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1. Introduction    

The EM algorithm has become a very popular computational method in statistics. Dempster, Laird and Rubin (1977) 

introduced a very general framework for defining the EM iterative algorithm which find local maxima of the log-likelihood in 

problems with analysing incomplete data. 

Furthermore, Wu (1983) considerably tightened the theory of EM algorithm by giving strict conditions for convergence to a 

stationary point of the log-likelihood. Compared with the general experience in numerical optimization, the executation of the 

expectation step (E-step) and maximization step (M-step) is easy for many statistical problems. Solutions of the M-step often exist 

in closed form. The M-step can be implemented with a standard statistical package in many cases, thereby saving programming 

time. Another reason for statisticians preferring to EM is that it does not require large storage space. 

Xu and Jordan (1996) provided the EM algorithm for computing maximum likelihood estimates of Gaussian Mixtures. For 

mixtures of logistic distributions such information is lacking, although a special instance of the EM algorithm prevails therein. In 

this paper, we propose analogs of the multivariate normal mixture results for the multivariate logistic distribution. 

2. Logistic Distribution is An Exponential Family 

A K-component mixture of D-dimensional logistic distributions can be represented by the probability density function 

                                                                                                     (1) 

where is the mixing proportion of component i,   [0; 1],  and  is the density of a multivariate 

logistic distribution with mean  and scale s. We will sometimes use  as shorthand notation for , and call  

the ith component density, where (see, Malik and Abraham, 1973) 

                                                      (2) 

Assume that K and N are independent, identically distributed samples    , we obtain the following log-likelihood: 

                                                                                                              (3) 

The logistic distribution can be written as an exponential family after the transform as below. 
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ABSTRACT 

The Expectation-Maximization (EM) algorithm is a parameter estimation method which 

performs to the general data frame of maximum-likelihood estimation, including some 

applications to data analysis and statistics. There is the work by Dempster, Laird and 

Rubin (1977) on the key features of defining the EM algorithm. Logistic mixtures, unlike 

normal mixtures, have not been studied for the EM algorithm. In this paper, we express 

the theorem about a relationship between the gradient of the log likelihood and the step in 

parameter space taken by the EM algorithm in their multivariate extension for the 

mixture logistic distribution (see Malik and Abraham (1973)). The literature on 

determination of the number of modes in logistic mixture models has focused primarily 

on univariate mixtures. In fact, there is a simple description of modality when one is 

mixing two univariate components. In particular, an analogue of the techniques such as 

the paper written by Robertson and Fryer (1969) al-lows to attain the results in the case 

of the convex combination of two item response functions (IRFs) for the unidimensional 

dichotomous 1-parameter to 4-parameter logistic (1PL to 4PL) item response theory 

(IRT) models.                                                                                  
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                    (4) 

 

So according to Dempster et al.’s paper in 1977, we can get the following interative algorithm. 
 

 

 

                                                                                               (5) 

Where the coefficients  are defined as follows: 

 

 

 
and 

 
3. The EM Algorithm for Logistic Mixtures and Theorem of Connection between EM and Gradient Ascent 

For the most central part we confine our attention to the following theorem about a relationship between the gradient of the 

log likelihood and the step in parameter space taken by the EM algorithm. 

Theorem 1. At each iteration of the EM algorithm in equation (5), we can get 

                                                                                                                                            (6) 

                                                                                                                                           (7) 

                                                                                                                                                  (8) 

Where 

                                                                                                                        (9) 

                                                                                                                                                         (10) 

                                                                                                                                                              (11) 

where A denotes the vector of mixing proportions , i indexes the mixture components (i = 1; ; K), k denotes the 

iteration number. Moreover, given the constraints  and is a positive definite  matrix, and the matrix 

 is negative definite, and matrix with probability one for N sufficiently large.  
Proof. 

(i) First we consider the EM Algorithm update for the mixing proportions pi. It follows from equations (1) and (3) that 

 

                                                                                                           (12) 
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Multiplying by , we have  

                                                                                                                                                             (13) 

 

 
The update formula for A in equation (5) can be rewritten as   

 
Combining the last two equations establishes the update rule for A (equation (9)). Furthermore, for an arbitrary vector u, we 

can get 

 
By Jensen’s inequality we obtain 

                                                                (14) 

 

Thus,  and  is positive definite given the constraints  and  for  

(ii) Next, we prove the second part of the theorem. It follows from equations (1) and (3) that 

                                                                                            (15) 

Premultiplying by considering the convergence of summation in series, In we obtain 

 

 

                                                                                                                                                                   (16) 

Following from equation (5), we have moreover, s
(
i
k)

 and are both positive definite. Thus, according to 

equation (10), we can get that is negative definite. 

 

(iii) Finally we end by considering the EM update for the scale parameters si: From equations (1) and (3), we obtain 

                                                                                            (17) 

Permultiplying by , considering the associative property of scalar product of vectors yields 

 

 

 

                                                                                                                                                                     (18) 
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Otherwise, according to the strong law of large numbers, s
(
i
k)

 is positive definite with probability one when N is large enough; then 

from equation (11), we can obviously get that  is positive definite. 

On account of parts (i) (ii) and (iii), we complete the proof.  

4. The Convex Combination of Two 3-, and 4-Parameter Logistic Mixtures in 1-Dimentional Case 

4.1. Convex Combination of IRFs as a Mixture 

 The convex combination of two IRFs for the unidimensional dichotomous 1PL to 4PL IRT models can be viewed as a 

two-components mixture problem using the logistic distribution. 

We consider the 2PL model first. The discussion for the 1PL or Rasch model can be obtained as a special case. The cases of 

lower and upper asymptotes, the 3PL and 4PL models, are discussed thereafter. For the 3PL and 4PL models, the mixing 

proportion in the results for modality and tangentiality obtained for the 2PL model are expressed in terms of the guessing and 

careless error (slipping) parameters. 

Let  and  be IRFs of the 2PL model: for i=1,2, with  and reals  

 

As function of   taking values in (0,1). Let  be the convexity scalar. The convex combination 

 

as a function of , defines a mapping from R to (0, 1), which we call the ‘mixture IRF.’ 

This convex combination of two 2PL-IRFs can be viewed as a mixture of two logistic distributions. Each component function 

 is the  cumulative distribution function of the logistic distribution with the location parameter (mean of the 

logistic distribution) (item difficulty in the 2PL model) and scale parameter (proportional to the standard deviation of the 

logistic distribution) (reciprocal of item discrimination in the 

2PL model). With as the mixing proportion,  is the cumulative distribution function of the two-components 

logistic mixture. To recap, in terms of the probability density functions   and  corresponding to 

 respectively, the 

mixture can be represented as 

 

                                                                                               (19) 

Where, for i=1,2, 

 
Note at this point, in order to view the convex combination of two 3PL- or 4PL-IRFs with lower or upper asymptotes as a 

mixture of logistic distributions (up to an additive constant, which is the  convex combination of the two guessing parameters of 

the mixed IRFs, and which does not affect modality and tangentiality considerations), the mixing proportion must be redefined in 

terms of the convexity scalar and guessing or slipping parameters. We will discuss that in detail later in the paper. 

4.2 Equivalent Formulation of the Modality Problem Using Fewer Parameters 

The mixture in Equation (19) with five parameters  and  can be reduced to a mixture with three parameters 

 and without affecting the modality of that mixture. Then it is easier to explore this 

property. 

 

This amounts to applying the formula of change of variables for probability density functions. Consider the linear 

transformation Under this transformation, the mixture in Equation (19) transforms to the mixture 

                                                                                                                   (20) 

of the unit  logistic distribution (µ=0 and σ=1) with density 

 

and the logistic distribution with parameters    and , with density 
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each as a function of . 

Now we have: If   is a mode of the mixture in Equation (19), then  is a mode of the mixture in 

Equation (20), and vice versa, if  is a mode of the mixture in Equation (20), then is a mode of the 

mixture in Equation (19). Therefore, in the sequel, the modes of the mixture probability density function are 

studied, and as a consequence, the modes of  are obtained by applying the transformation. 

4.3 Modality Properties of the Logistic Mixture 

Without loss of generality, let the theorem of modality properties of the logistic mixture is as follows. 

Theorem 2. Let the prerequisites be as mentioned above. Let  It holds: 

1.The ‘mixture IRF’ g is unimodal for all  

 

2. For   ,the ‘mixture IRF’ g is bimodal if and only if  lies in the open interval where 

 
and yi (for i = 1; 2) are the roots of the equation 

 

 

With otherwise g is unimodal. 

Proof. 1. If a = 0 (i.e., a2 = a1), the function g is unimodal for all 0 <  < 1, regardless of the values may take. This is 

obvious geometrically. Analytically, one would require the derivative g
’ 

(with respect to ) to be zero. We have, for any 

parameter values  and b > 0, 

 

 
So, if a=0 

 

For all values of  and , the only root of the equation (For any the terms ‘exp( ) -1’ 

and are not zero, and they have the same sign.) For the second derivative we have, for any parameter values 

 and b > 0, 

 

Hence, if for all values of  and  

Now, let a > 0. Let us assume g be bimodal. Then there is a (local) minimum point > 0 such that 

> 0. In other words, at this point , 

                                                                                                                     ( 21) 
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and 

                                                                                       (22) 

 

Solving for  in Equation (21), substituting that in Equation (22), and canceling out gives 

(note ,  

 

 

Let   , then we get  According to formulae (21) and (22), we get 

 

Corresponding that we get 

 

 

Bringing   after arrangement, We get  

 

                                                                                                              (23) 

At this moment, we treat exp(a) as a variable, then we can get 

 

                                                                                   (24) 

h(exp(a)) is a quadratic equation about exp(a), the discriminant 

 

 

 

 

                                                                                                                     (25) 

(i) Formula (25) is permanently larger than zero, so the left hand side of (24) can not be permanently less than zero other than 

                                                                                                                          (26) 

Solving equation (26), considering y > 1; > 0, we get 

 
Following formula (24), we get 
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The above formula is permanently untenable, i.e., in this case, the extreme point is only the maximal point. 

(ii) Rethinking about formula (24), if 

 
then there are two different roots of h(e

a
) = 0. 

Without loss of generality, let  (1-y
2
)-(y

2
-4y+1) < 0; then the parabola opens downward. Solving them, we can get 

                                             (27) 

Where  

Thus 

 

 

It is not difficult to check that  

So if 

                                                                                                                                                      (28) 

 

The mixture g is unimodal for all 0 <  < 1. 

2. Following formula (21), after calculation, we can get 

 

                                                                                                                    (29) 

Then for a > a0( ), the mixture g is bimodal if and only if  lies in the open interval (  1,  2 ),where 

                                                                                                           (30) 

and yi (for i = 1; 2) are the roots of the equation 

 

                                                                          (31) 

With  Otherwise, g is unimodal. 

Following formulae (21) and (22), do not eliminate l , we can get 
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                                                                                                        (32) 

Next we treat  as a variable, and calculate the discriminant of K(  ), denoted by K . 

 

 

 

 

 

                                                                                (33) 

After calculation and reduction, we can get the formula below 

                                                (34) 

Formula (34) is permanently larger than zero, so there are two different roots of the equation K( ) = 0 about  . 

According to formula (29), we get 

                                                                                (35) 

Calculating  after reduction, we get the formula below 

 

 

                                                                                           (36) 

When  this means  formula (36) is permanently 

larger than zero. 

 this implies that  is monotone with . So  and  given at formula (29) is one on one. Substitution of 

 in formula (30) yields two values of y,y1,y2. 

Then we obtain immediately the necessary and sufficient condition started in part 2 of theorem 2. 

Thus for  the mixture g is bimodal if only if   lies in the open interval , where 

 

and  yi, (for i=1,2) are the roots of the equation (31) with  Otherwise g is unimodal. 

Corollary1. If   ,g is unimodal. 

 

Corollary 2. If , then , such that g is bimodal for . 

Proof. Proof of Corollary 1 and 2: 

Following the theorem 2, we can get that  

Where  
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and   because of  

 
Then we obtain 

 
Thus we get Corollary 1 and 2. 

4.4 The Plot of Bimodal Regions 

Being similar with the paper of Robertson and Fryer (1969), we get the plot in logistic mixture of bimodal regions (also see Liu 

and Ünlü (2014)) in figure 1 when  
5. Plots between the constrained and EM-equivalent Hessian 

Let k[H] =  [H]=  [H] be the condition number of H, where  [H] and  [H] denote the largest and smallest 

eigenvalues of  respectively, and  is the maximum likelihood estimate of , then denotes the reciprocal of 

condition number without sign. 

 

Fig. 1. Biomdal regions for   Is gold,  is black,  is blue,  is red. 

Example 1. Consider the logistic mixture with D = 1 and K = 2, and with the parameters 

                          

                            

The next figure (Figure 2) shows the plots between the constrained and EM-equivalent Hessians of Example 1. 

6. The Example for PISA 

According to formula (2.2) and example 3 in Liu (2015), this section introduces examples applied to PISA (see Adams, 

Wilson and Wang (1997)) in the context of cognitive diagnosis modeling. 

The following parameters in Example 2 show the scores from PISA 2012 between Germany and Luxembourg corresponding 

to Math and Read. 

Example 2. The mixture logistic density with D = 2 and K = 4, let the parameters from PISA 2012 between Germany and 

Luxembourg corresponding to Math be 
 

Fig. 2. The constrained Hessian is blue, EM-equivalent Hessian is gold. The terminology "constrained and EM-equivalent 

Hessians" refers to the matrices A
T
 HA and  respectively. 
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and let the parameters corresponding to Read be 
 

 

 

Figure 3. shows the contours of the density given in Example 2. 

7. Conclusion 

Future developments of the work (Liu (2015)) described here consists of improving over the technique for displaying the 

contour plot when K = 3 fol-lowing the Taylor expansion to take into account of the solution of ridgeline equation. The 

mathematical expression of the constructive implicit function theorem in logistic case is also very interesting (see Liu (2016)). 

Otherwise, an application of this work can be used in PISA (Programme for International Student Assessment) analysis. 

According to Reckase (2009), this model can also be useful as compensatory extensions in didactics of mathematics. 

 

 

 

Fig 3. Contour plot and ridgeline curve (- - -) for the mixture density given in Example 2 from PISA 2012 between 

Germany and Luxembourg corresponding to Math and Read. 

References 



Xiao Liu and Dirk Greindl / Elixir Appl. Math.117 (2018) 50471-50480 50481 

Adams RJ, Wilson M, Wang W (1997) The multidimensional random coefficients multinomial logit model. Applied 

Psychological Measurement 21: 1–23 

Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. Journal of the 

Royal Statistical Society B39: 1–38 

Liu X (2016) The Constructive Implicit Function Theorem and Proof in Logistic Mixtures. Mathematics and Statistics 4(1): 40–45 

Liu X (2015) Multivariate Logistic Mixtures. Universal Journal of Applied Mathematics 3(4): 77–87 

Liu X, Ünlü A (2014) Multivariate Logistic Mixtures. In: European Conference on Data Analysis (ECDA), Bremen, Germany, pp 

105 

Malik HJ, Abraham B (1973) Multivariate logistic distributions. The Annals of Statistics 1(3): 588–590 

Reckase MD (2009) Multidimensional Item Response Theory. Springer, New York, 2009. 

Robertson CA, Fryer JG (1969) Some descriptive properties of normal mixtures. Skand. AktuarTidskr 52: 137–146 

Wu CFJ (1983) On the Convergence Properties of the EM Algorithm. The Annals of Statistics 11: 95–103 

Xu L, Jordan MI (1996) On Convergence Properties of the EM Algorithm for Gaussian Mixtures. Neural Computation 8: 129–151 


