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1.0 Introduction 

A discrete-time dynamical system (X,T) is a continuous map T on a non-empty topological space X [10][8]. This dynamics is 

obtained by iterating the map T. The discrete logistic function operates within a range by a control parameter. This function 

changes in state as the parameter is being altered. If we are to take the set of points in the given space X and upon operation by 

iterating with an initial point, it comes close or exactly back to the points in the set where there is a change which is either, 

stationary (fixed points), cycles ( periodic) or chaos. This state (set) is what we termed as the non-wandering set. 

2.0 Preliminaries 

Definition 2.1: DISCRETE-TIME DYNAMICAL SYSTEM (See [6],[8]): Let   be a non-empty topological space and T  be a 

continuous map. A discrete-time dynamical system (X,T) is defined as; T:X→X, where the dynamics are obtained by iterating the 

map T, hence, a dynamical system (X,T) induces an action on   by     , where      = x and                  for all 

           .  

Illustration 2.2: (see[1]) Let f be a continuous function on X such that     i.e. f:X→X,    , then ; {…,f^(-2) (x),f^(-1) 

(x),x,f^1 (x),f^2 (x),…} are the orbit sequence of x which are bi infinite sequence and form the discrete-time of the solution [1]. 

But since we are interested in the set type, we let f be a function from the Z of discrete-time to the state space X, with parameter 

and initial point x, then the orbit relation is defined as, 

   ⋃    
                                                                                                                                                                                 (1.0) 

Hence, the following is the set of the relation but not a sequence; ϑf(x)= 〖{f〗^1 (x),f^2 (x),…}  made up of the states and the 

initial point x in time [9]. 

2.3 Non-wandering Set: It is the set of points in the phase space for which all points beginning from a point of this set come 

arbitrarily close and arbitrarily often to any point of the set. In [3], the following shows the types and the existence of non-

wandering set: 

1. fixed points (stationary) 

2. periodic solutions (limit cycles) 

3. quasi-periodic orbits 

4. chaotic orbits 

2.4 Logistic Function: The logistic function is a difference equation which is non-linear system. It is a function that transform 

into different state or phenomenon depending on changes of the parameter α. 

Definition 2.5:  if   is a state with discrete-time n, then the function is defined as; 

                                        (1.1) 

where     and for         and         
2.6 Using the logistic function to illustrate the fixed points and the periodic solutions as the types of the non-wandering set 

2.6.1 fixed points (stationary) (see [2], [9]) 

If a point     , its orbit or trajectory is;      ⋃    
                                                                                                            (1.2) 

Hence, a point x is said to be fixed or stationary if                                                                                                              (1.3) 

 That is                                                                                                                                                                                (1.4) 

Also for the logistic, let        be defined  as; 
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                  ,           ,         and                                                         
(1.5) 
Theorem 2.7: A non-wandering set is a fixed point (stationary) if a point x in a space  comes arbitrarily back to the 

starting point after iterating it for a number of times. That is if      and     then           , is a stationary 

non-wandering set. 
Proof: To show that a stationary (fixed point) is a non-wandering set, we take equations (1.4) and (1.5) and Let    .Then 

equations (1.4) and (1.5) become; 
                                  (1.6) 

                                                        (1.7) 

Equating, Eqn (1.6) to Eqn (1.7) 

               

Algebraically,                 

 
   tends to be the solutions for this logistic function.     

Illustration 2.8 : Taking                 

 
   to show the existence of the stationary non-wandering set. 

At          Trivial 
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Clearly, if         and    {   

 
}    , where         and         , a discrete value for α gives a point x in the space 

 ,by iterating comes back to that same x in the space   , hence a non-wandering set. 

Example 2.9 

Given                  , then at α= [1,4], and   ,   
   

 
-. Then a non- wandering set is stationary or fixed point 

if;   (   
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Solution: Let     , implies 
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Let α=4, implies ,   
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Then                   implies that at     
 

 
 

 ( 
 

 
)    ( 

 

 
) (   

 

 
)   

 

 
  . ( (

 

 
))/  

 

 

  

   ( 
 

 
)  , 

 

 
-                                                                                             

Let α=1, implies ,   
   

 
  - 

Then                  implies that at       

                             
Thus, for discrete α value within [1, 4] all   ,   

   

 
- tends to be a fixed point irrespective of the number of iteration, 

therefore forming their own constant orbit             where change in this parameter affect the   ,   
   

 
- and the 

behavior making it stable or unstable. □ 
Theorem 2.10: A non-wandering set can be either stable or unstable. Let          and α be a parameter of the system. Then a 

change in α of the system can change the stability of a non-wandering set. 
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Proof: let               , and    ,   
   

 
-where α is the parameter and define the logistic, let          as;  

                 
Then for stable non-wandering set, the fixed point must be stable or attracting that is ||      |    that is absolute derivative of 

the function  is less than one [6], where                

|      |  |      |   , 

                          At    
   

 
 

        
   

 
     

             
            
Thus α   (1,3) is where the function is asymptotically stable. That is attracting fixed point where there is convergence and stability 

of the state. Hence the non-wandering set is stable at         and attracting since it is true for the fixed point/stationary point. □ 

Also, for unstable non-wandering set, the fixed point/stationary point must be unstable as the control parameter is altered, at a 

repelling fixed point. And in [6] the way to this is |      |   .              

|      |  |      |   , 

         or                              At    
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)    or        

   

 
     

         or     } 

Thus, for unstable non-wandering set     or    . 
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