W.V. Nishadi et al./ Elixir Appl. Math. 117 (2018) 50454-50457

Available online at www.elixirpublishers.com (Elixir International Journal)

Applied Mathematics

Elixir Appl. Math. 117 (2018) 50454-50457

A Recurrence Relation to Construct 1- Factors of Complete Graphs

W.V. Nishadi¹, K.D.E. Dhananjaya¹, A.A.I. Perera¹ and P.Gunathilake²

¹Department of Mathematics, Faculty of Science, University of Peradeniya, Sri Lanka. ²Department of Statistics and Computer Science, Faculty of Science, University of Peradeniya, Sri Lanka.

ARTICLE INFO

Article history: Received: 08 February 2018; Received in revised form: 02 April 2018; Accepted: 12 April 2018;

ABSTRACT

Prior researches found several methods to construct *1*- factorization using Steiner triple systems [1], the staircase method of Bileski [2], and etc. But not given any method of constructing *1*- factors in complete graphs. In our previous work, we briefly explained this construction and published in an Abstract form in the *i*PURSE 2017. Generalization of that work is given in this paper. For complete graphs whose number of vertices is a multiple of 2, we implement our finding using Java program.

© 2018 Elixir All rights reserved.

Keywords

1-factor, *1*-factorization, *1*-factorable graph, Complete graph.

1. Introduction

A factor of a graph G is a spanning subgraph of G which is not totally disconnected. The union of edge disjoint factors which form G is called factorization of graph G [3]. An *n*-factor is regular of degree *n*. If G is the sum of *n*-factors, their union is called an n-factorization [4]. The graph which admits *n*-factorization is called an *n*-factorable graph.

A *1*-factor is a set of pair wise disjoint edges of *G* that between them contain every vertex. The necessary conditions to be a *1*-factorable graph are that the graph must have an even number of vertices and it should be regular [5]. So, it is conjectured that a regular graph with 2n vertices and degree greater than n will always have a *1*-factorization [6].

Complete Graphs K_n is a simple undirected graph such that every pair of distinct vertices is connected by a unique edge and total number of edges is n(n-1)/2.

Theorem 1: The complete graph K_{2n} is *1*-factorable.

We need to prove a partition of the set *Y* of lines of K_{2n} into (2n-1) *1*-factors. Label the points of *G* by $v_1, v_2, ..., v_{2n}$, and define, for i = 1, 2, ..., (2n-1), the sets of lines $Y_i = \{v_i v_{2n}\} \cup \{v_{i-j} v_{i+j}; j = 1, 2, ..., (n-1)\}$, where each i + j and i - j is expressed as one of the numbers 1, 2, ..., (2n-1) modulo (2n-1). The collection $\{Y_i\}$ is displayed to give a suitable partition of *Y*, and the union of the subgraphs G_i induced by Y_i is a *I*-factorization of K_{2n} .

The study of *1*-factorization is used in various combinatorial applications. An instantaneous application of *1*-factorization is that of edge coloring [7]. Also, in scheduling tournament, especially round-robin tournaments [8], study of *1*-factorization is used. Other applications of *1*-factorization include block designs, 3-designs, and Room square and Steiner system [9], [10].

2. Methodology

In this paper, we produce a recursive method of constructing at 1-factors of K_{2n} by presenting an algorithm.

Steps of the proposed algorithm

2.1. When n = 1; Complete graph of 2 vertices. Clearly, it has one 1-factor.

© 2018 Elixir All rights reserved

2.2. When n = 2; Complete graph of 4 vertices.

Label 4 vertices as v_1, v_2, v_3 and v_4 . Take any vertex (say) v_1 and join it to any other vertex (say) v_2 . Then join the remaining two vertices.

2.3. When n = 3; Complete graph of 6 vertices.

Label 6 vertices as v_1, v_2, v_3, v_4, v_5 and v_6 . Taking any vertex (say) v_1 and join it to any other vertex (say) v_2 . The remaining 4 vertices could be constructed connected as in K_4 .

There are 5 ways to join the vertex v_1 to other vertices. So, we can construct 15 types of *1*-factors. (= 3×5)

By repeating this algorithm, 1-factors corresponding to the complete graph K_{2n} can be constructed.

3. Results and Discussion

Table 01 illustrate the relationship between number of 1-factors K_2, K_4 and K_6 .

rubic it rubulution of the results.			
Value of <i>n</i>	Complete	Construction	Number of
	Graph		1-factors
1	K_2	$x_1 = 1 \times 1$	1
2	K_4	$x_2 = (1 \times 3) = x_1 \times (2.2 - 1)$	3
3	K_6	$x_3 = (3 \times 5) = x_2 \times (2.3 - 1)$	15

Table 1. Tabulation of the results.

Consider the complete graph of 2n vertices which has x_n number of *1*-factors. Fix one vertex and connect with another vertex. Then there are (2n-2) remaining vertices. There are x_{n-1} number of *1*-factors corresponding to (2n-2) vertices. Also, there are (2n-1) ways of connecting fixed vertex with other vertices.

Using this algorithm a recurrence relation $x_n = (2n-1)x_{n-1}$ with $x_1 = 1$, where x_n is the number of *l*-factors corresponding to the complete graph K_{2n} can be obtained.

Solving the recurrence relation recursively we can obtain x_n .

50455

$$x_{2} = 3 \times x_{1}$$

$$x_{3} = 5 \times x_{2}$$

$$x_{4} = 7 \times x_{3}$$

$$\vdots$$

$$x_{n-2} = (2n-5) \times x_{n-3}$$

$$x_{n-1} = (2n-3) \times x_{n-2}$$

$$x_{n} = (2n-1) \times x_{n-1}$$

$$\Rightarrow x_{n} = (3.5.7...(2n-3)(2n-1))x_{1}$$

$$\Rightarrow x_{n} = \frac{(2n)!}{2^{n}.n!}$$

Thus K_8 has 105 *1*-factors and K_{10} has 945.

Alternative proof is given by the Principle of Mathematical Induction. When n = 1, number of 1-factors in $K_2 = 1$

$$= x_1 = \frac{2!}{2.1!}$$

Thus the result is true for n = 1.

Assume that the result is true for n = p,

Number of 1-factors in $K_{2p} = x_p = \frac{(2p)!}{2^p \cdot p!}$

We must prove that the result is true for n = p + 1

Number of 1-factors in $K_{2(p+1)} = [2(p+1)-1] \times (\text{number of 1-factors of } K_{2p})$

$$= (2p+1) \frac{(2p)!}{2^{p} \cdot p!}$$

= $\frac{2(p+1)(2p+1)(2p)!}{2(p+1)2^{p} p!}$
= $\frac{(2p+2)!}{2^{p+1}(p+1)!}$

The result is true for n = p + 1

By the Principle of Mathematical Induction the result is true for all $n \in Z^+$. In addition, Java program is used to implement our results.

Fig 2. The user input interface.

Hence, the obtained *1*-factors corresponding to the complete graph of order 4 and order 6 are as follows:

Fig 3. Resulting 1-factors corresponding to K₄.

W.V. Nishadi et al./ Elixir Appl. Math. 117 (2018) 50454-50457

Fig 4. Resulting 1-factors corresponding to K₆.

4. Conclusion

The *1*-factors of complete graphs have been constructed using the above generalized algorithm. Recurrence relation of *1*-factors of complete graphs has been proved using the Principle of Mathematical Induction. Further, the complete graphs can be constructed using line disjoint 1-factors. This construction is illustrated using K_6 .

References

[1]J. H. Dinitz, P. Dukes, D. R. Stinson. Sequentially perfect and uniform one-factorizations of the complete graph. *The Electronic Journal of Combinatorics*, 12, 2005

[2]J. H. Dinitz, W. D. Wallis. Trains: an invariant for 1-factorizations. Ars Combinatorica, 32: 161-180, 1991

[3]L. D. Andersen. Factorizations of graphs. In the CRT handbook of Combinatorial Designs, 653-666, CRC Press, 1996

[4]D. West. Introduction to Graph Theory. Prentice-Hall, 2001

[5]E. Mendelsohn, A. Rosa. On some properties of complete graphs. Journal of Graph Theory, 9: 43-65, 1979

[6]V. Bohossian, J. Bruck. Shortening array codes and the perfect 1-factorization conjecture, *IEEE International Symposium on Information Theory*, 2799-2803. 2006

[7]C. R. Subramanian, Various one-factorizations of complete graphs. *Center for security, Theory, and Algorithmic Research,* 2007

[8]W. D. Wallis. One-factorization of complete graphs. Contemporary Design Theory, 692-731. Wiley, 1992

[9]J. H. Dinitz, D.R. Stinson. A hill climbing algorithm for the construction of one-factorization room squares. *SIAM Journal of Algebraic and Discrete Methods*, 8: 430-438, 1987

[10]M. J. Garnnell, T. S. Griggs, J. P. Murphy. Some new perfect Steiner triple system. *Journal of Combinatorial Designs*, 7:327-330, 1999