-x^2), \dots, \pm (x^{2t-4}-x^{4t-4})$$

Let $\mathbf{x^{2i}} - \mathbf{x^0} = \mathbf{x^{qi}}$. Then, from (2), the differences in the ith row of (4) are

$$x^{qi}, x^{qi+2}, \dots, x^{qi+4t-4}$$

$$x^{qi+2t-1}, x^{qi+2t+1}, \dots, x^{qi+6t-5}$$
(5)

All the differences in (4) can be obtained by setting $i = 1, 2, \dots, (t - 1)$ in (5).

But, for any given value of i, every non-zero element of GF (p^n) occurs just once in (5). Therefore, in the differences (5) that arise from the initial block (3), every non-zero element of $GF(p^n)$ occurs exactly (t-1) times.

Now, multiply (3) by primitive element \mathbf{x} of GF (pⁿ), we get another initial block set is

50108

(6)

(7)

$$(x^1, x^3, \dots, \dots, \dots, x^{4t-1})$$

The differences from initial block set (6) are

 $x^{qi+1}, x^{qi+3}, \dots, x^{qi+4t-3}, x^{qi+4t-3}$

 $x^{qi+2t}, x^{qi+2t+2}, \dots, \dots, x^{qi+6t-4}$

Similarly, all the differences can be obtained by setting $\mathbf{i} = 1, 2, \dots, (t-1)$ in equation (7).

But, for any given value of i, every non-zero elements of GF (p^n) occurs just once in (7). Therefore, in the differences (7) that arise from the initial block (6), every non-zero element of GF (p^n) occurs exactly (t-1) times.

Again, if we multiply (6) by primitive element γ of GF (pⁿ), then we get same initial block set of (3).

Thus, from (3) and (6) we get the initial blocks set in form of $\mathbf{D}^* = [\mathbf{D}_1, \mathbf{D}_2]$. Hence, by developing \mathbf{D}^* we get the complete solution of 2-multiple BIB designs with no repeated blocks with parameters

v = 4t - 1, $b^* = 2(4t - 1) = 2b$, $r^* = 2(2t - 1) = 2r$, k = 2t - 1, $\lambda^* = 2(t - 1) = 2\lambda$. (8) This complete the proof.

Example 2.2 We illustrate the theorem 2.1, if t = 3 then BIB design with the parameters

v = b = 11, r = k = 5, $\lambda = 2$.

Since primitive element of GF (11) is $\chi = 2$ and the solution of the design is given by the initial set $(2^0, 2^2, 2^4, 2^6, 2^8)$, that is (1, 3,

 $\begin{array}{rl} (1,3,4,5,9); & (2,4,5,6,10); & (3,5,6,7,0); \\ \mathbf{D_1}: & (4,6,7,8,1); & (5,7,8,9,2); & (6,8,9,10,3); \\ & (7,9,10,0,4); & (8,10,0,1,5); & (9,0,1,2,6); \\ & (10,1,2,3,7); & (0,2,3,4,8). \end{array}$

And the another initial block set is $(2^{1}, 2^{3}, 2^{5}, 2^{7}, 2^{9})$, that is $(2, 6, 7, 8, 10) \mod 11$ provides

(2, 6, 7, 8, 10); (3, 7, 8, 9, 0); (4, 8, 9, 10, 1);

 $D_2: (5, 9, 10, 0, 2); (6, 10, 0, 1, 3); (7, 0, 1, 2, 4);$ (8, 1, 2, 3, 5); (9, 2, 3, 4, 6); (10, 3, 4, 5, 7);

(0, 4, 5, 6, 8); (1, 5, 6, 7, 9).

Thus, by developing these initial block sets in form of $D^* = [D_1: D_2]$ we get the 2 multiple BIB design with no repeated blocks and with parameters v = 11, $b^* = 22$, $r^* = 10$, k = 5, $\lambda^* = 4$.

3. QUASI SYMMETRIC DESIGNS WITH THREE INTERSECTION NUMBERS

Theorem 3.1 : Let D* be a quasi-symmetric design with parameter set (v, b*, r*, k, λ *; χ , y, z) have three intersection

numbers $\chi = 0$, $y = \lambda$ and $z = \lambda + 1$. Then corresponding to a block there are

$$\alpha_1 = \frac{k^2(\lambda^* - 1) + k\{(x + z)(1 - r^*) - \lambda^* + r^*\} + xz(b^* - 1)}{(y - x)(y - z)}$$

with one type of intersection number,

$$\alpha_2 = \frac{k^2 (\lambda^* - 1) + k\{(y + x)(1 - r^*) - \lambda^* + r^*\} + xy(b^* - 1)}{(z - x)(z - y)}$$

with second type of intersection number, and

$$b^* - 1 - \alpha_1 - \alpha_2 = \frac{k^2(\lambda^* - 1) + k\{(y + z)(1 - r^*) - \lambda^* + r^*\} + yz(b^* - 1)}{(y - x)(z - x)}$$

with third type of intersection number and where α_1 , α_2 and $(b^*-1 - \alpha_1 - \alpha_2)$ be the number of blocks intersecting B_* in y, z and χ number of points.

Proof :- Let us consider a block B_* of D^* and make it fixed. Then α_1 and α_2 be the number of blocks intersecting B_* in y and z points, the remaining (b*-1- α_1 - α_2) blocks intersecting with B_* in χ points. Then count in two ways process, the number of

pairs $\{(u_1, u_2), B\}$, where B is a block of D* other than B* and where u_1, u_2 are distinct points of D* contained in $B \cap B_*$, is obtained by the following equations,

$$\alpha_1 y + \alpha_2 z + (b^{*} - 1 - \alpha_1 - \alpha_2) \chi = k (r^{*} - 1)$$
 and

$$\alpha_1 y(y-1) + \alpha_2 z(z-1) + (b^* - 1 - \alpha_1 - \alpha_2) \chi(\chi-1) = k(k-1)(\lambda^*-1)$$

By simplify above two equations, we get

$$\alpha_1(\mathbf{y}\cdot\boldsymbol{\chi}) + \alpha_2(\mathbf{z}\cdot\boldsymbol{\chi}) + (\mathbf{b}^{*}\cdot\mathbf{1})\boldsymbol{\chi} = \mathbf{k}(\mathbf{r}^{*}\cdot\mathbf{1}) \text{ and }$$
(9)

$$\alpha_1\{(y-\chi)(y+\chi-1)\} + \alpha_2\{(z-\chi)(z+\chi-1)\} + (b^{*}-1)\chi(\chi-1) = k(k-1)(\lambda^{*}-1)$$
(10)

By solving equations (9) and (10) , we eliminate α_2 and get

50109

 $D_2 =$

$$\alpha_1 = \frac{k^2(\lambda^* - 1) + k\{(x + z)(1 - r^*) - \lambda^* + r^*\} + xz(b^* - z)}{(y - x)(y - z)}$$

Similarly, we eliminate α_1 from equations (9) and (10), and get

$$\alpha_2 = \frac{k^2(\lambda^* - 1) + k\{(y + x)(1 - r^*) - \lambda^* + r^*\} + xy(b^* - 1)}{(z - x)(z - y)}$$

Substitute the value of α_1 and α_2 in equation (9), and get

$$b^* - 1 - \alpha_1 - \alpha_2 = \frac{k^2(\lambda^* - 1) + k\{(y + z)(1 - r^*) - \lambda^* + r^*\} + yz(b^* - 1)}{(y - x)(z - x)}$$

Hence, the theorem proved.

Example 3.2 If t= 8, in equation (8), then the quasi-symmetric design D with parameter set (31, 31, 15, 15, 7) and D* is also a quasi-symmetric design with parameters v = 31, $b^* = 62$, $r^* = 30$, k = 15, $\lambda^* = 14$, $\chi = 0$, y = 7 and z = 8 and for D* from

1)

theorem 3.1 , $\alpha_1\!=\!45$, $\alpha_2\!=\!15\,$ and $\,(b^*\,\text{-}\!1-\alpha_1\!-\alpha_2)=1.$

Theorem 3.3 Let D_{*} with parameters $\mathbf{v} = 4\mathbf{t} + 1$, $\mathbf{b}_* = 2(4\mathbf{t} + 1)$, $\mathbf{r}_* = 4\mathbf{t}$, $\mathbf{k} = 2\mathbf{t}$, $\lambda_* = 2\mathbf{t} - 1$, is quasi-symmetric design have three intersection numbers $\boldsymbol{\chi} = 0$, $\mathbf{y} = \mathbf{t} - 1$ and $\mathbf{z} = \mathbf{t}$. Then corresponding to a block there are

$$\alpha_1 = \frac{k^2(\lambda_* - 1) + k\{(x + z)(1 - r_*) - \lambda_* + r_*\} + xz((b_* - 1))}{(y - x)(y - z)}$$

with one type of intersection number,

$$\alpha_2 = \frac{k^2(\lambda_* - 1) + k\{(y + x)(1 - r_*) - \lambda_* + r_*\} + xy(b_* - 1)}{(z - x)(z - y)}$$

with second type of intersection number, and

$$b_{*} - 1 - \alpha_{1} - \alpha_{2} = \frac{k^{2}(\lambda_{*} - 1) + k\{(y + z)(1 - r_{*}) - \lambda_{*} + r_{*}\} + yz(b_{*} - 1)}{(y - x)(z - x)}$$

with third type of intersection number and where α_1 , α_2 and $(b_*-1 - \alpha_1 - \alpha_2)$ be the number of blocks intersecting B_* in y, z and γ points.

Example 3.4 D* with parameters v = 13, $b_* = 26$, $r_* = 12$, k = 6, $\lambda_* = 5$ is a quasi-symmetric design have three intersection numbers $\chi = 0$, y = 2 and z = 3 and for D* from theorem 3.3, $\alpha_1 = 6$, $\alpha_2 = 18$ and $b_* - 1 - \alpha_1 - \alpha_2 = 1$.

Theorem 3.5 D* with parameter set (v, b*, r*, k, λ^* ; χ , y, z) is a quasi-symmetric design have three intersection numbers $\chi = 0$,

 $y = \lambda$ and $z = \lambda + 1$. Then D* holds the following relations:

1. $vr^* = b^*k$,

2. $\lambda^*(v-1) = r^*(k-1),$

3. $r^{*2}(k-1)+r^*\lambda^* = b^*k \lambda^*$,

- **4.** $\alpha_1 y + \alpha_2 z + (b^* 1 \alpha_1 \alpha_2) \chi = k (r^* 1)$,
- 5. $\alpha_1 y(y-1) + \alpha_2 z(z-1) + (b^* -1 \alpha_1 \alpha_2) \chi(\chi-1) = k (k-1)(\lambda^*-1)$,

6.
$$k(r^{*}-1)(y+z-1) - yz(b^{*}-2) - \chi(y+z-\chi) = k(k-1)(\lambda^{*}-1)$$
,

7. z - y divides k - y and $r^* - \lambda^*$.

Proof :-

(1) and (2) From proposition 1.1-(1), vr = bk. Since $r^* = 2r$, $b^* = 2b$ and $\lambda^* = 2\lambda$. Hence $vr^* = b^*k$ and $\lambda^*(v-1) = r^*(k-1)$.

(3) From above proved results (1) and (2), $r^{*}(-r^{*}+kr^{*}+\lambda^{*}) = r^{*2}(k-1) + \lambda^{*}r^{*} = r^{*}\lambda^{*}(v-1) + \lambda^{*}r^{*} = b^{*}k\lambda^{*}$.

(4) and (5) Let α_1 and α_2 , be the number of blocks intersecting B_* in y and z points, the remaining (b*-1- α_1 - α_2) blocks intersecting with B_* in χ points. Fix a block B_* and count in two ways process the number of pairs {(u₁, u₂), B}, where B is a

block of D* other than B_* and where u_1 , and u_2 are distinct points of D* contained in $B \cap B_*$, is obtained by the following equations,

$$\alpha_1 y + \alpha_2 z + (b^* - 1 - \alpha_1 - \alpha_2) \chi = k (r^* - 1)$$
 and (11)

 $\alpha_1 y(y-1) + \alpha_2 z(z-1) + (b^* - 1 - \alpha_1 - \alpha_2) \chi(\chi - 1) = k(k-1)(\lambda^* - 1)$ (12)

(6) By solving equations (11) and (12), we get the solution of relation $k(k-1)(\lambda^*-1) = k(r^*-1)(y+z-1) - yz(b^*-1) + (y-\chi)(z-\chi)$

Hence, $k(r^{*}-1)(y+z-1) - (b^{*}-2)yz - \chi(y+z-\chi) = k(k-1)(\lambda^{*}-1).$

(7) From proposition 1.1- (3) y-x divides k - y and $r - \lambda$. Since $z-y = \lambda+1-\lambda=1$ and $r^*=2r$ and $\lambda^*=2\lambda$. Hence, z-y divides k - y and $r^* - \lambda^*$.

Example 3.6 D* is a quasi-symmetric design with parameters v = 11, $b^* = 22$, $r^* = 10$, k = 5, $\lambda^* = 4$ with no repeated blocks and have three intersection numbers x = 0, y = 2 and z = 3 and $\alpha_1 = 15$, $\alpha_2 = 5$ and $b^* - 1 - \alpha_1 - \alpha_2 = 1$ holds the all relations of theorem 3.5.

Corollary 3.7 D* is a quasi-symmetric design with parameter set (v, b*, r*, k, λ_* ; χ , y, z) have three intersection numbers χ

= 0, y = t - 1 and z = t. Then D_{*} holds the following relations :

1. $v r_* = b_* k$,

- 2. $\lambda_*(v-1) = r_*(k-1)$,
- **3.** $r_*^2(k-1) + r_* \lambda_* = b_* k \lambda_*$,
- **4.** $\alpha_1 y + \alpha_2 z + (b_* 1 \alpha_1 \alpha_2) \mathbf{\chi} = k (r_{*} 1)$,

5. $\alpha_1 y(y-1) + \alpha_2 z(z-1) + (b_* -1 - \alpha_1 - \alpha_2) \chi (\chi-1) = k (k-1)(\lambda_{*-1}),$

6. $k(r_*-1)(y+z-1) - yz(b_*-2) - \chi(y+z-\chi) = k(k-1)(\lambda_*-1)$,

7. z - y divides k - y and $r_* - \lambda_*$,

Example 3.8 D_{*} is a quasi-symmetric design with parameters v = 13, $b_* = 26$, $r_* = 12$, k = 6, $\lambda_* = 5$ have three intersection numbers $\gamma = 0$, y = 2 and z = 3 and $\alpha_1 = 6$, $\alpha_2 = 18$ and $(b_* - 1 - \alpha_1 - \alpha_2) = 1$ holds the all relations of corollary 3.7.

Corollary 3.9 D* is a quasi – symmetric design with parameters (v, b*,r*,k, λ *; χ , y, z).

Then, $\alpha_1 y(y - \chi) = \alpha_2 z(\chi - z) + k^2 (\lambda^* - 1) + k \{ \chi (1 - r^*) - \lambda^* + r^* \}$.

Proof : By theorem 3.5 relation (4) and (5)

 $\alpha_1 y + \alpha_2 z + (b^* - 1 - \alpha_1 - \alpha_2) \boldsymbol{\chi} = k (r^* - 1)$,

 $\alpha_1 y(y-1) + \alpha_2 z(z-1) + (b^* - 1 - \alpha_1 - \alpha_2) \chi (\chi - 1) = k (k-1) (\lambda^* - 1),$

On solving above two relations of theorem 3.5, we get

 $\alpha_1 \mathbf{y}(\mathbf{y} - \boldsymbol{\chi}) = \alpha_2 \mathbf{z}(\boldsymbol{\chi} - \mathbf{z}) + \mathbf{k}^2 (\lambda^* - 1) + \mathbf{k} \{ \boldsymbol{\chi} (1 - \mathbf{r}^*) - \lambda^* + \mathbf{r}^* \}.$

Corollary 3.10 D* with parameters (v, b*, r*, k, λ_* ; χ , y, z) is a quasi – symmetric design.

Then, $\alpha_1 y (y - \chi) = \alpha_2 z (\chi - z) + k^2 (\lambda_* - 1) + k \{ \chi (1 - r_*) - \lambda_* + r_* \}$.

Proof :- Solve this corollary with the help of relations (4) and (5) of corollary 3.7. **Corollary 3.11** Let D* be a quasi – symmetric design with parameter set $(v, b^*, r^*, k, \lambda^*; \chi, y, z)$. Then $a_1 r^{*2} + b_1 r^* + c_1 = 0$

, where $a_1 = (k-1) yz$ $b_1 = \{yz - k^2(y + z-1)\} \lambda^*$ $c_1 = \{k^2(\lambda^*-1) + k (y+z-\lambda^*) - 2yz + \chi (y + z - \chi)\} \lambda^*k$

Proof :-- From above theorem 3.5-(3), (k-1) r^{*2} + λ^*r^* - $b^*k \lambda^*=0$. Hence, (k-1) yzr^{*2} + $\lambda^*r^*yz - b^*yzk \lambda^*=0$. From theorem 3.5-(6) $b^*yz= 2yz + k(r^*-1)(y+z-1) - k(k-1)(\lambda^*-1) - \chi(y+z-\chi)$.

Substituting the value of b*yz in above equation we get (k-1) y z r*²+ λ *r*yz- { k (r*-1)(y+z-1) + 2yz -k(k-1)(λ *-1)- χ (y+z- χ)} = 0

Hence, (k-1) $yzr^{*2} + \{yz-k^2(y+z-1)\} \lambda^*r^* + \{k^2(\lambda^*-1)+k(y+z-\lambda^*)-2yz+\chi(y+z-\chi)\} \lambda^*k=0$.

Corollary 3.12 Let D_{*} with parameter set (v, b_{*}, r_{*}, k, λ_* ; χ , y, z) is a quasi – symmetric design. Then $a_1 r_*^2 + b_1 r_* + c_1 =$

0, where $a_1 = (k-1) yz$, $b_1 = \{ yz - k^2(y + z - 1) \} \lambda_*$ and $c_1 = \{ k^2(\lambda_* - 1) + k(y + z - \lambda_*) - 2yz + \chi(y + z - \chi) \} \lambda_* k$.

Corollary 3.13 If D* with parameter set $(v, b^*, r^*, k, \lambda^*; \chi, y, z)$ is a quasi – symmetric design , then (i) $r^* = v - 1$, (ii) $\lambda^* = v - 1$, (ii) $\lambda^* = v - 1$, (iii) $\lambda^* = v - 1$, (iv) $\lambda^* = v$

k-1, (iii) $b^* = 2(r^*+1)$ (iv) if $k \ge 3$ then $\lambda^* \ge 2$.

Proof. (i) From equation (8) $r^* = 4t - 2 = v - 1$.

(ii) Since λ^* (v-1) = r*(k-1) and from above result (i) r*= v-1. Hence, $\lambda^* = k-1$.

(iii) Since $b^*=2v$ and from (ii) $v = r^* + 1$. Hence, $b^* = 2(r^* + 1)$.

(iv) From (iii) $k = \lambda^* + 1$ and if $k \ge 3$ then $\lambda^* + 1 \ge 3$. Hence, $\lambda^* \ge 2$.

Corollary 3.14 If D_{*} is a quasi – symmetric design with parameter set $(v, b_*, r_*, k, \lambda_*; \chi, y, z)$, then (i) $r_* = v - 1$, (ii) $\lambda_* = b + 1$ (iii) $b = 2(r_* + 1)$ (iv) if $b \ge 2$ then $\lambda \ge 2$

k-1, (iii) b*= 2(r*+ 1) (iv) if $k \ge 3$ then $\lambda_* \ge 2$.

4. RESULTS

The following table-1 provide a list of parameters which can be obtained by using theorem 2.1 and theorem 3.1. and table-2 provide a list of parameters which can be obtained by using theorem 3.3.

50111

-	-			-
' I	10	ы	0	1
		DI		

S.No.	t	$\mathbf{v} = \mathbf{b} = 4\mathbf{t}\mathbf{-1}$	$\mathbf{r} = \mathbf{k} = 2\mathbf{t}\mathbf{-}1$	$\lambda = t-1$	b*= 2b	r* = 2r	λ* =2λ	x	$y = \lambda$	$z = \lambda + 1$	$b^* \textbf{-} 1 - \alpha_1 - \alpha_2$	α1	α2
1	2	7	3	1	14	6	2	0	1	2	1	9	3
2	3	11	5	2	22	10	4	0	2	3	1	15	5
3	5	19	9	4	38	18	8	0	4	5	1	27	9
4	6	23	11	5	46	22	10	0	5	6	1	33	11
5	7	27	13	6	54	26	12	0	6	7	1	39	13
6	8	31	15	7	62	30	14	0	7	8	1	45	15
7	11	43	21	10	86	42	20	0	10	11	1	63	21
8	12	47	23	11	94	46	22	0	11	12	1	69	23
9	15	59	29	14	118	58	28	0	14	15	1	87	29
10	17	67	33	16	134	66	32	0	16	17	1	99	33
11	18	71	35	17	142	70	34	0	17	18	1	105	35

Table 2.

S.No.	t	$\mathbf{v} = \mathbf{4t+1}$	b*=8t+2	$r_* = 4t$	k = 2t	$\lambda_* = 2t-1$	x	y = t-1	z = t	$b_{*}\!\!-1-\alpha_{1}\!-\alpha_{2}$	α1	α2
1	3	13	26	12	6	5	0	2	3	1	6	18
2	4	17	34	16	8	7	0	3	4	1	8	24
3	7	29	58	28	14	13	0	6	7	1	14	42
4	9	37	74	36	18	17	0	8	9	1	18	54
5	10	41	82	40	20	19	0	9	10	1	20	60
6	13	53	106	52	26	25	0	12	13	1	26	78

5. ACKNOWLEDGEMENTS

The authors are thankful to the reviewers for their valuable comments and suggestions.

REFERENCES:-

- 1. Baartmans A. and Danhof K. and TAN Soon tech, Quasi-residual quasi symmetric designs, Discrete Mathematics . (1980); 30: 69-81.
- 2. Baartmans A. and Shrikhande M.S., Designs with no three mutually disjoint blocks, Discrete math., (1982); 40: 129-139.
- 3. Bagchi B., On quasi-symmetric designs, Des. Cod & Crypt., (1992); 2 (1): 69-79.
- 4. Beth T., Jungnickel D. and Lenz H., Design Theory, Cambridge University Press, Cambridge, (1986 and 1999).
- 5. Bose R.C., On the construction of balanced incomplete block designs, Annals of Eugenics. (1939); 9: 358–399.
- 6. Calderbank A.R. and Morton P., Quasi-symmetric 3-designs and elliptic curves, SIAM J. discrete math., to appear.
- 7. Cameron P. J. and Vanlint J. H., Designs, Graphs, Codes and their links, London Math. Soc. Students' Texts 22, Cambridge University Press. (1991).
- 8. Dey A., Theory of Block Designs, . Wiley Eastern Limited. ,New Delhi, India. (1986).
- 9. Ghosh D. and Dey L.K., A New upper bound on the parameters of quasi-symmetric designs, Information processing letter, (2013); 113: 444-446.
- 10. Ghosh D. and Dey L.K., Construction of a class of quasi-symmetric 2-Designs, Int J. Pure Appl. Sci. Technol., (2014); 22(2): 36-40.
- 11. Goethals J.M. and Seidel J.J., Strongly regular graph derived from combinatorial designs, Canadian J.Math., (1970); vol. XXII,No.3: 597-614.
- 12. Hall M., Jr. Combinatorial theory, Wiley, New York, (1986).
- 13. Hanani H., The existence and construction of balanced incomplete block designs, The annals of mathematical statistics, (1961); vol.32 no. 2: 361-386.
- 14. Mavron V.C., Mc Donough T.P. and Shrikhande M.S., On quasi-symmetric designs with intersection difference three, Des. Cod & Crypt., (2011); 1-15.
- 15. Meyerowitz A., Quasi-Symmetric designs with $y = \lambda$, Journal of combinatorial theory, (1992); A 59: 134-141.
- 16. Pawale R.M and Sane S.S., A short proof of a conjecture on quasi-symmetric 3-designs, Discrete mathematics, (1991); 96: 71-74.
- 17. Pawale R.M. Pawale , A note on t-designs with t intersection numbers, Discrete mathematics and theoretical computer science, (2004); 6: 359-364.
- 18. Pawale R.M, Quasi-symmetric 3 designs with a fixed block intersection number, Australasian journal of Combinatorics, (2004); 30: 133-140.
- 19. Pawale R.M., Non existence of triangle free quasi-symmetric designs, Designs , Codes and Cryptography, (2005) ; 37: 347-353.
- 20. Pawale R.M., Quasi-symmetric designs with fixed difference of block intersection numbers, Journal of Combinatorics des., (2007); 15(1): 49-60.
- 21. Pawale R.M. (2011), Quasi-symmetric designs with the difference of block intersection number two, Des. Cod. & Crypt., 58(2), 111-121.
- 22. Pawale R.M., Shrikhande M.S. and Nyayate S.M., Conditions for the parameters of the block graph of quasi symmetric designs, The Electronic Journal of Combinatorics, (2015); 22(1).
- 23. Ray-Chaudhuri D.K. and Wilson R.M., On t-designs, Osaka J. Math., (1975); 12: 737-744.
- 24. Sane S.S. and Shrikhande M.S., Fitness questions in quasi-symmetric designs, Journal Combinatorial theory ser., (1986); A 42 : 252-258.

- 25. Sane S.S. and Shrikhande M.S., The structure of triangle free quasi-symmetric designs, Discrete mathematics, (1987); 64: 199- 207.
- 26. Sane S.S. and Shrikhande M.S., Quasi-symmetric 2,3,4-designs, Combinatorica, (1987); 7(3): 291-301.
- 27. Shrikhande M.S. and Sane S.S, Quasi-symmetric designs, London Math Soc., Lecture notes series 164. (1991).
- 28. Teirlinck L., Non trival t-designs without repeated blocks exist for all t, Discrete Math., (1987); 65: 301-311.
- 29. Wallis W.D., A Note on Quasi-symmetric designs, Journal of combinatorial theory, (1970); 9: 100-101.
- 30. Wilson R.M., "An existence theory for pairwise balanced designs :I, Composition theorems and morphisms "J. Combinatorial Theory(A), (1972); 13:220–245.
- 31. Wilson R.M., "An existence theory for pairwise balanced designs :II The structure of PBD- closed sets and the existence conjectures" J. Combin. Th. A, (1972) ;13: pp. 246–273.
- 32. Wilson R.M., "An existence theory for pairwise balanced designs :III A proof of the existence conjectures " *J. Combin. Th. A*, (1972) ;**18** : pp. 71-79.

50113