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1. Introduction

The EM algorithm has become a very popular computational method in statistics. Dempster, Laird and Rubin (1977)
introduced a very general framework for defining the EM iterative algorithm which find local maxima of the log-likelihood in
problems with analysing incomplete data.

Furthermore, Wu (1983) considerably tightened the theory of EM algorithm by giving strict conditions for convergence to a
stationary point of the log-likelihood. Compared with the general experience in numerical optimization, the executation of the
expectation step (E-step) and maximization step (M-step) is easy for many statistical problems. Solutions of the M-step often exist
in closed form. The M-step can be implemented with a standard statistical package in many cases, thereby saving programming
time. Another reason for statisticians preferring to EM is that it does not require large storage space.

Xu and Jordan (1996) provided the EM algorithm for computing maximum likelihood estimates of Gaussian Mixtures. For
mixtures of logistic distributions such information is lacking, although a special instance of the EM algorithm prevails therein. In
this paper, we propose analogs of the multivariate normal mixture results for the multivariate logistic distribution.

2. Logistic Distribution is An Exponential Family
A K—componer}; mixture of D-dimensional logistic distributions can be represented by the probability density function
1
O((X16) = ) mo(Xin,s), X EW
i=1

where 7r;is the mixing proportion of component i, m; € [0; 1], <, r; = 1 and @((X|&) is the density of a multivariate
logistic distribution with mean y; and scale s. We will sometimes use @;{X") as shorthand notation for @ (X; p;,s;), and call @;
the ith component density, where (see, Malik and Abraham, 1973)
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Assume that K and N are independent, identically distributed samples {X{t}}f , We obtain the following log-likelihood:
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The logistic distribution can be written as an exponential family after the transform as below.
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So according to Dempster et al.’s paper in 1977, we can get the following interative algorithm.
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Where the coefficients G:H are defined as follows:
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3. The EM Algorithm for Logistic Mixtures and Theorem of Connection between EM and Gradient Ascent

For the most central part we confine our attention to the following theorem about a relationship between the gradient of the
log likelihood and the step in parameter space taken by the EM algorithm.
Theorem 1. At each iteration of the EM algorithm in equation (5), we can get

5
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where A denotes the vector of mixing proportions [y oo T ] , 1 indexes the mixture components (i = 1; ; K), k denotes the

. . . L TE o _q 4 = g @':Rj'. . . . .

iteration number. Moreover, given the constraints ~é=1**; = “and i = “+*a isa positive definite matrix, and the matrix
®) (%)

mm is negative definite, and i matrix with probability one for N sufficiently large.

Proof.

(i) First we consider the EM Algorithm update for the mixing proportions pi. It follows from equations (1) and (3) that
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Multiplying by By , We have
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The update formula for A in equation (5) can be rewritten as

Al+T) — q08) -..rE :x] M, oy |r|] — Ak,
[

Combining the last two equations establishes the update rule for A (equation (9)). Furthermore, for an arbitrary vector u, we
can get

.
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By Jensen’s inequality we obtain
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Thus, X 0, u=0 and N is positive definite given the constraints Yioym =1 and ™ = O or Vi
(ii) Next, we prove the second part of the theorem. It follows from equations (1) and (3) that

al b . )
r}_"'"‘i- ' ,E‘a Ir’E“L I[ P.'i:l)_

p
o o .
ui ' considering the convergence of summation in series, In we obtain

(15)
Premultiplying by
B SIS k), e (k)] |'.|’.1'|l',l.!”":E,'f"I ™ r)

Y ) Z s —

| v e (1) Yo E (r)

e (16)
T a® @) =0 0 (9 " i ;
Following from equation (5), we have <=1 moreover, s and #: "are both positive definite. Thus, according to
(A
equation (10), we can get that E'#i is negative definite.

(iii) Finally we end by considering the EM update for the scale parameters s;: From equations (1) and (3), we obtain
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Permultiplying by ~<t |, considering the associative property of scalar product of vectors yields
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Otherwise, according to the strong law of large numbers, s is positive definite with probability one when N is large enough; then

(K}
from equation (11), we can obviously get that Os; is positive definite.
On account of parts (i) (ii) and (iii), we complete the proof.
4. The Convex Combination of Two 3-, and 4-Parameter Logistic Mixtures in 1-Dimentional Case
4.1. Convex Combination of IRFs as a Mixture

The convex combination of two IRFs for the unidimensional dichotomous 1PL to 4PL IRT models can be viewed as a
two-components mixture problem using the logistic distribution.

We consider the 2PL model first. The discussion for the 1PL or Rasch model can be obtained as a special case. The cases of
lower and upper asymptotes, the 3PL and 4PL models, are discussed thereafter. For the 3PL and 4PL models, the mixing
proportion in the results for modality and tangentiality obtained for the 2PL model are expressed in terms of the guessing and
careless error (slipping) parameters.

Let Fa1217 ang Fazs27* e IRFs of the 2PL model: for i=1,2, with @ € B and reals 2: = 0,

expl(8 —a;) /b Iy

T

F .-08)
L 1+expl(8 —a;) /b ')

As function of & € R taking values in (0,1). Let 0 < 4 << 1 pe the convexity scalar. The convex combination
Gm.a:..fn N N AFm.m 1+ “ —A ‘I'Fﬂ:.b: 1
as a function of &, defines a mapping from R to (0, 1), which we call the ‘mixture IRF.

This convex combination of two 2PL-IRFs can be viewed as a mixture of two logistic distributions. Each component function
Faipi(i = 1,2) is the cumulative distribution function of the logistic distribution with the location parameter (mean of the
logistic distribution) #i*@:i(item difficulty in the 2PL model) and scale parameter (proportional to the standard deviation of the
logistic distribution) i = 1e"f'i:'z'(reciprocal of item discrimination in the
2PL model). With £ *= Aas the mixing proportion, Ga1537%55%4 is the cumulative distribution function of the two-components
logistic mixture. To recap, in terms of the probability density functions Garertertafatert, and fazozt, corresponding to

GELE:Jb;‘-.Ib;‘-}IlFELb:‘-J respective|y, the
mixture can be represented as

Savarby ' b A =A-me.h| 1+ (1=A4)f 1.
(19)
Where, for i=1,2,

exp(—(6 — a;};’.’;;_1 )

fap,1(6) = : -
@by b, '(1 +exp(—(6 —a;) /b 1))
Note at this point, in order to view the convex combination of two 3PL- or 4PL-IRFs with lower or upper asymptotes as a

mixture of logistic distributions (up to an additive constant, which is the # convex combination of the two guessing parameters of
the mixed IRFs, and which does not affect modality and tangentiality considerations), the mixing proportion must be redefined in
terms of the convexity scalar and guessing or slipping parameters. We will discuss that in detail later in the paper.

4.2 Equivalent Formulation of the Modality Problem Using Fewer Parameters

-1 -2
A,81,82,51 and P27 can be reduced to a mixture with three parameters

The mixture in Equatiog (19) with five pja_ramej'fers
— — = 1. h= -1 . . . . . .
Aa = (ay —ap)/by and 277 = by /by without affecting the modality of that mixture. Then it is easier to explore this
property.
This amounts to applying the1 formula of change of variables for probability density functions. Consider the linear
transformation ¥ = (6 —a1)/by Under this transformation, the mixture in Equation (19) transforms to the mixture

8oa1pta=~Afo1+(1—A)fp

of the unit logistic distribution (u=0 and c=1) with density

(20)

expl—y)
(1+exp(—y))?’

— i (. — -1 . p=1{— p=1%y/p-1
and the logistic distribution with parameters # = a(= (a3 — a2)/ by~ goq 0 =077 (= by )/ by~ it density

foily) =



50475 Xiao Liu and Dirk Greindl / Elixir Appl. Math.117 (2018) 50471-50480

exp(—(y —a)/b")
b~1(1+exp(—(y—a)/b1))*

fap1(W) =

each as a function of YER,
1§ BpelR; ; ; ; Py = (8, —ay)/bIL; . .
Now we have: If "o&™ is a mode of the mixture in Equation (19), then *'@ o 145 s aimode of the mixture in
Equation (20), and vice versa, if PR is a mode of the mixture in Equation (20), then Bo =Yoby ~ + ajs 3 mode of the
mixture in Equation (19). Therefore, in the sequel, the modes of the mixture probability density function 90.21537* *dare

studied, and as a consequence, the modes ¥a1.a257 %53 A0f are obtained by applying the transformation.
4.3 Modality Properties of the Logistic Mixture

Without loss of generality, let @ = 0. the theorem of modality properties of the logistic mixture is as follows.
Theorem 2. Let the prerequisites be as mentioned above. Let 8 = o, & 1, b™% A 1t holds:
1.The “mixture IRF’ g is unimodal forall 0 <4 < 1,if0 = a = ao(b™)

Y 2671 (6 — 1) +/36 207 12 + 02 — 4y + 1)
(W —4y+1)+b71(y> 1) '
2. For @ = (6™} the ‘mixture IRF’ g is bimodal if and only if # lies in the open interval (41 A2)where
. ey (y+1)(e? =P )
: (y—1)(e?+y7")3
and y; (for i = 1; 2) are the roots of the equation

a[](b_Ij = log

Ll_b—])}jhl-l__,_-h,lh lI]_},]hl(]_b—1j+4b_]eﬂ}ﬁllz
—ab ey — (14h71)e2y? 4 4Py 4 (b~ 1)e? = 0
(S Teab - o Y ab
with '~ V3)e® <y <y2 <e™ otherwise g is unimodal.

Proof. 1. If a = 0 (i.e., a, = a;), the function g is unimodal for all 0 <4 < 1, regardless of the values b1 may take. This is
obvious geometrically. Analytically, one would require the derivative g (with respect to 1%"‘) to be zero. We have, for any
parameter values 2R and b > 0,

_exp(—(y—a)/b”")(exp(—(y—a)/b')—1)

o \

Japr (W) = b=2(1+exp(—(y —a)/b71))’
o exp(—(y—a)/b )1

= fab 'UP’Jb_1 (1 _Exp[—{lp—ﬁ]';'rb_lnt

So, if a=0

exp(—y /b 1) —1
b~1(1+exp(—y /b~ 1))

exp(—y)—1
1+exp(—y)
For all values of 4 and -’3_1, the only root of the equation W) =0isy=0(= L:'f:'-(For any Y # Othe terms ‘exp(‘:'-") -1

and "exp(y/b~1) — Lare not zero, and they have the same sign.) For the second derivative we have, for any parameter values
a€R and b > 0,

v _ N(exp(—(y —a) ‘b1 —dexp(—(w —a /b 1
fa_,r;. liu"]'=_f.:7_b |UF”{ P (w ,,“ ) - Pl: ?w1 x'.ujll J :
b==(1+exp(—(y—a)/b~ 1))
Hence, if @ =10, 8"(w=0)=—A/8—(1—21)/85 < 0 tor all values of Aand b~ "

Now, let a > 0. Let us assume g be bimodal. Then there is a (local) minimum point Wimin> 0 such that
9" Womin=0andg" Ymin > 0. In other words, at this point Wemin,

exp(—Wmin) — |

I+ exp(—Ymin) (21)
o . exp(—(Ymin—a)/b1)—1

+':.1_"1‘]|..?(a_b ][wmmjb_l “ _Exp(_[wﬂliﬂ_a;l;b_]};l -

g(w)=Afo1(w) +(1—A)fop 1(w)

Aforl Wnin )
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and

. (eXP(—Wmin))* — 4exp(—Ymin) + 1
A fo.1(Wmin)
(1+exp(—Ymin))*

(22)
i —ay B I2 . PR . |
(1 =A) fopt (Wmin) (exp(—(Wmin —a)/b""))” —4exp(—(Ymin —a)/b” ") +1 - 0.

b2 (1 +exp(—(Ymin —a) /b~ 1))*

Solving for 4 fo1 (Wmindin Equation (21), substituting that in Equation (22), and canceling out (1= Afap— I[1*'|"‘?”*="?=}gives
(note , Wmnin ¥ 0)

(exp(—(Wmin —a) /b~"))? — 4exp(—(Ymin —a)/b~") + 1
b2 (1+exp(—(Ymin —a) /b))’
~ (exp(—(Wmin —a)/b™") — 1) ((exp(—Ymin))* — 4exp(—Ymin) +1) _ 0
b~ (1+exp(—(Wmin—a) /b)) ((exp(—Ymin))> — 1) -

]
W

Let y =exp{— (Wmin _ ﬂh!b— 1 J then we get EKP{_'WminJ = c—-x]:H:ﬂJ'

According to formulae (21) and (22), we get
Y4y +1 (= D[(exp(—Ymin))® —4exp(—Ymin) +1] _ o
b1(1+4y)? (1+y)((exp(—Ymin))* — 1) '

v 1L (exp(—Wimin) )2 < 1.
Corresponding that ) - (exp( wmm“ we get

(v* —4y+ 1) ((exp(—Wmin)) = 1) — b~ (7 — D){(exp(—Ymin))’
~ dexp(—Yimin) + 1] < 0.

. Wt
exp(—WYmin) = Zoray
©° after arrangement, We get

h(y) = (1=b7 1?2 gy T (1t

+4b Texp(a)y” +2 —4b Texp(a)y” - (145 Yexp(2a)y*

+4exp(2a)y+ (b~ ' —1)exp(2a) < 0 )
At this moment, we treat exp(a) as a variable, then we can get

h(exp(a)) = [b~'(1—y%) — (® —4y+ 1)]exp(2a) + 46~ (¥ "2~y )exp(a)

F(1—b 1y 112_4},% l|1+{1+b—|}},25 <0 -
h(exp(a)) is a quadratic equation about exp(a), the discriminant

Ay =16b72( 2=y

Bringing

A (1) = (P =y D1 -b ) P o (b ]

=4{4b 2 - 1)+ P~y + 1407 P - DY —dy+1-b7 (P - 1))}

=442 — 1)+ 0P =4y + 1) = b2 (0 - 1)

= 4367207 = 1)+ 07 — 4y +1)7] 5)

(i) Formula (25) is permanently larger than zero, so the left hand side of (24) can not be permanently less than zero other than

b {1—y)— (" —4y+1)=0.

(26)
Solving equation (26), considering y > 1; b7 0, we get
 2+V3+4b2
L e B

Following formula (24), we get
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4h (P 1'2—}-'5 1}exp(ﬂ}—|{l —b~ Jv‘b 4123" +(14+b % "0

(1— b 1)y2 42 _gy2 41 4 (] 1 p1)y2
4b—1(yb " —yb T2
Y0P ) — 0P —4y+1))
4b-1(y2—1)

= expla) <

V!

2

The above formula is permanently untenable, i.e., in this case, the extreme point is only the maximal point.
(ii) Rethinking about formula (24), if

b1 (1 —y)— (¥ —4y+1) #0,
then there are two different roots of h(e®) = 0.
Without loss of generality, let b1 (1-y?)-(y*-4y+1) < 0; then the parabola opens downward. Solving them, we can get

Kt S = v'fﬂr}-ﬂ’ "Be 2y —1)2+ (2 —4y+1)]

2 — -
211 =32 — (¥ —dy+1)] @
24+v3+h
Where = = 1tb T
Thus
W RE T (1 =)+ 3 202 — 12+ (P —dy+ 1
ay = log 22" lr - 17 2l
b—1(1—y2)— (v —4y+1)
B 2b 1 (2 — 1) +4/3b 2 1-—]} + (" — 41—]}]
a = log™ 3 32
(v ih—ljl—i—b (¥2—1)
It is not difficult to check that . 3 |
So if
0 <a< a[][b'1li (28)
. 7 __ / 2 _ 142 ve — Av L 132
=a3=10g 2b~! 1)++/3b72» ,” + (y=—4dy ]:I]..
(0 —dy+1)+b7 102 1)
The mixture g is unimodal for all 0 < A<,
2. Following formula (21) after calculation, we can get
1 eXp(— Wmin) I—EKP(—ufmin}_h_l{J'*'lJ
A (T+exp(—Ymin))? I +exp(—Ymin)  y—1
l+e"b']}"" (y+1)(e?—yP ]}
(y—1)(e?+y7)3 29)
Then fora > ao(b_l), the mixture g is bimodal if and only if 4 lies in the open interval (,-1 1 A 2 ),where
:1,,--l=._E“b'l}*"n—me”,‘ )
.._” -.PJ?
(30)
and y; (for i = 1; 2) are the roots of the equation
(1= 1)y 2 gy T2 (1 p) pgp ety 2
—4p e (14 b e 4oy (b — 1) =0 e

ab _- .'J
with (2 —V B)e® < y1 <y <e® - Otherwise, g is unimodal.

Following formulae (21) and (22), do not eliminate |, we can get
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K(A) = 2A(1=2)b " fo,1 fap-1 eXP(—Yimin) [1 +eXP(—Win)]*

[(exp(—Wmin))? — 4exp(—Wimin) + 1]

+3b 242 (exp(—Wmin) )*[1 — exp(— Wmin)]* 34

F A ¢ o .

—(1=2)*[1 +exp(—Ymin) | f7 ;1 > 0 -
Next we treat 4 as a variable, and calculate the discriminant of K(4 ), denoted by £ .
Ag = {267 fo.1 fop 1 €XP(—Wimin) [1 +€XP(—Winin )] [(€XP(— Winin))* — 4 €XP(—Yimin) + 1]
+2fzp-1[1 +exp(—Yimin)]°}?

+4{=2b"7fo1 fop- 1 €XP(—Ymin)[1 +eXP(— Yimin) ]’

[(eXP(—Ymin))* —4€Xp(—Yimin) + 1]

+352 £g.1 (xP(—Yimin))*[1 — exP(— Yimin )|

—f2 1 [1 +exp(—Ymin)]®} £2 -1 [1 + exp(— Wimin)]°.

After calculation and reduction, we can get the formula below

(33)

b2 [(exp(—Wmin))? — 4exp(— Wnin) + 1]* + 3[1 —exp(—ymin)]> > 0 a0

Formula (34) is permanently larger than zero, so there are two different roots of the equation K(ﬂf) =0 about 4 .
According to formula (29), we get

1
1—exp(—Wmmn) b exp(—(Wmin—a)/b1)+1]
1+expl — Wmin ) exp(— | Wmin—a)/b-1)—1 (35)

A=

I+ fo1-
di

Calculating dwmin after reduction, we get the formula below

_'["_] :1 _Expt_wmin}]z:{exf’{_(Wmin _‘-'IJ,IJI"J'_]}JE — 1:
+2.’J_]exp{— Wenin) [ (€XP(—( Winin —aJ;’.’J_]}Jz — 1]
+2[1 — (exp(—Yimin))*]eXp(—(Ymin —a) /b ") )
When €XP(—Ymin))? — 4exp (i) + 1 =0, this means 0 < Ymin = (2 +/3), tormula (36) is permanently
IaLg‘jler than zero.

= 0,
Ymin this implies that A is monotone with Wmin. So A and Wmin given at formula (29) is one on one. Substitution of

Arand A3 in formula (30) yields two values of y,y; y,.
Then we obtain immediately the necessary and sufficient condition started in part 2 of theorem 2.

Thus for @ = ag(b™1), the mixture g is bimodal if only if A lies in the open interval (A4, Az}, where
. 1
e”h‘]r? l{.‘l-'f+ 1)(e® —yf" )
P 1
(vi—1)(e®+y7 )3

A l=1+

— 3l ; . b
and vy;, (for i=1,2) are the roots of the equation (31) with {2 v B}EE <y <y <e” " Otherwise g is unimodal.
o <b-lln 23+ =T
Corollaryl. If — = i+s—* gisunimodal.

=1 2 2p 14, /3467041)
Corollary 2. 1f * = b-i-1 , then A1 @nd Az such that g is bimodal for A1 < 4 < 4z,
Proof. Proof of Corollary 1 and 2:

. ) |b !
Following the theorem 2, we can get that e® >y

v32+ﬁ3+ﬁ=
L I
Where 1+b
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an = (v — 3
and € =20 = <) pecause of

24+v3I+ b= _
1+-h1! -
Then we obtain

F 1
(2+w’3+.&——j)’ o 2P (2 /3B 24 1)

T+ 5 1 =eP=mby=2)= BT —1

Thus we get Corollary 1 and 2.
4.4 The Plot of Bimodal Regions
Being similar with the paper of Robertson and Fryer (1969), we get the plot in logistic mixture of bimodal regions (also see Liu

-1
and Unlii (2014)) in figure 1 when b =1
5. Plots between the constrained and EM-equivalent Hessian

Let k[H] = A2 [H]= 42 [H] be the condition number of H, where 42 [H] and 4ar [H] denote the largest and smallest

eigenvalues of H(E") respectively, and & s the maximum likelihood estimate of L then |K 1™ denotes the reciprocal of
condition number without sign.

s —

T T
1 L 1

Fig. 1. Biomdal regions for b1 =1, hb~1 = 1 Isgold, 51 = 2 is black, 5~ = 10 is blue, 5~1 = 2( is red.
Example 1. Consider the logistic rrlixture with D = 1 and K = 2, and with the parameters
= 2 5 = 2 m = =
H-: =1 .51 =2 M = %
The next figure (Figure 2) shows the plots between the constrained and EM-equivalent Hessians of Example 1.
6. The Example for PISA
According to formula (2.2) and example 3 in Liu (2015), this section introduces examples applied to PISA (see Adams,
Wilson and Wang (1997)) in the context of cognitive diagnosis modeling.
The following parameters in Example 2 show the scores from PISA 2012 between Germany and Luxembourg corresponding
to Math and Read.
Example 2. The mixture logistic density with D = 2 and K = 4, let the parameters from PISA 2012 between Germany and
Luxembourg corresponding to Math be

o

=

1K

06

04

0z

00

T T T T T T
a 20 40 &0 80 100

ke
Fig. 2. The constrained Hessian is blue, EM-equivalent Hessian is gold. The terminology "‘constrained and EM-equivalent
Hessians" refers to the matrices A" HA and AT @H A respectively.
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and let the parameters corresponding to Read be
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Figure 3. shows the contours of the density given in Example 2.

7. Conclusion

Future developments of the work (Liu (2015)) described here consists of improving over the technique for displaying the
contour plot when K = 3 fol-lowing the Taylor expansion to take into account of the solution of ridgeline equation. The
mathematical expression of the constructive implicit function theorem in logistic case is also very interesting (see Liu (2016)).

Otherwise, an application of this work can be used in PISA (Programme for International Student Assessment) analysis.
According to Reckase (2009), this model can also be useful as compensatory extensions in didactics of mathematics.

Fig 3. Contour plot and ridgeline curve (- - -) for the mixture density given in Example 2 from PISA 2012 between
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