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Introduction 

In practice most experimental designs yield unbalanced 

data. This can include some cells having no data, within the 

class of unbalance data we make two distinct divisions. One 

is for data in which all cells contain data; none are empty. We 

call these all-cells-filled data. Complementary to this are 

some-cells-empty data; where in there are some cells that 

have no data, see El-Saeiti and Shamia. (2007). Unbalanced is 

difficult to define precisely, there it means unequal number of 

observation in cells of design. The basic problem is that 

messy data may give rise to heterogeneity of variance a cross 

cells. In this activity, unequal error variance may be due to 

the nature of the treatments. Snedcor and Cochran (1967, p. 

324) gave some examples of unequal variance due to the 

treatment errors. 

The analysis of variance test is adversely affected when 

the error variance is heterogeneous. There are other kinds of 

heteroscidasticity are possible 

 The error variance may vary from one cell to another. 

 The error variance may vary from one group of observation 

to another. 

 The error variance may vary from one factor to another. 

Some authors have dealt with these kinds, see James 

(1951), Bishop and Dudewicz (1978), Talukder (1978), and 

Shamia (1991). However, also many researchers have 

investigated the problem of combined analysis of a group of 

experiments with the heteroscedasity of error term. Notable 

among them are Yates and Cochran (1938), Khosla et.al. 

(1979), Bhuyan and Das (1983), Bhuyan and Miah (1989), 

and Khiar (1998). A more complete discussion on the sources 

of such variation can be found in Hartemink et al. (2001). 

    

Problem of Missing Data  

Unbalanced factor or empty cell can happen if there are 

missing data. ANOVA is most powerful where replication is 

equal for the different levels of each factor. However we can 

still perform; an ANOVA if we have unequal replication. For 

instance, certain treatment combinations may be more 

expensive or difficult to run than others; thus fewer 

observations are taken in those cells. 

When unbalanced data are not too far from the balanced 

case, it is sometimes possible to use approximate procedures 

that convert, the unbalanced problem into a balanced one or 

partially bvalanced. The method of unweighted means is an 

approximate procedure when the number of observations in 

each cell is not dramatically different. This method is 

inappropriate when empty cells occur or when there are 

dramatically different. The approach used to develop sums of 

square for testing main effects and interactions is to represent 

the analysis of variance model as a regression model. 

However, there are several ways that this may be done, and 

their methods may result in different values for the sums of 

squares. Furthermore, the hypotheses that are not always 

direct analysis of those from the balanced case. For additional 

reading, see Searle (1987), Speed and Hocking (1976), Speed 

et.al. (1978), and Searle et.al. (1981).  

Models Definition  

Unbalanced factors often due to a typographical error, 

but the empty cell size message can be due to an illegal 

"nested" design only the random factor can be nested or 

(hierarchical).  

 Mixed models are used to describe data from 

experiments whose treatment structures involve some factors 

that are fixed and some that are random.  
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ABSTRACT 

The overriding problem with analyzing unbalanced data which leads to heteroscedasity 

models is that many methods are available and deciding between them can be a matter of 

some difficulty. Heteroscedasticity is a problem because ordinary least squares (OLS) in 

regression assumes that all residuals are drawn from a population that has a constant 

variance (homoscedasticity). When conditional heteroscedasticity is present, the practice 

of reweighting the data has long been abandoned in favor of estimating model parameters 

by ordinary OLS, in conjunction with using heteroscedasticity consistent standard errors. 

However, we argue for reintroducing the practice of reweighting the data, since doing so 

can lead to large efficiency gains of the resulting weighted least squares WLS estimator 

over OLS even when the model for reweighting the data is misspecified. The idea is that, 

the estimator can also be accompanied by the help of type of proportionality condition on 

cell sample size using harmonic mean. Special emphasis is given to nested model and on 

the unbalancedness in the data due to heterogeneity in the environmental conditions of 

experiments. Estimators of the parameters for this model are found to be independent of 

the weights under this condition.                                             

                                                                                                    © 2019 Elixir All rights reserved. 

 

Elixir Statistics 133 (2019) 53573-53576 

Statistics 

Available online at www.elixirpublishers.com (Elixir International Journal) 

 



Gebriel shamia and Entesar el-saetti/ Elixir Statistics 133 (2019) 53573-53576 53574 

These models for describing such experiment involve 

two parts. One part is describing the random effect and the 

other is describing the fixed effect. Consequently the analysis 

of mixed consists of two types of analysis a random analysis 

and a fixed analysis. In some applications of nested 

classification, the classes have fixed effects that are to be 

estimated. An instance is an evaluation of breeding value of a 

set of five sires in cow raising. Each size is mated to a 

random group of dams. The model is 

        [ ]   ( )   (  )                     (1) 

Where  αi  are fixed effect associated with the sires but 

β(i)j and  ε (ij)k are random variables corresponding to dams 

and offspring. Hence the model is called mixed. Here we 

could obviously expect the variance to differ from size to 

size. In fact, when the error variance is heterogeneous in this 

way, the F
_ 
test tends to give many significant results.     

      In matrix notations the general mixed model can be 

written as following [Searle (1987)]. 

                                                          (2) 

Where 

Y    is 1n  vector of observation. 

β    is vector of unknown fixed effects.  

X  is pn design matrix that relates observations to fixed 

effects . 

u    is vector of unknown random effects.  

Z    is qn matrix that relates observation to random effects.  

ε   is an non-observable random vector of residuals with null 

mean and  

   [
 
 
]  [

  
  

]   

Note that, in computer packages this model known as 

model III (the methods in SPSS are type-III and IV).  

 Description of Related Methods  

Type-III sum of squares 

Type-I and Type-II sums of squares usually are not 

appropriate for testing hypotheses for factorial ANOVA 

designs with unequal numbers. For ANOVA designs with 

unequal numbers, however, Type-III sums of squares test the 

same hypothesis that would be tested if the cell numbers were 

unequal, provided that there is at least one observation in 

every cell. Specifically, in no-missing-cell designs, Type-III 

sums of squares test hypotheses about differences in 

subpopulation (or marginal) means. When there are no 

missing cells in the homostedastic model, these subpopulation 

means are least squares means, which are the best linear-

unbiased estimates (BLUE) of the marginal means for the 

design. See, Milliken and Johnson, (1992).  

 The Type-III sums of squares attributable to an effect is 

computed as the sums of squares for the effect controlling for 

any effects of equal or lower degree and orthogonal to any 

higher-order interaction effects (if any) that contain it. The 

orthogonality to higher-order containing interactions is what 

gives Type-III sums of squares the desirable properties 

associated with linear combinations of least squares means in 

ANOVA designs with no missing cells. But for ANOVA 

designs with missing cells, Type-III sums of squares 

generally do not test hypotheses about least squares means, 

but instead test hypotheses that are complex functions of the 

patterns of missing cells in higher-order containing 

interactions and that are ordinarily not meaningful. This 

method calculates the sum of squares of an effect in the 

design as the sum squares of adjusted for any other effects 

that do not contain it and orthogonal to any effects (if any) 

that contains it. The Type-III sum of squares has one major 

advantage in that they are invariant with respect to the cell 

frequencies as long as the general form of estimability 

remains constant. Hence, this type of sums of squares is often 

considered useful for an unbalanced (homoscedastic) model 

with no missing cells. In a factorial design with no missing 

cells. This method is equivalent to the Yates Weighted-

squares of means technique for fixed effect models. 

Type-IV sum of squares  

Type-IV sums of squares are computed by equitably 

distributing cell contrast coefficients for lower-order effects 

across the levels of higher-order are containing interactions. 

Type-IV sums of squares are not recommended for testing 

hypotheses for lower-order effects in ANOVA designs with 

missing cells, even though this is the purpose for which they 

were developed.  

Statisticians who have examined the usefulness of Type-

IV sums of squares have concluded that Type-IV sums of 

squares are not up to the task for which they were developed:  

 Milliken and Johnson (1992, p. 204) has written: "It 

seems likely that few, if any, of the hypotheses tested by the 

Type-IV analysis of [some programs] will be of particular 

interest to the experimenter."  

 Searle (1987, p.463-464) has written: "In general, [Type-

IV] hypotheses determined in this nature are not necessarily 

of any interest." and (p. 465) "This characteristic of Type-IV 

sums of squares for rows depending on the sequence of rows 

establishes their non-uniqueness, and this in turn emphasizes 

that the hypotheses they are testing are by no means 

necessarily of any general interest."  

 Hocking (1985, p. 152), in an otherwise comprehensive 

introduction to general linear models, writes: "for the missing 

cell problem, [some programs] offers a fourth analysis, Type-

IV, which we shall not discuss."  

      So, we recommend that you use the Type-IV sums of 

square solution with caution, and that you understand fully 

the nature of the (often non-unique) hypotheses that are being 

testing, before attempting interpretations of the results. 

Furthermore, in ANOVA designs with no missing cells, Type-

IV sums of squares are always equal to Type-III sums of 

squares, so the use of Type-IV sums of squares is either 

(potentially) inappropriate, or unnecessary, depending on the 

presence of missing cells in the design. The hypotheses 

selected depend upon the pattern of filled cells; and then the 

F-statistics are in accord with the good statistical practice of 

setting up a hypothesis and testing it. This does mimic reality, 

but only as an algorithmic automaton looking at which cells 

contain data, and not as a knowledgeable scientist thinking a 

bout data. Type-IV sum of squares is not unique, for a given 

set of some-cells-empty data, and so the corresponding 

hypothesis is not unique either.   

      A related technique is the weighted linear regression 

method, proposed by Yates (1934). This technique is also 

based on sum squares of the cell means, but the term in the 

sums of squares are weighted in inverse proportion to their 

variances. For further details of the procedure, see Searle 

(1987) and Speed, et.al. (1978). 

The method of reweighted squares of means 

      In some cases it is desirable to apply differential weights 

to the observations, and to compute so-called weighted least 

squares estimates. This method is commonly applied when 

the variances of the residuals are not constant over the range 
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of the independent variable values. In that case, one can apply 

the inverse values of the variances for the residuals as weights 

and compute weighted least square estimates. (In practice, 

these variances are usually not known, however, they are 

often proportional to the values of the independent 

variable(s), and this proportionality can be exploited to 

compute appropriate case weights.) Neter, et.al. (1985) 

describe an example of such an analysis. 

      The method of weighted least squares of means is used 

when the errors of variance are not equal then the error 

variance is heterogeneous. So to estimate the fixed factor we 

use the method of (WLS). 

      Note that, the expression for mixed model can be formed 

as in equation (2).  

So that part of fixed effect estimators of the parameters are 

obtained by WLS method. 

      Talukder (1991) suggests general principle of WLS 

analysis for fixed the heteroscedastic model with 

 

A diagonal matrix with error variance , as the diagonal 

elements and these variances may not be all distinct.  

      For known error variances, the WLS estimator β of is 

obtained by minimizing the quadratic form  

έ v
-1

ε = (Y-X β)′ V
-1

(Y-X β) 
And the resultant normal (GLS) equations are given by             

X′ V
-1

 X β = X′ V
-1

Y,                                                      (3) 

where   V
-1

 = W‏
δ
 is a diagonal matrix with  w(i)j as the 

diagonal elements. 

      Here in our model (equation (1)), the weights, due to 

Hartmink, et.al. (2001), are given by  
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whereis the harmonic mean of the cell variances, and we 

assume that 
2

)()( jiijin 
 
is the proportional condition. 

      Here, 
i  

is the level-specific proportionality constant 

which varies with the levels of the factor-A. 

      Now, let Z = W‏
δ/2

 Y and A = W
 δ/2‏

X; where W
δ/2‏

 is a 

diagonal matrix with W i

2/1 as the diagonal elements. Then 

Cov(Z)=I, an identity matrix; and the equation (3) can be 

written such as  

  A′ A β = A′ Z                                                              (4)   

      With rank (A) = rank (X). These are the normal equation 

of ordinary least square (OLS) method in transformed data 

(Z) so that the WLS estimators posses the optimal properties 

of OLS method. The usual least square analysis can therefore 

be performed here also under assumption of normality of 

errors. The estimator of ̂
 
satisfies the optimality properties 

of OLS estimation. 

      For the mixed model (equation (2)), the difficulty with 

this method is that V matrix is very large one. Henderson 

(1963) such as suggested an alternative method  





















































YRZ

YRX

UGZRZXRZ

ZRXXRX

1

1

111

11

ˆ

̂  

 in which ̂  is a solution to equation (3). Here  

1111111 )(   VRZGZRZZRR . 

Conclusion 
      A large statistical literature is devoted to missing values. 

If a data set contains a large share of missing entries, the way 

they are imputed can affect the analysis substantially, for 

example inducing spurious features. However, some 

statistical techniques allow imputation of missing values as 

part of the estimation process.  

      This study attempts to investigate the theoretical side of 

design analysis in the case of unbalanced models with 

missing data in the situation where approximate methods such 

as unweighted means are inappropriate. It was examined by 

using proportionality condition on cell sample size using 

harmonic mean for variances the cell to get the weighted 

value to translate the model from unbalanced into the partial 

balanced form as exact method. By applying  such  

modification of WLS, we adjusting (reduction) of sum of 

squares and provide an improvement of the analysis of 

variance method. 

     This procedure is used for mixed-nested design with 

unequal cell variances to exemplify the method, but it can be 

used for crossed-nested designs and split-plot designs hving 

random, mixed, and fixed-effect models  as well.  
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