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1. Introduction 

In the early 1930’s R.A. Fisher and F. Yates gave the concept of design of experiments. A fundamental method of 

constructing 2- designs (and also the first systematic construction method) is due to Bose [5]. It is known as the method of 

differences. Suppose an abelian group (G, +). For a subset B ⊆ G, | B | = k, consider the k(k-1) ordered differences of its elements. 

We get a collection of m subsets B1, B2, …..Bm of G, a set of initial blocks if among the mk(k-1) differences arising from these m 

blocks, each  non-zero element of G occurs exactly a constant number λ times. Several series of BIB designs have been 

constructed by Sprott ( 1954, 1956 ) ,using the method of differences. Teirlinck  [28] has proved that non – trival t – designs 

without repeated blocks exist for all t. In the early 1970’s Richard Wilson did the most significant improvement in the design 

theory. He [30]-[32] also gave some useful results on  an existence theory for pairwise balanced designs. Hanani [13]  has shown 

that the obvious necessary conditions for the existence of a 2- (v, k, λ ) design are λ(v-1) = 0 {mod(k-1)} and  λv(v-1)= 0{mod 

k(k-1)} to be sufficient for the k = 3,4 and 5, and every λ, except v= 15, k = 5 , λ= 2. 

A balanced incomplete block design is  an arrangement of v treatments in  b blocks, of size k where each treatment replicated 

r times , and every  pair of treatment appears together in  λ blocks. A BIB design is symmetric iff  v = b and r = k . It is also 

denoted as 2- (v, k, λ) . 

Quasi  Symmetric  Design - Let  S  be a finite set of v objects (points) , and  γ  be a finite family of distinct k subsets of  S 

(blocks). Then the pair D = { S , γ } is called a block design (or 2-design) with parameters (v, b, r, k, λ). For 0 ≤  < k, where an 

intersection number of D is  , if there exist B , B' ∈  γ  such that  | B ∩ B' | = . A 2-design  D  is quasi-symmetric design  

with  two numbers  of intersection   and y and  0 ≤  < y < k  if every two distinct blocks intersect in either   or y points.  

Ray et al.(see [23])  proved that for a 0- design with t- intersection number b≤  . Pawale [17] proved that for a fixed block 

size k , there exist finitely many parametrically  feasible t – designs with t – numbers of intersection and λ > 1. Quasi-symmetric 

designs and its classification has been important in the study of design theory over the last several years. Sane and  Shrikhande 

gave many important results for quasi-symmetric designs. Goethals et al. [11] gave the concept of  graph of a  quasi-symmetric 

design which is strongly regular.   

Our main objective in this paper is to study the relations for  quasi-symmetric 2- designs with  three intersection   numbers. 

So here we consider  a multiple  solution of  symmetrical  BIB designs , with no repeated blocks which is also quasi-symmetric 2- 

designs  with  three type of  intersection numbers    = 0 , y  and  z. 

Some results  which are useful for the development of the  paper are discussed below . 

Proposition 1.1 [ 4, 7, 27 ]  If  D  with standard  parameter set (v, b ,r, k, λ ; , y) is a quasi  symmetric design, then  the relations 

between parameters are:  

(1)   vr = bk and λ (v-1) = r(k-1), 
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(2)   k(r-1)( +y-1) - y (b-1) = k(k-1)(λ-1) 

(3)   y-  divides k -  and r- λ     

(4)   r (-r + kr + λ ) = bkλ. 

Proposition 1.2  [ 27 ]  If D  with standard  parameter set (v, b ,r, k, λ ; , y) is a quasi  symmetric design and (b - 1- α)  and α are 

the number of blocks which intersect  given block in  and y number of points , then 

 

Proposition 1.3 [ 8 ]  Consider   the balanced incomplete  block  design  D* with  parameter set  

    v = 4t + 1, b* = 2(4t + 1) , r* = 4t , k = 2t , λ* = 2t–1                                            ( * ) 

where v is a prime and  primitive element of GF (v) is   , and  the  solution of design  D* with above given parameter  set is 

obtained by initial blocks  

;     

. 

Thus, we get the complete solution of the design D*, by developing  given  intial  block  set. 

To illustrate this result, we consider the following example. 

Example 1.4  Let t = 4 in D* ,so that the parameters are v = 17, b* = 34 , r* = 16 , k = 8 , λ* = 7 .Since  = 3 is primitive element 

of GF (17) ,the initial blocks are ( 3
0
,3

2
, 3

4
, 3

6
, 3

8 
,3

10
, 3

12 
,3

14 
) = ( 1, 9, 13, 15, 16, 8, 4, 2 ) and  ( 3

1
,3

3
, 3

5
, 3

7
, 3

9 
, 3

11
, 3

13 
,3

15 
) = ( 

3, 10, 5, 11, 14, 7, 12, 6 ). By developing the sets of initial block , we get complete solution of the this  design. 

2.  CONSTRUCTION OF   2-MULTIPLE BALANCED INCOMPLETE BLOCK DESIGNS 

Theorem 2.1 The existence of  the series of symmetrical  balanced incomplete block design D with parameters  v = 4t - 1= b , r = 

2t - 1 = k ,  λ = t–1 ,where v(=4t-1) = p
n 

 is a prime or prime power and   is a primitive element of GF(p
n
) , implies the existence 

of D* a 2-multiple balanced  incomplete block design  with no  repeated blocks with parameters  v= 4t -1 , b*= 2(4t –1) =2b , 

r*=2(2t –1) =2r , k= 2t -1 , λ*=2(t– 1)= 2λ . 

Proof   :-  Consider as symmetrical  BIB designs  with r = (v-1)/2 . Then we have   

 λ(v-1) = r(k-1) = {(v - 1)/2} {(v  -3)/2}. 

Since  v= 4λ + 3 and if we take  λ = t -1 ,then the parameters of the design under consideration  became           

       v  =  4t - 1  =  b , r  =  2t - 1  =  k ,  λ  =  t – 1.                                            (1) 

We obtained the solution of  the  design  D with  parameters in (1) if v = p
n
  is a prime or prime  power. Since  is a primitive 

element and all the no zero elements of GF(p
n
)  can be shown as  

 
0 
  = 1 ,   ,  

2
,……………………………….  

4t-3
 , 

Then , 

                                   
 v-1 

 =  
4t-2

 = 1  and      
2t-1 

 = - 1.                                             (2) 

Consider the initial block                                                                                                                                                             

D1 = .                                                                              (3) 

The differences from this initial block can be written in this form 

 ±   ± …………………….., ± ; 

 ±   ± …………………….., ± ; 

. 

. 

. 

±  ± …………………….., ± . 

                           (4) 

Let = . Then, from (2) ,the differences in the i
th 

 row of (4) are  

                           

                                       (5) 

 All the differences in (4) can be obtained by setting  i = 1,2,………,(t – 1)  in   (5) . 

But, for any given value of  i, every non-zero element of  GF (pn)  occurs  just once in  (5) . Therefore, in the differences (5) 

that arise from the initial block (3), every non-zero element of  GF (pn)  occurs  exactly ( t – 1 ) times.  

  Now, multiply (3) by primitive element   of  GF (pn) ,we get another initial block set is  
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                                                       (6) 

The  differences  from initial  block set (6) are 

, 

  .                                             (7) 

Similarly, all the differences can be obtained by setting   i = 1,2,…………,(t – 1) in equation  (7). 

        But, for any given value of i, every non-zero elements of GF (pn) occurs just once in (7). Therefore, in the differences (7) that 

arise from the initial block (6), every non-zero element of  GF (pn)  occurs  exactly ( t – 1) times. 

     Again, if we multiply  (6) by primitive element   of  GF (pn) ,then we get same  initial block set  of  (3).  

      Thus, from (3) and (6) we get the initial blocks set in form of D* = [D1 : D2 ] .  Hence , by developing  D*  we get the complete 

solution of 2-multiple  BIB  designs  with  no  repeated  blocks  with  parameters  

v = 4t – 1, b*= 2(4t – 1) = 2b, r*= 2(2t – 1) = 2r , k= 2t – 1 , λ* = 2( t – 1) =2λ.    (8) 
This complete the proof. 

Example 2.2 We illustrate the theorem 2.1, if  t = 3  then  BIB design with the parameters   

v = b = 11 ,  r = k =  5 ,  λ = 2 . 

Since primitive element of GF (11) is   = 2 and the solution of the design is given by the initial set (2
0
,2

2
, 2

4
, 2

6
, 2

8
), that is (1, 3, 

4, 5, 9) mod 11 provides  

              (1, 3, 4, 5, 9 ) ;      (2, 4, 5, 6, 10 ) ;    (3, 5, 6, 7, 0 ) ; 

D1 :       (4, 6, 7, 8, 1 ) ;      (5, 7, 8, 9, 2  )  ;   (6, 8, 9, 10, 3 ) ; 

              (7, 9, 10, 0, 4);      (8, 10, 0, 1, 5 ) ;    (9, 0, 1, 2, 6)  ; 

               (10, 1, 2, 3, 7);      (0, 2, 3, 4, 8 ) . 

And ,the another initial  block set is ( 2
1
,2

3
, 2

5
, 2

7
, 2

9 
), that is ( 2, 6, 7, 8, 10 ) mod 11 provides 

            (2, 6, 7, 8, 10 ) ;     ( 3, 7, 8, 9, 0 ) ;    (4, 8, 9, 10, 1 ) ; 

  D2 :   (5, 9, 10, 0, 2 ) ;     ( 6, 10, 0, 1, 3 );     (7, 0, 1, 2, 4 )  ; 

             (8, 1, 2, 3, 5 )   ;     ( 9, 2, 3, 4, 6 ) ;    (10, 3, 4, 5, 7) ; 

             ( 0, 4, 5, 6, 8 ) ;      ( 1, 5, 6, 7, 9 ) . 

Thus, by developing these  initial block  sets  in form of  D* = [ D1 :  D2 ]  we get the  2 multiple  BIB design  with no 

repeated blocks  and  with  parameters  v = 11, b* = 22 ,  r* = 10,  k =  5 ,  λ* = 4. 

3. QUASI SYMMETRIC DESIGNS WITH THREE INTERSECTION NUMBERS 

Theorem 3.1 :  Let  D* be a  quasi-symmetric  design  with  parameter set (v, b*, r*, k, λ*; , y, z) have three intersection 

numbers   = 0 , y = λ and  z = λ +1. Then corresponding to a block there are  

 

with  one  type of intersection number , 

 

with  second  type of intersection number , and 

 

with  third  type of intersection number  and   where  α1 , α2  and  (b*-1 - α1  - α2 ) be the number of blocks intersecting  B* in y , z  

and   number of  points. 

Proof :-  Let us consider a block B* of D* and make it fixed. Then α1 and α2 be the number of blocks intersecting B* in y and z 

points, the remaining (b*-1- α1- α2  ) blocks  intersecting  with  B*  in  points. Then  count in two ways process, the number of 

pairs {(u1, u2), B} , where B  is a  block of D* other  than  B* and where  u1, u2 are  distinct points  of  D* contained in  B ∩ B* , is 

obtained by the following equations, 

                  α1y + α2z + (b*-1- α1 -α2 )  = k ( r*-1 )   and         

                  α1y(y-1) + α2 z (z-1) + (b* -1- α1 -α2)  ( -1) = k(k-1)(λ*-1 )                

 By simplify above two equations , we get  

                  α1 (y- ) + α2 (z - ) + (b*-1)  = k ( r*-1 )   and                                 (9) 

                  α1{(y- )(y+ -1)}+ α2{(z- )(z+ -1)}+(b*-1) ( -1) = k(k-1)(λ*-1 )                            (10) 

By solving equations  (9) and (10) ,we eliminate α2  and  get  
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Similarly, we eliminate α1 from equations (9) and (10) , and  get  

  

Substitute the value ofα1  and α2 in equation (9) , and  get 

 

Hence, the theorem proved. 

Example 3.2  If t= 8, in equation (8), then the  quasi-symmetric design D with parameter  set     (31, 31, 15 , 15 ,7 ) and D* is also 

a quasi-symmetric design  with  parameters  v = 31, b* = 62 ,  r* = 30,  k =15 , λ* =14 , =0, y = 7 and z = 8 and  for D* from 

theorem 3.1 , α1 = 45 , α2 = 15  and  (b* -1 – α1 – α2) = 1. 

Theorem 3.3    Let D* with parameters  v = 4t + 1, b* = 2(4t + 1) , r* = 4t , k = 2t , λ* = 2t–1 , is  quasi-symmetric  design  have 

three intersection numbers   = 0 , y = t - 1 and  z = t. Then corresponding to a block there are  

 

with one  type of intersection number , 
 

with second  type of intersection number , and 

 

with  third  type of intersection number  and   where  α1 , α2  and  (b*-1 - α1  - α2 ) be the number of  blocks intersecting  B*  in y , z  

and    points. 

Example 3.4  D*  with  parameters  v = 13 , b* = 26 , r* =12 , k = 6  , λ* = 5  is  a  quasi-symmetric  design  have three  intersection 

numbers  =0, y = 2 and z = 3  and  for D* from  theorem 3.3 , α1 = 6 , α2 = 18  and  b* -1 – α1 – α2  = 1. 

Theorem 3.5 D* with parameter set (v, b*, r*, k, λ*; , y, z) is a quasi-symmetric  design have three intersection numbers   = 0 , 

y = λ and  z = λ +1. Then D* holds the following relations:  

1.   vr* = b*k , 

2.   λ* (v-1) = r*(k-1), 

3.   r*
2
(k-1)+r*λ* = b*k λ*, 

4.   α1y + α2 z + (b* -1- α1 – α2  )  = k (r*- 1)   , 

5.   α1y(y-1) + α2 z(z-1) + (b* -1- α1 – α2  ) ( -1) = k (k- 1)(λ*-1) , 

6.   k(r*-1)(y + z -1) – yz (b*- 2) –  (y + z – )  = k(k-1)(λ*-1) , 

7.   z – y divides k – y and r* - λ* .   

Proof  :- 

(1) and (2) From proposition 1.1-(1) ,vr = bk. Since r*= 2r ,b* = 2b  and λ*=   2λ. Hence vr* =   b*k  and  λ*(v- 1) = r*(k-1).   

(3)  From above proved results (1) and (2), r*(-r*+ kr* + λ* ) = r*
2
(k-1)+ λ*r* = r*λ*(v-1) +  λ*r* = b*k λ*.  

(4)  and (5)  Let α1 and α2, be the number of blocks intersecting B* in y and z points, the  remaining (b*-1-  α1- α2 ) blocks  

intersecting  with  B*  in  points. Fix a block B* and count  in two ways process the  number of pairs {(u1, u2 ), B} , where B  is a  

block  of D* other   than B* and where  u1, and u2  are  distinct  points  of  D* contained in  B∩ B* , is obtained by the following 

equations, 

                    α1y + α2z + (b*-1- α1 -α2 )  = k ( r*-1 )   and                                                      (11) 

                    α1y(y-1) + α2z(z-1) + (b* -1- α1 -α2) ( -1) = k(k-1)(λ*-1 )                                      (12) 

    (6 )  By solving equations (11) and (12), we get the solution of relation  

                     k(k-1)(λ*-1) = k(r*-1)(y+z-1) – yz(b* -1) + (y- )(z- )  

      Hence,  k(r*-1)(y+z-1) – (b*-2)yz – (y+z- ) = k(k-1)(λ*-1).  

     (7)  From proposition 1.1- (3) y-x divides k – y and r – λ . Since z-y = λ+1-λ=1 and r*=2r and  λ* =2λ. Hence, z– y divides k -y 

and r* - λ*.  
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Example  3.6  D* is  a  quasi-symmetric  design  with   parameters  v = 11, b* = 22 ,  r* = 10,  k =  5 ,  λ* = 4  with  no repeated  

blocks  and have  three  intersection numbers  x = 0 , y  = 2  and  z  = 3 and α1 = 15 , α2 = 5  and  b* -1 – α1 – α2  = 1  holds the all 

relations of theorem 3.5. 

Corollary 3.7  D* is a quasi-symmetric  design  with  parameter set (v, b* , r* , k , λ* ;  , y ,z) have three intersection numbers   

= 0 , y = t - 1 and  z = t . Then D* holds  the following relations :  

1.   v r* = b*k , 

2.   λ* (v-1) = r* (k-1) , 

3.   r*
2 
( k-1)+ r* λ* = b*k λ* , 

4.   α1y + α2 z + ( b* -1- α1 – α2  )  = k (r*- 1)  , 

5.   α1y(y-1) + α2 z(z-1) + (b* -1- α1 – α2  )  ( -1) = k (k- 1)( λ*-1) , 

6.   k(r*-1) (y + z -1) – yz (b*- 2) –  ( y + z – )  = k(k-1)( λ*-1) , 

7.   z – y divides k – y and r* - λ* , 

Example 3.8  D* is a quasi-symmetric  design  with  parameters  v = 13 , b* = 26 , r* =12 , k = 6  , λ* = 5  have three intersection 

numbers  = 0, y = 2 and z = 3 and α1 = 6 , α2 = 18  and  (b* -1 – α1 – α2  ) = 1  holds  the all relations of  corollary 3.7. 

Corollary 3.9   D* is a quasi – symmetric design with parameters (v, b*,r*,k, λ*;  , y ,z ). 

 Then, α1y( y- ) = α2z( -z) + k
2 
(λ*-1) + k {  (1-r*) - λ*+ r*} . 

Proof :   By theorem 3.5  relation (4) and (5)  

     α1y + α2 z + (b* -1- α1 – α2 )  = k (r*- 1)   , 

     α1y(y-1) + α2 z(z-1) + (b* -1- α1 – α2 )  ( -1) = k (k- 1) (λ*-1) ,  

On solving above two relations of theorem 3.5  , we get  

        α1y(y- ) = α2 z( -z) + k
2 
(λ*-1) + k {  (1- r*) - λ*+r*}. 

Corollary 3.10 D* with parameters (v, b* , r* , k , λ* ;  , y ,z ) is a quasi – symmetric design. 

 Then,  α1y ( y-  ) = α2 z ( -z) + k
2 
( λ* - 1) + k {  (1- r*) - λ*+ r*} . 

Proof :- Solve  this  corollary  with  the help of  relations  (4) and (5) of corollary 3.7. 

Corollary 3.11  Let  D*  be  a quasi – symmetric design  with  parameter  set  (v, b*, r*, k, λ*; , y, z).Then  ɑ1 r*
2
 + b1r* + c1 = 0 

,  where 

ɑ1 = (k-1) yz 

b1 = {yz -k
2
( y + z-1)} λ* 

c1 = {k
2
(λ*-1) + k ( y+z–λ*) -2yz +  (y + z - )} λ*k 

Proof :--  From above theorem  3.5-(3), (k-1)r*
2
+ λ*r*- b*k λ*=0. 

Hence, (k-1) yzr*
2
 + λ*r*yz – b*yzk λ*= 0.  

From  theorem  3.5-(6)  b*yz= 2yz +k(r*-1)(y+z-1) – k(k-1)(λ*-1) –  ( y+z-  ) . 

Substituting  the value  of  b*yz  in above equation we get  

(k-1) y z r*
2
+ λ*r*yz- { k (r*-1)(y+z-1) + 2yz -k(k-1)(λ*-1)- (y+z- )} = 0 

Hence,      (k-1) yzr*
2
+{yz-k

2
(y+z-1)} λ*r*+{k

2
(λ*-1)+ k ( y+z-λ*) - 2yz +  ( y+z- )} λ*k=0  . 

 Corollary 3.12  Let  D* with  parameter  set  (v, b* , r* , k , λ* ;  , y ,z ) is  a quasi – symmetric design . Then  ɑ1 r*
2
 + b1 r* + c1 = 

0 ,  where     ɑ1 = (k-1) yz  ,  b1 = { yz -k
2
( y + z-1)} λ*   and     c1 = { k

2 
( λ*-1) + k ( y + z– λ*) -2yz +  (y + z – )} λ*k . 

Corollary 3.13   If  D*  with  parameter  set  (v, b*, r*, k, λ*; , y, z) is  a quasi – symmetric design  , then (i) r* = v – 1, (ii) λ* = 

k-1, (iii)  b* = 2(r *+ 1)  (iv) if k ≥ 3 then λ* ≥ 2 . 

Proof . (i)   From equation (8) r* = 4t – 2 = v – 1. 

(ii)  Since λ* (v-1) = r*(k-1) and from above result (i) r*= v-1.Hence, λ* = k-1. 

(iii)  Since  b*= 2v and from (ii) v = r* + 1. Hence , b* = 2( r* + 1). 

(iv)  From (iii)  k = λ* +1 and  if k  ≥ 3  then  λ*+1 ≥ 3. Hence, λ* ≥  2. 

Corollary 3.14   If D*  is  a quasi – symmetric design  with  parameter  set  (v, b* , r* , k , λ* ;  , y ,z ) , then (i) r* = v – 1, (ii) λ* = 

k-1, (iii) b*= 2(r*+ 1)  (iv) if k ≥ 3 then λ* ≥ 2 . 

4.  RESULTS   

The  following  table-1 provide  a  list  of  parameters  which can be  obtained  by using theorem 2.1 and theorem 3.1. and 

table-2  provide  a  list  of  parameters  which can be  obtained  by using theorem 3.3.       
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Table 1. 

S.No. t v = b = 4t-1  r = k = 2t-1 λ = t-1 b*= 2b r* = 2r λ* =2λ 
 

y = λ z = λ +1 b* -1 – α1 – α2   α1 α2 

1 2 7 3 1 14 6 2 0 1 2 1 9 3 

2 3 11 5 2 22 10 4 0 2 3 1 15 5 

3 5 19 9 4 38 18 8 0 4 5 1 27 9 

4 6 23 11 5 46 22 10 0 5 6 1 33 11 

5 7 27 13 6 54 26 12 0 6 7 1 39 13 

6 8 31 15 7 62 30 14 0 7 8 1 45 15 

7 11 43 21 10 86 42 20 0 10 11 1 63 21 

8 12 47 23 11 94 46 22 0 11 12 1 69 23 

9 15 59 29 14 118 58 28 0 14 15 1 87 29 

10 17 67 33 16 134 66 32 0 16 17 1 99 33 

11 18 71 35 17 142 70 34 0 17 18 1 105 35 

Table 2. 

S.No. t v =  4t+1 b*= 8t+2 r* = 4t   k = 2t λ* = 2t-1 
 

y = t–1 z = t b*– 1 – α1 – α2   α1 α2 

1 3 13 26 12 6 5 0 2 3 1 6 18 

2 4 17 34 16 8 7 0 3 4 1 8 24 

3 7 29 58 28 14 13 0 6 7 1 14 42 

4 9 37 74 36 18 17 0 8 9 1 18 54 

5 10 41 82 40 20 19 0 9 10 1 20 60 

6 13 53 106 52 26 25 0 12 13 1 26 78 
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