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I. Introduction 

Ferroresonance phenomena [1, 16] can occur on any 

electrical network having at least one capacity, interacting 

with a non-linear ferromagnetic element. The physical 

formulation of the problem results in a system of high order 

differential equations. For these models to be numerically 

integrated, it is more convenient to reduce the system order. 

The object of this study is to present the physical network 

on which parallel ferroresonant phenomena have appeared 

and to try to model them by putting them in the form of a 

minimal order differential equations system. First, we model 

in detail the physical network to be studied, which is the 

object of this article, by decomposing it in the form of the 

elementary circuits (R, L and C) according to the rules used 

by electrical engineers. The raw model obtained leads us to 

work with an equations system of dimension six (6D). Then, 

we expose how to gradually reduce the dimension of the 

complete model 6D and obtain a reduced equivalent model of 

dimension three (3D). The idea is to eliminate the linear 

equations of the complete model while reducing the number 

of reactive elements and without modifying excessively the 

network global behavior. The characteristic quantities which 

proved to be fundamental for the appearance of parallel 

ferroresonant phenomena are mentioned. Finally, we validate 

the different approximations made, at least in the vicinity of 

the values of physically interesting parameters, by temporal 

and frequency simulations on concrete cases of parallel 

ferroresonance using the software matlab. The results 

obtained show that parallel ferroresonance is qualitatively 

represented by a reduced single-phase model of dimension 

three. In addition to limiting the number of parameters 

involved, this simplified model considerably reduces the 

calculation time. This advantage is particularly sought after in 

parametric studies using numerical methods arising from 

bifurcation theory [4-7, 10, 11, 17].   

II. Real situation of parallel ferroresonance 

In voltage feedback situations, the operator is often 

required to switch on a unloaded transformer located at the 

end of a long line. The shunt capacitance constituted by the 

line and the non-linear inductance of the receiver transformer 

can cause parallel ferroresonance (figure 1) [2-5, 12, 13, 17]. 

This can lead to dangerous distortions and overvoltages worth 

several times the nominal voltage [2-7, 9-12, 17]. Any 

damage caused (explosion of surge arresters, transformer 

damage, etc.) can aggravate the situation and durably delay 

the service resumption. 
 

Figure 1. Parallel ferroresonance during voltage feedback 

operation through a long line. 

The practical situations encountered are generally three-

phase, but they can sometimes be represented by a single-

phase network (figure 1). We encounter such a configuration 

in refeeding maneuvers on a very capacitive network after a 

generalized incident. It is this configuration that we chose to 

treat in this article. 

III. Mathematical modeling framework 

To correctly study the parallel ferroresonance 

phenomena by the bifurcation theory methods, we thought it 

important to accurately model each network part taking into 

account the different remarks already made on models 
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established in anterior works [2-4, 12-15]. Indeed, by this 

study, we seek to accuse the validity of these models and 

highlight the network parameters that seem interesting to us 

to represent the situations of parallel ferroresonance 

appearance. 

The purpose of this modeling is to represent the network 

by a system of nonlinear ordinary differential equations, non-

autonomous system, parameterized, of the form: 

 ,, tXF
dt

dX


                                  (1) 

  nXiXX  , is the solution vector of the system 

whose components are the state variables (flux, voltages and 

currents) appearing on the network; the size of this vector 

depends on the modeling finesse, 
p

  is the vector containing the network parameters 

(line length, impedances, resistances, supply voltage, etc.), 

F  is a function explicitly dependent on time, because of 

the presence of the periodic forcing term, in sinusoidal 

function form. 

The transformers’ presence, whose characteristics are not 

linear, makes F  non-linear with respect to its variables iX  ; 

which explains the appearance of unexpected phenomena on 

the network. 

As the transient simulation times of the phenomenon are 

important and tedious, we have already developed in [17] a 

direct calculation code of the steady state without going 

through the calculation of the transient state by using the 

bifurcations theory [4-7, 17]. This computation code is based 

on the frequency method of Galerkine [5-7, 9, 17] and the 

pseudo-arclength continuation method [5-7, 17]. Both 

methods are satisfactory. They allow us to easily construct the 

bifurcation diagrams and obtain a global view of the 

phenomenon [4-7, 9-11, 17]. 

IV. Description of the voltage feedback configuration 

In voltage feedback situations, the operator is forced to 

send back a voltage (periodic versus time) to unloaded 

transformer located at the end of a long line. We distinguish, 

then, in this system three constituent elements (Figure 2): 

- the voltage source (alternator and its step-up transformer), 

- the energy transmission line,  

- the target transformer and its non-linear current-flux 

characteristic. 
 

Figure 2. Example of a simplified configuration 

representing the voltage feedback from Chastang toward 

Chinon (France) [13]. 

As Blengino asserts [11], the real network is three-phase 

but the results are generally very close between phases [11-

14]. That's why we chose a single-phase representation of the 

system considering only the direct component. 

IV.1. System elements modeling 

For numerical simulations to provide reliable results, a 

good model must be used in computational programs. To 

achieve this goal, it is essential to adequately represent each 

component of this network. We propose here a modelization 

synthesis, which are also the subject of an abundant literature 

[9, 11-15]. 

IV.1.1. Voltage source model 

The voltage supplied to the network comes from a source 

composed of an alternator accompanied by a step-up 

transformer (unsaturated: its characteristic is linear) (figure 

3). The whole is modeled by the following single-phase 

element: 

 

Figure 3. Voltage source model. 

This representation proved sufficient during studies of 

ferroresonance [11, 12]. The alternator is represented by a 

sinusoidal e.m.f.      tEte sin  located behind his 

subtransient reactance "
dX  increased by the leakage reactance 

of the source transformer 
tX : 

tda XXX  "                                                           (2) 

To hold into account the internal damping of the 

alternator's e.m.f., we associate a subtransient time constant 
" . This damping is represented by a series resistance 

aR calculated by the following relation: 

"

"



d
a

X
R 

                                                          (3) 

This resistance 
aR is corrected from 20 Hz frequency 

where the skin effect begins to feel and can be deduced from 

its initial value by the following empirical relationship [11, 

12]: 

20"

"
fX

R d
a




                                                  (4) 

The source characteristic values "
dX , "  et 

tX , 

provided by the manufacturers are given in percent of the 

basic impedance 
nZ of system per-unit, often referred to as 

nominal impedance, defined by:  

n

n
n

S

U
Z

2


                                                            (5) 

with: 
nU  is the nominal voltage in kV,  

nS  is the nominal power in MVA. 

The alternator iron losses and its step-up transformer are 

modeled by the resistance 
pR  estimated on the basis of 0.2% 

of the nominal power 
nS  by the formula: 

n

n
p

S

U
R

2

100
                                                      (6) 

Table 1 below gives an estimate of the parameters 

values of the adopted model for two sources (low and high) 

of nominal voltage 225 kV: 

Table 1. Parameters of the voltage source model [11, 12]. 

nS (MVA) nZ () "  (ms) 
"
dX  nZ%  td XX "  nZ%  aR  () pR  () 

90 562.5 40 24 37 10.75 281250 

1120 45.2 45 35.4 49 1.13 22600 
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This representation proved sufficient during studies of 

ferroresonance [11, 13]. In addition, we did not take into 

account the non-linearity of the unloaded alternator; the 

voltage remains close to the nominal voltage and the currents 

involved are always lower than the machine nominal current. 

Similarly, Blengino has shown that the use of a more 

sophisticated model for the alternator and the consideration of 

the voltage regulator have no great influence on the results 

concerning ferroresonance [11]. 

IV.1.2. Transmission line model 

We have adopted the most used model of a transmission 

line, namely the representation in  given in figure 4. 

 

Figure 4. Transmission line model. 

2/21 CCC  where C  is the total capacity of the line. 

In reality, a more correct representation of a long line 

uses a series of cells in  (figure 4). The problem is how 

many cells must be considered for to have reasonable 

modeling. A previous study [11] shows that a modeling of the 

line (of length < 400 km) by several cells in  increases the 

computation time without significant improvement of the 

results and that a representation with a cell is sufficient. 

Recall that the wavelength of the line at 50 Hz is about 6000 

km. 

The line parameters ( R , L  and C ) will depend on the 

length l  and will be calculated from the average lineic data 

from the manufacturer's abacuses [11-13].  

As an example, a nominal voltage line 225 kV (50 Hz), 

has the following lineic characteristics:  

kmR /06.0  , kmL /408.0  , kmnFC /9  

therefore for transmission lines whose length is between 

0 and 400 km : 

 240 R , HL 52.00  , FC 6.30  . 

The resistance R is calculated taking into account the 

skin effect from the frequency 100 Hz [11, 12]. 

Finally, note that a physical phenomenon can occur on 

the transmission line and considerably affects the network 

losses level: this is the crown effect. This phenomenon is 

related to the appearance of a conductivity of the air in the 

environment of a conductor brought to a high voltage. It is 

non-linearly dependent on voltage and frequency but, 

moreover, it is very sensitive to climatic conditions (rain 

intensity, for example), which makes it difficult to model it 

accurately [12]. 

The model adopted in our study to represent these crown 

losses does not take into account the nonlinear nature of the 

phenomenon. It is modeled, at low frequencies, by two 

constant resistors 
1cR  and 

2cR  in parallel with the geometric 

capacitances of the line [11]. It amounts to transforming the 

model of the line as follows (figure 5): 

 

Figure 5. Final model of the transmission line 

These two resistors are calculated basing on the 

evaluation of means crown losses.  For a 225 kV network 

between phases, these losses are situated between 5 kW/km to 

18 kW/km (from dry air to the humid air) [11, 12]. 

IV.1.3 Target transformer model 

a. Proposed model 

The transformer being empty, the adopted single-phase 

model is described by the figure 6 [11-13]. 

 

Figure 6. Target transformer model. 

The resistance 
sr  represents the copper losses of the 

transformer primary. It is calculated using the following 

relation: 

n

ncc

s
S

UP
r

2

3 2


                                                                    (7) 

where 
cc

P  denotes the short-circuit losses per phase of the 

transformer. 

The ratio 1/2 comes from the fact that we consider the 

resistance 
sr  equal to 50% of the total resistance of the 

transformer [11, 12]. 

This resistance 
sr  is corrected taking into account the 

skin effect from the frequency 100 Hz [11, 12]. 

The linear inductance 
s

l  is associated with the leakage 

flux of the transformer. It is determined by the following 

formula: 

ns
Zl                                                                      (8) 

with:  is the reduced value between 10% and 15%. This 

quantity depends on the transformer nominal power [11, 12]; 

n
Z  is the basic impedance defined as in (5). 

The linear inductance 
t

l represents the saturated 

inductance of the transformer (equal to the self in the air of 

the primary winding). The corresponding reactance 
t

l is 

from 30% to 70% of the basic impedance [17]. 

b. Iron losses modeling 

The iron losses in the transformer core make it possible 

to model the vacuum transformer more precisely, that is to 

say the non-linearity of the magnetising branch, taking into 

account the hysteresis and the eddy current losses phenomena 

in the circuit magnetic. In sinusoidal mode, we often choose 

to replace these losses by a constant resistance 
f

R  that we 

can calculate by the following relation: 

f

n

f
P

U
R

3

2


                                                                       (9) 

where 
f

P  denotes the no-load losses per phase of the 

transformer ; 

In transient state, this model is not acceptable. A 

simple representation of the hysteresis phenomenon is 

described by a first-order nonlinear differential equation, 

linking the current to the flux of the form: 

dt

d

R
fI

f




1
)( 

                                                       (10) 

This therefore amounts to modeling the magnetizing 

branch of the transformer by a saturable inductance of 

magnetic characteristic )(i associated in parallel with a 
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resistance of current-voltage characteristic, also non-linear, to 

simulate the increase of the losses iron with the voltage [11-

13]. 

In addition, some authors neglect losses by hysteresis 

compared to those of eddy currents, considering that the 

hysteresis cycles of magnetic materials (crystal-oriented iron-

silicon) used for the manufacture of transformers, are quite 

narrow at nominal voltage.  

In [17], we have already seen that iron losses have little 

influence on the appearance of ferroresonance and its 

presence only slightly affects the value and duration of the 

first spikes in transient overvoltages. 

c. Nonlinear inductance modeling 

The function )(fi   represents the non-linear 

characteristic of the transformer saturable inductance and 

plays an important role in the appearance of ferroresonant 

phenomena. It is about a current-flux characteristic of 

instantaneous values given by a series of points recorded 

either experimentally (rarely available) or by calculation from 

measurements in rms values.  

For a transient simulation or the direct calculation of the 

steady state, we need a regular function representing this 

characteristic. This is why researchers have tried several 

approaches such as polynomial, spline and implicit functions. 

The use of a polynomial function type model is justified 

by several authors [4-8]. It has the advantage of being easy to 

implement within the framework of the bifurcation theory and 

to give a good approximation of the phenomena. We will then 

adopt in our study a characteristic of the form: 

   
n

n

n
kknkkfi ,;;)(

11
                   (11) 

However, it appears that we cannot represent a magnetic 

characteristic in the entire useful zone (saturated and 

unsaturated) with an expression as simple as (11). Indeed, for 

the strong values of the flux, it is necessary to adjust the 

curve )(i ; this correction consists in considering that the 

iron is completely saturated and we add, in series with the 

nonlinear inductance, a linear inductance 
t

l  equal to the 

inductance in the air of winding [11, 12]. 

IV.2. Complete model of System 

The models presented and the remarks that we have just 

formulated lead to the single-phase circuit given in figure 7, 

representing the complete circuit for voltage feedback. 
 

Figure 7. Complete model of voltage feedback system 

(of dimension 6). 

The complete model obtained is made up of many 

elements, which naturally results in a large number of state 

variables, and thus differential equations. 

 

 

 

 

 

 

 

 

V. Model equations and system dimension reduction 

V.1. Model equations 
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                  (12)    

The state variables appearing most naturally in the circuit 

of figure 7 are the flux  , the currents 
1

I , 
2

I  and 
3

I  in the 

various inductive branches and the voltages 
1

V  and 
2

V  across 

the capacities. The application of the Kirchhoff laws leads to 

a system of 6 differential equations, parameterized, non-

autonomous: 

This system (12) is of dimension 6 (noted 6D). We notice 

that only the first two equations are nonlinear (by the 

presence of the term )(f ), that the sinusoidal forcing term 

rendering the system non-autonomous only appears in the 

third equation and that the last three equations are linear. We 

will therefore try to eliminate these linear equations by 

modifying the values of the remaining parameters and obtain 

a model equivalent to the complete model (6D).   

V.2. Reduction of the system dimension 

To eliminate the linear equations of the system (12), the 

idea is to reduce the number of reactive elements of the 

model without excessively modifying the overall behavior of 

the network. This is done: 

- by deleting certain parameters whose effect is considered 

weak ; 

- by moving certain elements ; 

- by transforming part of the network. 

In our case, all the parameters appearing on the proposed 

model are important; we therefore choose to change the 

model configuration while retaining certain characteristic 

parameters which seemed important to us in the 

ferroresonance study. This amounts to transforming the 

element in  (representing the transmission line) by an 

element in  while retaining the characteristic properties of 

the circuit (figure 8).   

 

Figure 8. Switching from configuration  

to configuration Y. 

In the case where the obtained mode is close to the 

sinusoidal mode (which is exact in the linear case), these two 

configurations are equivalent and we can deduce, by 

Kennely's theorem, the characteristic parameters of the model 

(Y). These latter depend on those of the system () but are 

also a function of the circuit pulsation, which in our case is 

not constant (because of the non-linearity). We have therefore 

chosen, for go from the configuration () to the configuration 

(Y), to set four invariant quantities which are particularly 

important in the case of occurrence of ferroresonant 
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phenomena: the natural frequency of oscillation, the total 

capacity, the total inductance and losses. 

To deduce the new parameters characteristic of the 

configuration (Y), we does not hold into account the losses at 

first (not intervening, as a first approximation, in the 

frequency computation), and we imposes that are preserved: 

- the natural frequency seen from the nonlinear element, at 

the maximum of impedance : 

21
2

1

2

1

LCCL
t




                                            (13)  

- the total inductance :                                 

21
LLL                                                                (14) 

The short circuit impedance and thus preserved. 

- the total capacity :       

21
CCC

t
                                                             (15) 

This is the impedance in open circuit that is kept. 

Then, we add the losses in the same proportions (the 

dynamic behavior of the circuit is preserved): 

- for series losses : 

RRR 
21

  and  

2

2

1

1

R

L

R

L


                                    (16) 

- for parallel losses :  

2

2

ceq

ceq

e
RR

RR
R






                                                          (17) 

This allows us to reduce the number of state variables 

and obtain an equivalent model of dimension 4 (figure 9): 
 

Figure 9. Model transformed 4D. 

whose system of differential equations is: 
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
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
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           (18) 

This system still has a linear differential equation. We 

then want to perform a new transformation of the previous 

circuit to further simplify the network studied. 

Since the two resistors representing the parallel losses of 

the source and the target transformer (
f

R and
e

R ) are 

relatively large, we decided that instead of removing them, it 

was preferable to move the resistor 
f

R  to add it with the 

resistor
e

R . This transformation seems rather crude, but we 

will see later that it has little influence on the results of our 

study. 

Thus, we obtain the simplified final model of dimension 

3 (figure 10), 
 

Figure 10. Final model reduced 3D. 

whose equations are : 


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with: 

21

1

2

21

1

2
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2

1
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2

1

//
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


  

To validate the simplifications established, a comparison 

numerical study (temporal and frequency) of the two models 

6D and 3D proves inevitable in order to know the influence 

of the transformations carried out on the network behavior. 

VI. Validation of the reduced model 

The validation interested in voltage feedback Chastang-

Chinon (figure 2), where one 1180 MVA, 225 kV transformer 

were fed by a 90 MVA voltage source through a line of 

length 360 km. The non-linearity of the transformer is 

approximated by 9276 1060102)(   i . 

VI.1. Temporal comparison of different models 

The temporal comparison of the two models (complete 

6D and reduced 3D) will be based on a qualitative 

concordance (waveforms) and quantitative (maximum values) 

of the solution dynamics (in the transient and the steady 

state). To do this, a simple temporal simulation of the some 

typical states of the network operation is sufficient.

Table 2. Parameters and initial conditions of simulated 

cases of voltage feedback. 

Line length Peak source voltage Switching instant Remanent flux Figure 

km60l  

(Short line) 
nEE %30  rad0  Wb0r  Figure11.a 

nEE %100  Figure 11.b 

rad2   Figure 11.c 

rad0  
nr  %40  Figure 11.d 

nEE %120  Wb0r  Figure 11.e 

km360l  (Long line) 
nEE %30  Figure 11.f 

nEE %100  Figure 11.g 

rad2   Figure 11.h 

rad0  
nr  %40  Figure 11.i 

nEE %120  Wb0r  Figure 11.j 
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This numerical study consists in solving the nonlinear 

differential equations systems of the two models by the 

temporal integration step by step method, using the Runge-

Kutta algorithm of order 45, with variable pitch because it 

seems to us to be a good compromise complexity-precision.   

In a first step, we are interested in the behavior of the 6D 

complete model solution. Then, we study and compare the 

results obtained with the 3D simplified model, keeping the 

same conditions of study, in order to highlight the analogies 

and the qualitative and quantitative differences of the 

behavior of the two models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Temporal evolutions of flux )(t  in the target 

transformer associated to the models 6D and 3D for four 

cases of voltage feedback. 

We therefore chose to vary mainly three parameters: the 

length of the transmission line, the maximal value of the 

applied voltage and an initial condition of the network (for 

example the remanent flux 
r

  in the target transformer). The 

variable that seems interesting for the validation is the flux 

)(t  in the target transformer. 

The initial conditions of this simulation are chosen all 

zero except )0(  which takes the value of the remanent 

flux
r

 . The latter has the effect of increasing the severity of 

the extreme values of the flux and to bring the target 

transformer into saturation; this results in an increase in 

harmonics and a greater risk of overvoltage.  
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Among many simulations performed, we show in Figure 

11 a comparison of some temporal results obtained with the 

two models 6D and 3D for different cases of voltage feedback 

(Table 2). 

with: kV7.18332 
nn

UE  is the source voltage peak 

value at nominal operating and Wb585 
nn

E is the 

flux peak value at nominal operating. 

In view of the results, it can be seen that the waveforms 

of the temporal representations obtained with the two models 

6D and 3D are quasi-similar. In fact, qualitatively, the signals 

dynamics are almost similar; which shows that the frequency 

spectra of the transient phenomena and those of the steady 

state are almost identical. Quantitatively, the signals are 

approximately equal; only a slight difference in the peak 

values occurs when the system becomes very capacitive (in 

the voltage feedback cases on the long lines). 

It should be noted, however, that the temporal simulation 

of the 6D model is both time consuming and expensive 

because it requires a lot of calculation. On the other hand, the 

3D model has the advantage of being as reduced as possible 

and quite representative of the real phenomenon; the 

computation time of a curve is much lower than that of the 

6D model. 

VI.2. Frequency comparison of different models 

The frequency comparison of the 3D, 4D and 3D models 

will be based on a qualitative and quantitative concordance of 

the bifurcation diagrams of parallel ferroresonance [17]. The 

study is limited to reliable voltage feedback with two source 

machines: low of 90 MVA and high of 1120 MVA, and two 

line lengths: short of 50 km and 275 km long. This allows us 

to highlight analogies and differences in models behavior on 

low- and high-risk situations. 

The bifurcation diagrams of the fundamental mode, as a 

function of the amplitude of the voltage source E (the 

nominal voltage between phases is kV225
n

U ), associated 

with the different models are given in Figures 12b, 12d, 13b 

and 13d.   

 
 

 

 

 
 

Figure 12. Network spectral impedances and bifurcation 

diagrams associated with different models 3D, 4D and 6D 

for a low source machine of 90 MVA. 

We first note that the bifurcation diagrams obtained show 

a good qualitative and quantitative agreement between 4D 

and 3D models, which confirms the transition from one to the 

other.  

On the other hand, the portion of the diagrams 

corresponding to the unsaturated zone of the target 

transformer is practically identical to that obtained with the 

complete model 6D, which seems normal since in linear 

mode (i.e. at 50 Hz), the module and argument values of the 

network spectral impedance for the different models are the 

same (see Figures 12a, 12c, 13a and 13c). 
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Figure 13. Network spectral impedances and bifurcation 

diagrams associated with different models 3D, 4D and 6D 

for a strong source machine of 1120 MVA. 

However, in strong saturation, the bifurcation diagrams 

present, qualitatively, a similarity in the general form. In 

contrast, for extreme situations in terms of line length and the 

power of the voltage source, that is to say for voltage 

feedbacks on long lines and with a weak source machine, 

simple bifurcations appear on the 6D complete model while 

they do not exist on the 4D and 3D reduced models (Figure 

12d). But from a quantitative point of view, for powerful 

networks (i.e. powered by strong source machines), the rms 

flux of the target transformer calculated by the 4D and 3D 

reduced models is slightly different from that calculated by 

the 6D model complete (Figure 13d). On the other hand, for 

weak and very capacitive networks (case of long lines), this 

difference becomes important (Figure 12d). Moreover, the 

critical values of the excitation voltages E corresponding to 

the limit-point bifurcations are visibly higher than those 

reached by the 6D model. Everything happens, in fact, as if 

we had added losses to the system. 
 

 

Figure 14. Resonance and short-circuit characteristics as 

a function of l  associated with the different models 3D, 

4D and 6D for a low source machine of 90 MVA. 

These quantitative and qualitative differences are in fact 

explained by the inequality between the spectral impedances 

(in magnitude and in phase) of the linear circuit (network 

without the nonlinear element) of the three models 6D, 4D 

and 3D (Figures 12a, 12c, 13a and 13c). The results obtained 

with the two models 4D and 3D coincide perfectly and 

confirm the similarity of their behavior. On the other hand, 

this concordance is valid with the complete model 6D only 

for limited line lengths and bounded frequency bands. Indeed, 

for long lines, the behavior of these three models can be 

totally different. For example, for the 360 km long line and 

the 400 Hz frequency, the simplified models 3D and 4D have 

an inductive behavior; however, the complete model 6D has a 

capacitive behavior. This is due to the transformations used 

during the simplification of the modeling and is clearly 

visible for frequencies of rank higher than 4 (200 Hz); This is 

why in high saturation of the target transformer (regime rich 

in harmonics), one observes with the simplified models (4D 

and 3D) a reduction on the rms values of the flux and the 

absence of singularities. 

Also, it is nevertheless necessary to study the 

characteristics of the linear network (network without the 

nonlinear element) in resonance (Figures 14a and 15a) and in 

short circuit (Figures 14b and 15b) of the three models, as a 

function of the line length and the power of the source 

machine, to ensure this equivalence in the harmonic domain. 

The results obtained are almost identical; which seems 

normal since the passage of the circuit 6D to the 3D one was 

made while conserving all the physical characteristics of the 

initial network. 
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Figure 15. Resonance and short-circuit characteristics as 

a function of l  associated with the different models 3D, 

4D and 6D for a strong source machine of 1120 MVA. 

Given these remarks on the different numerical results 

obtained with the three models, we can conclude that the 3D 

model is well representative of the 4D model. These 

simplified models are equivalent to the 6D complete model 

only for line lengths of a few tens of kilometers. However, in 

the case of very long lines, particular attention will be paid to 

the harmonic analysis of the models before concluding. 

VII. Conclusion 

In this article, we presented a modeling of a electrical 

system describing parallel ferroresonance. It is concluded that 

the raw model obtained of dimension six (6D) can be 

simplified and reduced to an equivalent model of dimension 

three (3D) sufficiently representative of the real network. It 

has the advantage of being the simplest theoretical case and 

makes it possible to bring out general conclusions relating to 

parallel ferroresonance. 

In addition to limiting the number of parameters 

involved, this 3D simplified model can significantly reduce 

the calculation time. This advantage is particularly sought 

after in studies using numerical simulations in both time and 

frequency domains. 
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