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1.0 Introduction 

Apart from very special cases, partial differential equations (PDEs) can only be solved numerically; the construction of their 

numerical solutions is a fundamental task in science and engineering. Among three classical numerical methods that are widely 

used for numerical solving of PDEs the finite difference method is the oldest one and is based upon the application of a local 

Taylor expansion to approximate the differential equations by difference ones  defined on the chosen computational grid. The 

difference equations that approximate differential equations in the system of PDEs form its finite difference approximation (FDA) 

which together with discrete approximation of initial or/and boundary conditions is called finite-difference scheme (FDS). 

1.1 The model equation 

A Josephson junction model consists of two superconducting layers separated by isolated barriers. The (2+1) dimensional 

sine-Gordon equation that governs current flow through Josephson junction is given by;   
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 The function u = u(x,y) represents  the Josephson current flow density at position (x,y) and at time t along Josephson junction. 

The model in Equation (1) has various applications in physics; electronics etc. With the following initial conditions  

1.2 Literature review 

Tinega and Oduor [23] solved the (1+1) Sine-Gordon equation that governs the vibrations of the rigid pendula attached to a 

stretched wire using Finite Difference Method where Forward Difference and Crank Nicholson numerical schemes were 

developed. Stability of these schemes were analysed using matrix method..Nyachwaya et al [63] solved third order seepage 

parabolic partial differential equation (which models the fluid flows) and analysed stability of the schemes developed by two types 

of finite differences methods, which are Alternating Direction Explicit (ADE) method and Alternating Direction Implicit (ADI) 

method subject to some boundary and initial conditions. The numerical results for the two methods were compared. They derived 

the finite differential form of ADE and ADI methods for the given model and then presented an algorithm for each method. They 

studied the numerical stability of both methods by matrix Method. It was observed that both schemes are conditionally stable. 

1.2.1 Consistency of An Alternating Direction Explicit Scheme 

To solve the equation, spatial and temporal domains are discretized by the grids of points and partial derivatives occurring in 

the equation are replaced by approximations based on the Taylor series expansions of the function near the point or points of 

interest [9,14,17]. Since convergence is difficult to prove directly, we use an equivalent result known as the Lax Equivalence 

Theorem which stated that, for a given properly posed linear consistent finite difference approximation to Partial differential 
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equation (PDE), stability is necessary and sufficient for convergence [22]. Thus, showing the consistency and stability of the finite 

difference scheme is sufficient for convergence. Doyo and Gofe [24] considered the convergence rates and stability of the 

Forward Time, Centered Space (FTCS) and Backward Time Centered Space (BTCS) schemes for solving one-dimensional, time-

dependent diffusion equation with Neumann boundary condition. The derivation of the schemes and development of a computer 

program to implement them were presented. The consistency and the stability of the schemes were described and used numerical 

problems to determine convergence rates of the schemes. It was found that both methods are first order accurate in the spatial 

dimension. We use Gerschgorin’s Theorem to determine the stability of the methods [17], and show that An Alternating Direction 

Explicit Scheme is stable if the modulus of the Eigenvalues of the Amplification Matrix should be less than or equal to one. The 

method is unconditionally stable. Since finite difference discretization converges at the rate of the Truncation Error (TE) 

(determined by the order of the spatial and temporal discretization) if the exact solution is smooth enough, we expand the exact 

solution at the mesh points of the scheme with a Taylor series and insert the Taylor expansions in the scheme to calculate the TE 

(difference between the resulting equation and the original PDE) and determine its order in the approximation used. Then, we see 

that as the discrete step sizes approach to zero, their TE also approaches to zero which indicates that the difference approximations 

are consistent. For the remainder of this paper, we give the details of the numerical algorithms to solve application problems 

involving diffusion equation. In section 2, a difference schemes for one-dimensional, time-dependent diffusion equation is 

derived. In section 3, convergence of the schemes is described. Finally, numerical problems are given to verify the validity of the 

theoretical results. 

On the basis of the literature review, it appears that no work was reported on analysing the stability of (2+1) model Sine-

Gordon equation with first time derivative that governs the current flow density through the Josephson junction using Finite 

Difference Method for An Alternating Direction implicit Scheme. The objective of this paper is to analyse the stability of An 

Alternating Direction implicit Scheme for the two-dimensional Sine-Gordon equation that describe the Josephson current density 

through the long Josephson junction subject to some prescribed boundary conditions. The rest of the paper is organized as follows. 

Section II is Method of solution of (2+1) SGE. After a brief discussion of the numerical Methods; Section III describes the 

numerical schemes employed. Section IV addresses numerical results and discussion while the last Section V is about conclusion 

and recommendation. 

2.0 Numerical Schemes  

The numerical methods can be categorized as Finite Difference, Finite element, Finite volume and Boundary element. The 

method of Finite Difference is one of the most valuable methods of approximating numerical solutions of PDEs. In this study, 

Finite Differences Method is used to solve a (2+1) dimensional Sine-Gordon Equation (1) with first time derivative. Before 

numerical computations are made, there is an important property of finite difference equations that must be considered is   

Stability of the scheme developed. The difference between a partial differential equation and the equivalent finite difference 

expression is referred to as truncation error. A numerical process is said to be stable if it limits amplification of all components of 

the initial conditions.  The use of finite difference techniques for the solution of partial differential equation is a three step process 

.These steps are;  

i) The partial differential equations are approximated by a set of linear equations relating to the values of the functions at each 

mesh point.  

ii) The set of the algebraic equations, generated for equation must be solved and  

iii) An iteration procedure has to be developed which takes into account the non-linear character of the equation. In our endeavor 

to solve the (2+1) dimensional sine-Gordon equation, the stability of the scheme developed for the equation is analyzed. 

2.1 Alternating Direction Explicit Scheme (ADES) 

In this scheme we advance the solution of the (2+1) sine-Gordon partial differential Equation (1) from n
th

 plane to (n+1)
th
 

plane by replacing 
xxu by implicit finite difference approximation at the (n+1)

th
 plane. Similarly,

ttu  , 
yyu  and 

tu  are replaced by 

an explicit central finite difference approximation at the n
th

 plane as in equations . With these approximations substituted into 

Equation (1), the following scheme is obtained. The Alternating Direction Explicit (ADE) method for generating numerical 

solutions to the hyperbolic partial differential equations is stable for some time because it is an explicit method; it holds a speed 

advantage over implicit methods for computations over a single time level [43], the explicit methods in which the solution at the 

new time step is formed by a combination of the previous time step solutions. In Equation (1) , 
xxu , 

yyu  and 
ttu  are replaced by 

the central difference scheme for the derivative with respect to x, y and t respectively. For the derivative with respect to t i.e 
tu  , it 

is replaced by the forward scheme and the nonlinear term Sinu is replaced with a central finite approximations (Refer [3,20,21]). 

With these approximations substituted into Equation (1), the following scheme is obtained 
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                  (2)                                                                  

We let x y t s       , 2 1c   and multiplying Equation (2) by  
224c x , we obtain the scheme;  

 1 1 1 1
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                                                                            (3) 

2.2 Stability Analysis of Alternating Direction Explicit Scheme (ADES) 

We use also the matrix method to analyze stability of the scheme (3). This is done by expanding the scheme in equation (3) 

by taking    1,2,3,............... 2 , 1i N N   .We get the system of linear algebraic equations as 
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         (4)                   

Writing the system of algebraic Equations (4) in matrix-vector form; 
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The system in Equation (5) can be written as 
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matrices and a vector are given as;  
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 Equation (11) can again be written as 
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Therefore, Equation (7) is compactly written as 
1
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E is the amplification matrix .   According to Wen-Chyuan [30], the Eigenvalue of a tridiagonal (N-1) by (N-1) matrix   
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Using the formula in (10), the eigenvalues of 
1NA 
and
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  matrix are  
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Eigenvalue of 
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  is 1 

Hence Eigenvalue of the amplification matrix E is given as               
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For a tridiagonal matrix, the modulus of the eigenvalue of the amplification matrix E should be less than or equal to unity 
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Both expressions in equations (13) and (14) are unconditionally stable 

3.0 Consistency Analysis of Alternating Direction Explicit Scheme (ADES) 

Consistency requires that the original equation can be recovered from the algebraic equations. Obviously this is a minimum 

requirement for any discretization. In the following we will illustrate how this can be done in terms of a Taylor’s series expansion 

for the alternating direction explicit scheme (3). 

If we re-arrange equation (8), we get 
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2! 3! 4!

n n

i j i j t tt ttt tttt

h h h
s U s U hu u u u         

                                             (24) 

2 2 2 3 3 3 3

1, 1 ,

1 1
( ) ( 2 ) ( 3 3 )

2! 3!

n n

i j i j x y xx xy yy xxx xxy xyy yyyU U hu hu h u h u h u h u h u h u h u            
                                            (25) 

2 2 2 3 3 3 3

1, 1 ,

1 1
( ) ( 2 ) ( 3 3 )

2! 3!

n n

i j i j x y xx xy yy xxx xxy xyy yyyU U hu hu h u h u h u h u h u h u h u            
                                            (26) 

2 2 2 3 3 3 3

1, 1 ,

1 1
( ) ( 2 ) ( 3 3 )

2! 3!

n n

i j i j x y xx xy yy xxx xxy xyy yyyU U hu hu h u h u h u h u h u h u h u              
                                             (27) 

2 2 2 3 3 3 3

1, 1 ,

1 1
( ) ( 2 ) ( 3 3 )

2! 3!

n n

i j i j x y xx xy yy xxx xxy xyy yyyU U hu hu h u h u h u h u h u h u h u             
                                            (28) 

2

, , ,( 8 4 ) 8 4n n n

i j i j i js U U h U                                                                   (29)       

 substituting (21), (22), (23), (24), (25), (26), (27), (28), (29) into (20) we get 
2

2 2 2 2 5 3 24 4 4 2 4 ... 0
3

xx yy t tt xxxx xx y yy

h
h u h u h u h u u h u h u h u        

                                                  (30)  

Dividing (30) throughout by 4h
2
, we obtain 
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2 1
... 0

12 12
xx yy tt t xy xxx yyy

h
u u u u u u u       

                                               (31) 

Where the error is 
2 2

, ...
12 12

n

i j xxx yyy

h h
E u u  

                                                (32)  

It is noted that the first five terms in equation (31) are for the recovered PDE that is (two- dimension Sine Gordon equation) 

and the other terms is the truncation error, since the beam equation has been recovered from the algebraic equation of the 

alternating direction explicit scheme developed, we therefore conclude that the scheme is consistent with the SGE. 

4. Discussion 

The equation (18) and (19) satisfies the stability conditions. The condition on the right is always satisfied as the left inequality 

requires. All the eigenvalues in equations (18) and (19) are bounded by 1 since the denominator larger than the numerator. Thus 

the ADES scheme is unconditionally stable. The Equation (31) satisfies the consistency conditions. The sine-Gordon partial 

differential equation (1) has been recovered from the Alternating Direction implicit Scheme (2). 

5.0 Conclusion 

It can be concluded that the stability of the An Alternating Direction implicit Scheme developed for the two-dimensional Sine-

Gordon equation that govern Josephson junction current flowing through the long Josephson junctions is uncondionally stable. It 

is also noted that the scheme is consistent. 

References 

[1].Achin M., Rudolf G., (2005).Applied Superconductivity: Josephson Effect and Superconducting Electronics 

[2].Benabdallah A. and Caputo J. G. (1996).Exponentially tapered Josephson flux-flow oscillator. Physical review b volume 54, 

number 22 

[3].Bobenko A.I,.Matthes D,. Suris Y.B,.(2002). Nonlinear hyperbolic equations in surface theory: integrable discretizations and 

approximation results. Intern.Math. Res. Notices, no. 10623, Berlin, German. 

[4].Dobrowolski T. , (2008 ).Precise tuning of the kink width in the long Josephson junction).International journal of Archives of 

Materials Science and Engineering.. 

[5].Driesse R. ,(2005).The effect of defects on the stability of the fluxon/anti-fluxon solution of the sine-Gordon equation. Master 

thesis University of Amsterdam 

[6].Gianne D., Arjen D., Stephan A. van Gils , Timco V.,  (2003) Travelling waves in a singularly perturbed sine-Gordon equation 

[7].Goong C., Zhonghai D., Chia-Ren H., Wei-Ming N., and Jianxin  Z.,2000).A Note on the Elliptic Sine-Gordon Equation 

.Mathematics Subject Classi_cation. Primary: 35J20, 58E05; Secondary: 35Q20,65N30 

[8].Ioffe B. , Geshkenbein V.B , Feigel’Man  M.V , Fauchere A.L , and Blatter G  (1999). Environmentally persistent-current 

qubit. Science, 285:1036, 

[9].Khosro Sayevand, Convergence and stability analysis of modified backward time centered space approach for non-

dimensionalizing parabolic equation, J. Nonlinear Sci. Appl. 7 (2014), 11-17.  

[10]. Lapidus L. and Pinder G.F.,(1982). "Numerical Solution of Partial Differential Equations in Science and Engineering", John 

Wiley and Sons Inc. 

[11].Lechenmann S.G etal(1993).Soliton dynamics in two-dimensional Josephson tunnel junctions.Physical Review B Volume 48 

Number 22 

[12].Macias D. J., (2007)"Numerical Analysis and Applications of the Process of Nonlinear Supratransmission in Mechanical 

Systems of Coupled Oscillators with Damping". University of New Orleans Theses and Dissertations. Paper 1077. 

[13].Maksimov A.G., Pedersen N.F., Christiansen  P.L. (1996)  On kink-dynamics of the perturbed sine-Gordon equation. Wave 

Motion VOL 23 ,203-213 

[14].Mark Davis, Finite Difference Methods, Department of Mathematics, MSc Course in Mathematics and Finance, Imperial 

College London, 2010-11.  

[15].Martinis J,M , Nam S., Aumentado J, and Urbina C., ( 2002).Rabi oscillations in a large Josephson-junction qubit. Phys. Rev. 

Letts., 89:117901 

[16].Martucciell N., Mygindo J., Roberto M., (1997).Fluxon dynamics in long annular Josephson tunnel junctions 

 [17].Michael H. Mkwizu, The stability of the one space dimension Diffusion Equation with Finite Difference Methods, M.Sc. 

(Mathematical Modelling) Dissertation, University of Dar es Salaam, August 2011.  

[18].Mooij J.E , Orlando T.P , Levitov L, Tian L, Van derWal C.H, and Lloyd S., (1999). Josephson decoupled sds-wave 

Josephson junctions for quantum computing.Nature, 398:679–681,  

[19].Nakamura .Y, Pashkin Y.A and Tsai JS ., (1999). Coherent control of macroscopic quantum states in a single-Cooper-pair 

box. Nature, 398:786–788 

[20].Nimmo J. J .C. and Schief W.,(1999). Superposition principles associated with the Moutard transformation, an integrable 

discretization of a (2+1)-dimensional Sine-Gordon system. University of New South Wales Sydney 2052, Australia. 

[21].Olusola T. K and Emmanuel O.O.(2013). Numerical Solution of (2 + 1) Dimensional Sine-Gordon Equation by Reduced 

Di_erential Transform Method. Inter-national Journal of Modern Applied Physics, 2(1):15-26 . 

[22].Randall J. LeVeque (1998) .Finite Difference Methods for Diffusion Equations. DRAFT VERSION for use in the course A 

Math 585 – 586, University of Washington, version of September.  

[23].Tinega A.K, and Oduor O.E.M (2015).Finite Difference Solution of (2+1) Duimensional Sine-Gordon equation: A 

mathematical model for the rigid pendula attached to a stetched wire.The SIJ Transaction  on computer science Engineering and 

its appplications (CSEA) vol 3, no  

[24].Saeed A., (2012).Semifluxons in long Josephson junctions with phase shifts.Phd Thesis of University of Nottingham 



Abel Tinega Kurura et al./ Elixir Appl. Math. 119 (2018) 51025-51030 51030 

[25].Yamashita T., Tanikawa K., Takahashi S., and Maekawa S.,(2005), Superconducting p qubit with a ferromagnetic Josephson 

junction. Phys. Rev. Letts., 95:97001. 

[26]. Mishra S., and N. Risebro, and F. Weber (2013), Convergence rates of finite difference schemes for the wave equation with 

rough coefficients, Research Report No. 2013-42, Seminar for Applied Mathematics, ETH Z¨urich, Switzerland.  

Dr. Abel Kurura Tinega was born at Tombe Market, Nyamira County, Kenya. He holds a Bachelor of 

Education Science degree, with specialization in Mathematics and Physics, from Kenyatta University (KU), 

Nairobi, Kenya, and a Master of Science degree in Applied Mathematics from Masinde Muliro University of 

Science and Technology (MMUST), Kakamega, Kenya and a PhD in applied Mathematics from Jaramogi 

Oginga Odinga University of Science and Technology (JOOUST), Bondo, Kenya. 

Affiliation: Jaramogi Oginga Odinga University of Science and Technology (JOOUST), BONDO, KENYA. 

He is currently a full time Mathematics lecturer at Kisii National Polytechnic, Kenya. He has participated in 

many conferences including Kenya Association of Mathematics Education (KAME) and has been a trainer in Strengthening of 

Mathematics and science For Secondary Education in Kenya (SMASSE).He has much interest in the study of numerical methods 

and their respective applications in modeling physical phenomenon in Mathematics, sciences and engineering. 

Justus Nyang’acha  Kaisa was born at Nyacheki Market, Kisii County, Kenya. He holds a Bachelor of 

Education Science degree, with specialization in Mathematics and Physics, from Egerton University, 

Nairobi, Kenya, and a Master of Science degree in Applied Mathematics from Kisii University of Science, 

Kenya and is currently pursuing a PhD in applied Mathematics at Jaramogi Oginga Odinga University of 

Science and Technology (JOOUST), Bondo, Kenya. 

Affiliation: Jaramogi Oginga Odinga University of Science and Technology (JOOUST), BONDO, KENYA. 

He is currently a full time Mathematics teacher at Ichuni secondary school. He has participated in many 

conferences including Strengthening of Mathematics and science For Secondary Education in Kenya (SMASSE).He has much 

interest in the study of numerical methods and their respective applications in modeling physical phenomenon in Mathematics, 

sciences and engineering.  

Nelson M.S Nyachwaya was born on 22nd December, 1956 in Keroka town, Nyamira county, Kenya. He holds a Bachelor of 

Science degree, and specialized in Mathematics, from University of Nairobi, Kenya and a Master of Science degree in Applied 

Mathematics from Jomo Kenyatta University of Agriculture and Technology, Kenya. He is currently pursuing a PhD in applied 

Mathematics at Jomo Kenyatta University of Agriculture and Technology, Kenya. 

Affiliation: Jomo Kenyatta University of Agriculture and Technology, (JKUAT), Kenya. He is currently a lecturer at Kisii 

University, Kenya. He has much interest in the study of fluid flow model and their respective applications to Mathematics and 

engineering. 


