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1. Introduction 

In our consideration of point estimation we have 

assumed that our sample        came from some density 

      was assumed known to us. Moreover, we assumed the 

parameter θ was fixed value, but it'sunknown to take any 

possible value in sample space. The statistical inference 

methods based on these assumptions are called Classical 

Approaches Methods. In some practical application we may 

based on previous experience, have additional information 

about the parameter θ. We may have evidence that the 

parameter θ as a random variable with a density distribution 

now ask how this additional information is used to estimate it. 

To deal with this issue we will assume that θ is the value of a 

random variable denoted by Θ with a density function      ) 
and cumulative function      . These function do not 

contain unknown parameter; we also assume that the set of 

possible value for the random variable Θ is the sample space 

Ω. The statistical inference methods based on these 

assumption is called the Bayes Approach. Thus, the Bayes 

method is different from the classical method, where the 

classical looks at parameter θ as a fixed value is unknown 

while Bayes method is seen as a variable quantity according a 

previous distribution called a prior distribution. This 

distribution depends on previous experience about the 

parameter θ before the sample is withdrawn. The prior 

distribution is up dated by the information available in sample 

about the parameter θ derive a posterior distribution, the 

process of modernization of prior distribution is done by the 

base of Bayes, this type which depend on this method called 

Bayesian statistic. 

Before dealing with concepts of loss and risk in Bayes 

method we defined prior and posterior distribution in 

followed section. 

2. Prior and Posterior Distribution 

Here to for we have used the notation       to indicate 

the density of a random variable x for   each θ in Ω. 

Whenever we want to indicate that the parameter θ is the 

value of a random variable Θ, we shall Write the density of X 

as    |   instead of        we should note that    |  is a 

conditional density; it is the density of given Θ = θ. Amore 

complete notation for    |   would be   |      |  . Let 

        be a random sample of a size n from 

density   |  ; where θ is a value of a random variable Θ. 

Assume that the density of Θ,       , is known and contains 

no un known parameters, and suppose that we want to 

estimate       How do we incorporate the additional 

information of known       in to our estimation procedures? 

In the past, we want thought of the likelihood function as a 

single expression that contained all our information; the 

likelihood function included observed sample          as 

well as the form of density        we sampled from in its 

expression. Now we need an expression that contains all 

information that the likelihood function contains plus the 

added information of the known density             is 

called prior distribution of Θ. It is minimizes what we know 

about  after take a random sample we seek about the 

posterior distribution of              .  

Definition 1 

The density       is called the prior distribution of Θ. 

the conditional density Θ given  
           
            |             

  |        is called the 

posterior distribution 

Remark 1 

  |             
  |         
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ABSTRACT 

This paper was taken the loss and risk concepts, the objective of this paper is to estimate 

the loss and the risk in the Bayes method, as illustrated in the related case Where the 

prior distribution of the random variable is discrete and continuous, it applied on crop 

sales data in the continuous case, while it applied by two examples in the discrete case. 

Then the estimator of the loss function is the mean posterior distribution of the random 

variable, so it’s the same with median posterior distribution, hence is also the Bayes 

estimator with respect to a loss function equal to absolute deviation. The Bayes risk is a 

real value is the average of the loss function, so the smallest estimator who is the best 

estimator of the Bayes risk. 
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The posterior distribution replaces the likelihood function as 

an expression that incorporates all information. If we want to 

estimate θ and parallel the development of maximum of 

likelihood estimator of θ, we could take as our estimator of θ 

that θ which maximizes the posterior distribution that is 

estimated θ with the mode of posterior distribution, however 

unlike the likelihood function (as function of θ) the posterior 

distribution  

Definition 2 

 Let          be a random sample from density 

   |    where θ is a value of a random variable Θ with 

known density        The posterior Bayes estimator of τ (θ) 

with respect to the prior       is defined to be  

 [   |        ] 
Remark 2      

 [   |             ]  ∫      |   

              ⌊          

∫     [∏     |   
   ]       

∫[∏     |   
   ]       

                                            (1) 

3. Loss function in Bayesian approach  

Loss and risk these two concepts used to assess goodness 

of estimators, inside that we discuss how the additional 

information of knowledge of prior distributionof Θ can be 

used in conjunction loss and risk to define or select on 

optimum estimator. Paper commence with a review of the 

problem want to solve. Let         be a random sample 

from a density   |  , θ belonging to   , where the function 

   |  is assumed known except for θ, we assumed that the 

unknown θ is a value of some random variable Θ and the 

distribution of Θ is known and contains no unknown 

parameters . On the basis of the random sample        was 

taken to estimate τ (θ), some function of θ. In addition, 

assumed that a loss function        has been specified, where 

       represents the loss incurred if estimate τ (θ) to be t 

then θ is the parameter of density from which we sampled. 

For any estimator             the   [      ] 
represented the average loss of that estimator, and define this 

average loss to be the risk denoted by      , of the estimator 

          further noted that two estimators, say    
           and                 could be compared by 

looking at their respective risks       and      , preference 

being given to that estimator with smaller risk. In general, the 

function as functions of θ of two estimators may cross one 

risk function being smaller for some θ and other smaller for 

other θ. Then, since θ is unknown, it is difficult to make a 

choice between the two estimators.  The difficulty is caused 

by the dependence of the risk function θ now, since have 

assumed that θ is a value of some random variable Θ, the 

distribution of which is also assumed known, have a natural 

way of removing the dependence of the risk function on θ, 

namely, by averaging out the θ, using the density of Θ as our 

weight function. Mood, Gray bill, Boes [1]. 

4. Bayes risk 

Definition       3   

Let         be a random sample from a density  

   |   , where θ is a value of a random variable Θ with 

cumulative distribution function             and 

corresponding density            in estimating τ (θ), let 

       be the loss function. The risk of estimate   
          is denoted by        . The Bayes risk of 

estimator              with respect to loss function 

         and prior cumulative distribution G(θ)denoted by 

             is defined to be  

               [     ]  

∫                                         
 

 
(2) 

               [     ]  ∑          

   

 

If      is discrete. Myers The Bayes risk of an estimator is 

an average risk , the average being over the parameter space 

Ω with respect to prior density      for given loss function 

        and prior density      . The Bayes risk of an 

estimator is a real number; so now two competing estimator 

can be readily compared by comparing their respective Bayes 

risk, still preferring that estimator with smaller Bayes risk. In 

fact, we can now define the “best” estimator of τ (θ) to be that 

estimator with smallest Bayes risk  

5. Bayes estimator  

Definition 4 

The Bayes estimator of τ (θ), denoted by     
  

     
           with respect to the loss function         and 

prior cumulative distribution G(θ) , is denoted to be that 

estimator with smallest Bayes  risk . Or the Bayes estimator 

of τ (θ) is that estimator      
  satisfying  

      
       (    

 )          

For every other estimator               of τ(θ) the 

posterior Bayes estimator of τ(θ) , define in Definition (2) 

was defined without regard to a loss function , whereas the 

definition given above requires specification of a loss 

function . The definition leaves the problem of actually 

finding the Bayes estimator which may not be easy an 

arbitrary loss function,unsolved. However, for square-error 

loss, finding the Bayes estimator is relatively easy we seek 

that estimator, say            which minimizes the 

expression  

∫            
 

 ∫   [[               ] ]      

 

 ∫ {∫[          

  

     ]                 |  ∏   

 

   

}        

 

∫ {∫[    

  

              ]
                   | }

        

                  
                 ∏   

 

   

 

∫ {∫[              ]
    |          

  

     |           }                    ∏    

 

   

 

, and since the integral is nonnegative, the double integral can 

be minimized if the expression within the braces is minimized 

for each         . But the expression with in the braces is 

conditional expectation of [              ]
  with 

respect to the posterior distribution of Θ given     
        , which is minimized as a function of            
for             equal to the conditional expectation of 

τ(Θ)with respect to the posterior distribution of Θ given 
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{             [   
   ]                                           } 

Hence Bayes estimator of τ (θ) with respect to the 

square-error loss function is given. Linden, Dose, Toussaint 

[3]  

 [  |             ]  
∫     ⌈∏     |  

 
   ⌉      

∫[∏   
      |  ]      

        (4) 

This is identical to the estimator given in Eq (2). For a 

general loss function, we seek that estimator which minimizes 

∫            
 

 
 

 Again, 

∫            

 

 ∫⌈∫                   
 

               |  ∏    

 

   
⌉       

 

∫[∫                  |           

 

 

 

 

         |           ]                   ∏    

 

   

 

And minimizing the double integral is equivalent to 

minimizing the expression within the brackets, which is 

sometimes called the posterior risk. So, in general, the Bayes 

estimator of τ(θ) with respect to the loss function        and 

prior density      is that estimator which minimizes the 

posterior risk, which is the expected loss with respect to the 

posterior distribution of Θ given observation ,         we 

have the following theorem and corollaries  

Theorem 5.1.   

Let           be a random sample from the density 

   |   and let be     be the density of Θ. Further let        
be the loss function for estimating τ(θ).The Bayes estimator 

of τ(θ) is that estimator              which minimizes 

∫                
 

   |           

     |           

As a function of             
Proof: The Bayes estimator is that minimizes bellow (for 

continuous case) 

  [     ]  ∫               ∫  [        ]       

  

 

=∫ [∫ 
 
∫           |   |           ] 

     

=∫  ∫ [∫            |  
  |         ]

 
         

 

=
∫  ∫ [∫        

  |   |       

      
  ]

 
              

 

=∫  ∫ [∫            |   |    
 

]
 

               
 

=∫  ∫{  | [        |   ]}               
 

Minimizing integral above equivalent estimator in the 

blacked it is   | [        |   ]. Shiaha [4]. 

Remark:Theestimator  | [        ⌊   ]  

∫     
 

 
      |       is called by (posterior risk) and it 

represents the expected loss with respect to posterior 

distribution  |   |  . 

Corollary5.1 

Under the assumption of theorem 5.1, the Bayes 

estimator of τ (θ) is given by 

 [   |               ] 
∫    [∏     |   

   ]      

∫⌊∏     
 
   |  ⌋       

 

For a square-error loss function  

 

Corollary 5.2 
Under the assumption of theorem 5.1 the Bayes estimator 

of θ is given by the median of the posterior distribution of Θ 

for a loss function equal to absolutedeviation the proofs of the 

theorem 5.1 and the first corollary preceded the statement of 

the theorem. The second corollary follows from observation 

that  

∫|             |

 

  |               |         

 

Is minimized as a function of           for 

            equal to the median of the posterior distribution 

ofΘ.{             [  
  ]                                       
            } 
6. Minimax estimator  

Definition 5.   

Minimax estimator as an estimator whose maximum risk 

less than or equal to the maximum risk of any other estimator. 

The theorem is some time useful in finding a minimax 

estimator. The following theorem is useful in finding a 

minimax estimator  

Theorem 6.1 

If               is a Bayes estimator having 

constant risk, that is                 then    is a minimax 

estimator  

Proof:  

Let       be the prior density corresponding to the 

Bayes estimator 

                 
                      

∫    
 

 
           ∫   

 

 
                   

    for 

any other estimator           .Shelemyahu, Zack [5] 

Another criterion that sometimes is used to select an 

estimator from class of admissible estimators is the minimax 

criterion. 

Definition. 6 

Minimax estimator an estimator    is a minimax 

estimator if    
       

   
 

    for every estimator T 

In the other words,   is an estimator that minimizes the 

maximum risk, or  

    
          

   
 

   
     (8) 

Of course, this assumes that the risk function attains a 

maximum value for some θ and that such maximum values 

attain a minimum for some T. In a more general treatment of 

the topic, the maximum and minimum could be replaced with 

the more general concepts of least upper bound and greatest 

lower bound, respectively. Bain [6] 

7. Application 

In this section firstly we applied with data on a value of 

crop sales by million Sudanese pound from marketing center, 

this data as a random sample of size 30 as follows 

Table 1. sales of crop by million Sudanese bound. 
5 4.5 5 

4.5 4.5 4 

5 2 5 

5 4.5 4 

4.5 4.5 3 

5 4 4 

3 5 4.5 

4.5 4 4 

5 5 4.5 

5 6 7 

Let this random sample             from normal 

density with mean θ and variance 1, and then we use this to 
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estimate θ with a squared-error loss function. Assume that Θ 

has a normal density function with mean    andvariance   
 , now write       when convenient according E q (4) the 

Bayes estimator is given as the mean of the posterior 

distribution of Θ. 
 [    |   ]   [    |            ]
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The denominator is unity since it is the integral of a 

density. We have shown that posterior distribution Θ is 

normal with mean ∑        ⁄ 
   and variance       ⁄  ; 

hence the Bayes estimator of θ with respect to square-error 

loss is      ∑   
 
 

   
  

   ∑   
 
 

   

 =           

    
       as the 

following tables 

Table 2.one-sample statistic. 

 N Mean Std Deviation Std error Mean 

sell 30 4.417 1 .18 

Table 3. one sample test. 

 t Df Sig 

2tailed 

MD 95%confidence 

interval of difference 

Lower Upper 

sell 24.2 29 .000 4.42 4.043 4.790 

Since the posterior distribution of Θ is normal, it’s mean 

and median are the same, hence 
   ∑   

 
 

   
       is also the 

Bayes estimator with respect to a loss function equal to the 

absolute deviation. 

Secondly this application is based on the case where the 

prior distribution of the random variable is discrete bellow. 

Let         denote a random sample from Bernoulli 

density     

   |                       
Assume that the prior distributed over the interval (0, 1).  

Consider estimating θ and τ (θ) =θ (1-θ) 

 Now  |                |        =  

 ∑         ∑           

∫  ∑         ∑    
 
 

  ; 

 

So the posterior Bayes estimator of θ with respect to the 

uniform prior distribution is given by  

 [ |              ]

 ∫ ∫ |           

     |           
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Hence the posterior Bayes estimator of θ with respect to 

the uniform prior distribution is given by 

 ∑           ⁄  To obtain the posterior Bayes estimator 

of, say τ(θ)=θ(1-θ), 

           We calculate   Ε (τΘ|              = ∫    
    |               |           

=  ∫      ∑          ∑    

∫  ∑         ∑    
 
 

 

  =           ∑     

      

    

 ∑       ∑    

 

          =     
      ∑     

          

 

So the posterior Bayes estimator of θ (1-θ) with respect 

to a uniform prior distribution is                   

= ∑     (  ∑    )

          

  .  

Thirdly this application shows the case in which the loss 

is constant as fellow:  

Considers the minimax estimator of θ in sampling from 

Bernoulli distribution using square-error loss function. We 

seek a Bayes estimator with constant risk. The family of beta 

distribution is a family of a possible prior distribution. We 

want that for one of beta prior distribution the corresponding 

Bayes estimator will have constant risk. A Bayes estimator is 

given by  

∫   ∑         ∑  [  ⁄                  ]  
 

 

∫  ∑         ∑  [  ⁄      ]              
 

 

 

= ∫  ∑       
        ∑        

∫  ∑       
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=   ∑         ∑     

  ∑       ∑     
  

∑    

     

 

So the Bayes estimator with respect to beta prior 

distribution having parameters a and b is given by ∑    

     
   

We now evaluate the risk of ∑         ⁄  with 

hope that we will be able to select a and b so that the risk will 

be constant. Write   

                ∑     ∑         ⁄     

Then 
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Which is constant if 

                                  

Now                       √ ⁄ (√   )  

And                                  ⁄    

which is  

  (√   )      ⁄      √ (√   ) ⁄  

On solving for a and b, we obtain     √     ⁄ so 

 ∑   √   ⁄    √ ⁄   

Is a Bayes estimator with constant risk and hence, minimax. 

8. Conclusion 

The paper conclusive that the loss function is the mean of 

posterior distribution of the random variable and it’s also the 

median of it. Further wise the Bayes estimator with respect to 

a loss function equal to absolute deviation. The estimator 

Bayes risk is the average of the loss function as the smallest 

estimator is the best estimator.   
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