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Introduction 

  Matroids is a generalization of independence in graphs 

and linear independence in vector spaces. It was first 

introduced by the American Mathematician Hassler Whitney 

in 1935. There are several equivalent ways to define a 

Matroid. The two most important definitions of Matroids are 

in terms of independent sets and bases. Proof of each of the 

properties of these definitions can be found in Oxley [2], 

Whitney [4], and Wilson [5]. 

Applications of Matroids involve different areas such as 

combinatorial optimization, projective geometry, network 

theory, coding theory and many other areas. Matroids are 

connected to many branches of Mathematics such as linear 

algebra, graph theory, combinatorial optimization, finite 

geometry and abstract algebra.  

Preliminaries 

Definitions (as in Wilson [5]) 

The definition of a Matroid in terms of independent sets 

is as follows. A Matroid   consists of a non-empty finite set 

  and a non-empty collection   of subsets of   (called 

independent sets) satisfying the following properties: 

(i) Any subset of an independent set is independent; 

(ii) If   and   are independent sets with | |  | |, then there 

is an element   contained in   but not in  , such that   * + 
is independent. 

With this definition a base is defined to be a maximal 

independent set and a cycle is defined to be a minimal 

dependent set. 

 

 

 

        A Matroid can be defined in terms of bases as well. A 

Matroid   consists of a non-empty finite set   and a non-

empty collection   of subsets of   , called bases, satisfying 

the following properties: 

(i).no base properly contains another base; 

(ii). if    and    are bases and if   is any element of   , 

then there is an element   of    such that (   * +)  * + is 

also a base. 

Examples of Matroids 

A  -uniform on   is the Matroid whose bases are those 

subsets of   with exactly   elements. Independent sets are 

those subsets of   with not more than   elements. A cyclic 

Matroid of a graph   is the Matroid defined by taking   as 

the set of edges of   and bases as the edges of the spanning 

forest of  . It is denoted by  ( ). The independent sets of 

 ( ) are those sets of edges of   that contain no cycle. If   

is a finite set of vectors in a vector space  , then the vector 

Matroid is defined by taking as bases all linearly independent 

subsets of   that span the same subspace as E.  

Two Matroid    and    are said to be isomorphic if 

there is a one-one correspondence between their underlying 

sets    and   . When a Matroid is isomorphic to the cycle 

Matroid of some graph, it is said to be a graphic Matroid. 

Given a Matroid   on a set  ,   is said to be representable 

over a field  , if   is isomorphic to  ( ) for some graph  . 

A transversal Matroid is obtained by taking a non-empty 

finite set   and the partial transversals of  , where   
(          )  is a family of non-empty subsets of  , as the 

independent sets. 
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ABSTRACT 

A Matroid is a set with an independent structure defined on it. A Matroid abstracts and 

generalizes the notion of linear independence in vector spaces and independence in 

graphs. Matroids unite the concepts of graph theory, linear algebra, projective geometry, 

transversal theory, and combinatorial optimization. Applications of Matroids involve 

different areas such as combinatorial optimization, network theory, coding theory and 

many other areas. Matroids can be found in projective geometry; the fano plane of order 

2 gives rise to a Matroid. An important application of Matroids in optimization involves 
the greedy algorithm. Kruskal’s algorithm for finding a minimal spanning tree which is 

an example of the greedy algorithm can be used to understand how Matroids can be 

involved in the greedy algorithm. Consider a network of vertices with weighted links 

between the vertices. Our goal is to find a collection of links that connect all vertices 

using the smallest weight. That is a spanning tree with minimal weights. Kruskal’s 

algorithm can be generalized to a Matroid by taking a Matroid 𝑴 and a function 𝒘:𝑴 →
ℝ which assigns weights to each element. The goal is to find the basis 𝑩 of 𝑴 such that 

∑𝒘(𝒙) where 𝒙 ∈ 𝑩 is minimized. The greedy algorithm is a characterization of the 

Matroid. Matroids are the structures in which the greedy algorithm works successfully.                                                                                                   
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Results 

One of the most important application of the Matroids is 

in the field of combinatorial optimization. It is the association 

between Matroids and greedy algorithms. One important 

property of Matroids is that they are the structures in which 

the greedy algorithm works successfully. 

Consider a network of vertices with links between the 

vertices, and each link has a weight. Then goal is to find a 

collection of links that connect all vertices, using the smallest 

weight. That is a spanning tree with minimal weights. For this 

problem, Kruskal’s algorithm for finding a minimal spanning 

tree which is an example of the greedy algorithm, guarantees 

to find a minimal spanning tree. This algorithm can be 

generalized to any Matroid. Consider a Matroid   and a 

function  : → ℝ which assigns weights to each element. 

The goal is to find the basis   of   such that ∑ ( ) where 

 ∈   is minimized. The optimal solution will necessarily be 

a basis. The algorithm is as follows: 

1. Initialize a set of elements   to be the empty set  . 

2. Sort the elements of   according to weight.  

3. Run through the elements, starting with the smallest 

weighted elements. For each element  , add   to   unless 

    * + is dependent. 

Any time the greedy algorithm guarantees an optimal 

solution for all weight functions, the underlying structure 

must be a Matroid. Moreover, only when the structure is a 

Matroid, the greedy algorithm guarantees to return an optimal 

solution. 

Other examples for which the greedy algorithm and 

Matroids can be involved are the task scheduling problem and 

assignment problem. The latter can be solved by applying the 

greedy algorithm to the transversal Matroid. 

Let *  + be a set of works ordered by their importance 

(priority) and let *  + be a set of employees capable to do one 

or various of these works. We suppose that the works will be 

done at the same time (and thus each employee can do just 

one work each time). The problem is to assign the works to 

the employees in an optimal way, that is to maximize the 

priorities.  

The problem can be solved by applying the greedy 

algorithm to the transversal Matroid where   *  + is the 

non-empty finite set and   *       + with    the set of 

works for which employee is qualified. It can be noticed that 

the maximal number of works that can be done at the same 

time is equal to the biggest partial transversal of   with the 

function  : → ℝ corresponding to the importance of the 

work. 

Using a similar attempt, determining an optimal schedule 

can be done by identifying the transversal Matroid and by 

applying the greedy algorithm (the solution to the scheduling 

problem is an example of a system of distinct representatives 

or SDR [1]). 

Matroids are also applied in projective geometry. To 

understand the connection between Matroid theory and 

projective geometry the Fano plane of order 2 can be 

considered. Here, it gives rise to a Matroid named the Fano 

Matroid.  

 
Figure 1. Fano Matroid. 

Conclusion(s)   

Matroids unite the concepts of graph theory, linear 

algebra, projective geometry, transversal theory, and 

combinatorial optimization. This research work considered 

only certain applications of Matroid theory which shows the 

close connection between Matroids and greedy algorithm in 

combinatorial optimization, and projective geometry. 

Kruskal’s algorithm which is an example of the greedy 

algorithm can be used to understand how the greedy 

algorithm can be generalized using Matroids. Fano plane of 

order 2 can be considered to understand the connection 

between Matroid theory and projective geometry. There are 

many applications of Matroids in different areas. To 

understand the concepts of these applications further study in 

Matroids is needed. Future work includes the study of the 

definition of Matroid for finite geometries of dimension 

beyond 2. 
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