54219 Konstantinos Kotrotsios et al./ Elixir Inform. Tech. 140 (2020) 54219-54225

to Reality!

Available online at www.elixirpublishers.com (Elixir International Journal)

Information Technology

Elixir Inform. Tech. 140 (2020) 54219-54225

ISSN: 2229-712K

Semantic Web Modeling of a High School’s Information System along
with Spargl Queries

Konstantinos Kotrotsios, Konstantinos Karamitsios and Foteini Emmanouilidou
MyCompany Projects O.E.

ARTICLE INFO
Article history:
Received: 7 February 2020;
Received in revised form:
14 March 2020;

ABSTRACT

In the first part of this work we will present the modelling of a high school information
system with the use of WebProtege. System ontologies and class properties will be
presented. In the second part we will present an introduction for SPARQL and examples
of queries that were made, with the results returned to us.

Accepted: 25 March 2020;

Keywords
WebProtege,
Sparql,
Ontology,
School system,
Semantic web.

Part I
Modeling of High School’s Information System
Introduction

For the elaboration of the work was used WebProtege, a
web application of collaborative writing and development of
OWL ontologies.

OWL is an ontologies’ language that is based on the
well-known RDF and RDFS, and its initials mean Web
Ontology Language, and was created, just like RDF, in order
to be interpreted by computers [4]. The difference with RDF
is that it is a much richer language with much greater
vocabulary and much better capability of interpretation by
computers.

There are three versions of OWL: OWL Lite, OWL DL
(contains Lite) and OWL Full (contains DL) [1].

The composition OWL is based on RDF and RDFS
languages which are based on the “triple” of RDF/XML
composition [2]. The key features of an OWL ontology’s
composition are:

* The header

* The class

* The instances of the classes

* The properties
Header

The header is essentially the root of the ontology and is
defined as a rdf:RDF element that specifies a number of
namespaces. The namespaces used in the rdf:RDF tags exist
to identify the vocabulary of other tags in onrder to be used
later in the ontology. To understand this, we will use an
example of rdf:RDF header

<rdf : RDF

xmins= “http:// example.org /Example#”
xmins:exd=“http://example.org/Examplet#t”
xmins:owl= “http://www.w3.0rg/2002/07owl#”

Tele:
E-mail address: kotrotsios@mycompany.com.gr

© 2020 Elixir All rights reserved

© 2020 Elixir All rights reserved.

xmins:rdfs="“http.//www.w3.0rg/2000/01rdf-
schema#”
xmlins:rdf=“http://www.w3.org/1999/02/22-rdf-

syntax-ns#”
xmlns:xsd=
“http://www.w3.0rg/2001/XMLSchemat#” >
In our example, the xmins = “http:// example.org

/Examplet#” and

xmins:exd ="http://example.org/Example#” are our
default namespaces.
Class

An OWL class is expressed in RDF/XML through an
owl:Class element. The owl:Class tag contains the statement
of an rdf:1D element that locally identifies the class name in
this ontology file.

<owl:Class rdf:ID="0Object">

</owl:Class>

Various additional elements are particularly important
for determining the class.

An rdfs:subClassof element allows an abstract clustering
to be subdivided into smaller groups. This shows that all
members of the class declared are also members of the
superclass defined by rdf:resource.

As shown in the example, 'Person' is defined as a
subclass of 'Object’, which means that all 'Persons' are
'Object' at the same time.

<owl:Class rdf:ID="Person">

<rdfs:subClassOf rdf:resource="#Object"/>
</owl:Class>

An owl:oneOf element combined with rdfs:subClassOf
can be used to define a class by deregulating instances that
belong to this class.

In the example shown below the owl:Class “Season”
may be just one of the 'Spring', 'Summer’, 'Fall’, and 'Winter'
instances.

54220 Konstantinos Kotrotsios et al./ Elixir Inform. Tech. 140 (2020) 54219-54225

<owl:Class rdf:ID="Season">
<rdfs:subClassOf>
<owl:Class>
<owl:oneOf rdf:parseType="Collection">
<Season rdf:ID="Spring"/>
<Season rdf:ID="Summer"/>
<Season rdf:ID="Fall"/>
<Season rdf:ID="Winter"/>
</owl:oneOf>
</owl:Class>
</rdfs:subClassOf>

</owl:Class>

Let us note that classes can also be anonymous. In the
example above, the 'Season’ owl:Class element is anonymous.
Also the owl:Restriction element also creates anonymous
classes.

Also the owl:equivalentClass declares that this class is
the same as another. Example: (‘PoliticalDivision' is the same
as 'AdministrativeBoundary')

<owl:Class rdf:1D="PoliticalDivision">

<owl:equivalentClass
rdf:resource="#AdministrativeBoundary"/>

</owl:Class>
Instances

Class instances are defined by specifying the class of
which they are instances. For example, the following
statement sets an instance with ID 'George' of the Person
class.

<Person rdf:ID="George"/>
Properties

Of course we could not create a meaningful ontology by
simply associating classes. So using the ontology properties
we display elements and specific facts about class members.
It is a binary relationship and is expressed by two types of
properties:

* datatype properties
* object properties
Owl Datatype Properties

An owl:DatatypeProperty element expresses the
relationship between an instance and a given value. As the
example shows, the 'hasAge' property is declared with a value
for the 'Person’ instance.

<owl:DatatypeProperty rdf:ID="hasAge">

<rdf:type
rdf:resource="http://www.w3.0rg/2002/07/owl#Functional Pr
operty"/>

<rdfs:domain rdf:resource="#Person"/>

<rdfs:range
rdf:resource="http://www.w3.0rg/2001/XMLSchema#nonNe
gativelnteger"/>

</owl:DatatypeProperty>

<Person rdf:1D="Joe">

<hasAge>32</hasAge>

</Person>

OwI Object Properties

An owl:ObjectProperty element expresses the
relationship between two instances. As shown in the example,
the definition of ObjectProperty as ‘hasWife' is used to
declare a '‘Male' value.

<owl:ObjectProperty rdf:1D="hasWife">

<rdfs:domain rdf:resource="#Man"/>
<rdfs:range rdf:resource="#Woman"/>
</owl:ObjectProperty>

<Man rdf:ID="Joe">

<hasWife rdf:resource="#Susan"/>

</Man>
Name
Legend
Swd-ID
- PersNo
) e Semester
Office k
passedExam
Literal
offersCourse |-
(ObjcktPranerty. :
isAuthorOf |
ObjectProperty
*********** >
subClassOf

Figure 1. Ontology Example.

In the figure above we see an example of a simple
ontology showing all of its elements [5]. Embedded XML
Schema datatypes including the known integer, string,
boolean, time and date types can be used for property types.
WebProtege

The process of writing ontologies in OWL language is
greatly simplified by WebProtege [3]. Having created an
interface through an open source web application enables you
through collaborative writing to create the classes and
properties with just a few clicks.

In this way you can collaboratively write an ontology
with your team, leaving comments or notes to other members
of the group as well as leaving your project free for use by
others.

WebProtege offers you a multitude of options when it
comes to creating ontologies. Some of these support OWL 2,
a default working environment that provides access to
frequently used OWL structures, full change and history
tracking for all team members, customizable interface and
support of multiple formats for downloading ontology or
uploading another in the web environment.

Ontologies
Introduction

In the present work we attempted to implement an
ontology for modelling a high school/secondary school
information system. We used webProtégé as an ontology
development tool. Then we introduced the ontology in
Protége 4.3.0 to get a better graphic representation.

Ontology Description

For the modelling of the high school/secondary school
information system we considered that:

e The classrooms belong to the school.

e A class corresponds to each classroom.
Students belong to a class.

Teachers have a specialty.

Teachers teach lessons.

The lessons correspond to a class.

o Students attend-belong to classes.
Class Hierarchy

At the top of our hierarchy are nine classes: Course,
Punishment, Person, TeacherFaculty, SchoolTrip,
ClassRoom, School, GlassGrade and Accolade which were
implemented by Protégé as Thing class subclasses.

Next, we have developed the Parent, Staff and Student
classes as subclasses of the Person class. A person can be
either a student or parent, or belong to the school staff. From
the Staff class we created two new classes that inherit its
attributes, the OtherStaff and Teacher classes. Of which
school staff can be either an educator or have another
capacity.

54221

\

Konstantinos Kotrotsios et al./ Elixir Inform. Tech. 140 (2020) 54219-54225

TeacherFaculty i |

Clasarcom | | Scheol i |

Course | Punis hment | | Person | | SchooiTrip | Claaslrade i | Accolade
Staff J Student I | LanClasaRoom | R
m

Figure 2 . Representation of ontology’s hierarchy.

The Classroom class inherits the features of the other two
classes, LabClassRoom and LectureClassRoom. In which a
room can be either a lab or a lecture room.
Figure 2 shows the hierarchy of classes.
Object Properties

Obiject properties in Protégé refer to the characteristics of
the classes that receive instances of other classes as values,
through which the classes are linked. In the ClassRoom class
we have two object properties, classinSchool and
classroomHasClass (Figure 3).

e

* @ ClassGrade

Figure 3. Object Properties Class Classroom.

With the classinSchool property we declare that the
Class Room class must have a School class object, which will
be the school that the classroom belongs to. The
classInSchool property has the Functional attribute because
the classroom can only belong to one school. The
classroomHasClass property accepts an object of the
ClassGrade class that describes which class is hosted in that
classroom.

In the School class we have an object property,
SchoolHasClasses (Figure 4).

School

=
Classroom |+

Figure 4 . Object Properties Class School.
Which accepts Classroom items that show which classrooms
the school has Class Grade class declares school class (1st
grade Secondary School, 1st grade High School, etc.). In
Class Grade we have three object properties:
classSetInClassroom, going School Trip, has Courses (Figure
5).

-[*® classGrade Course
P -
* @ SchoolTrip

Figure 5. Object Properties Class ClassGrade

The classSetInClassroom property accepts an object of
the Classroom class that indicates which classroom the class
is housed in. The going School Trip property is associated
with the School Trip class and indicates that a class
participated in an excursion. Finally, with the has Courses
property, Course class objects are declared that show the
lessons a class has.

The Parent class refers to the guardians of the students. It
has a guardian Of property (Figure 6) that is associated with
the Student class and indicates of which students they are
guardians.

Student

Figure 6 . Object Properties Class Parent

Student class refers to students and has four properties:
has Accolade, has Punishment, study, guardian By (Figure 7).
The has Accolade and has Punishment properties refer to
objects in the Accolade and Punishment classes respectively
that refer to whether the student has been praised or punished.
The study property is associated with the ClassGrade class
and indicates which class the student belongs to. Finally, the
guardian By property connects the Student class to the Parent
class and refers to the student's guardian.

7

Accolade

*@ Student

& ClassGrade
Figure 7 - Object Properties Class Student
The Teacher class has two properties: isSpecialize and
teaches (Figure 8). The isSpecialize property points to objects
of TeacherFaculty class from which the teacher receives his
specialty. The teaches property points to courses of Course
class that are the lessons he teaches.

= +
i TeacherFaculty |~ —

——

Figure 8 . Object Properties Class Teacher.

54222 Konstantinos Kotrotsios et al./ Elixir Inform. Tech. 140 (2020) 54219-54225

Finally we have the Cource class with teached By and
teachedInGrade properties (Figure 9). The teached By
property accepts Teacher class objects that show which
teacher teaches the lesson. The teachedInGrade property
accepts ClassGrade objects that show which class each lesson
belongs to.

S et ——

‘ ClassGrade Course

Figure 9 . Object Properties Class Course.

Data Properties

Data properties are the properties of the classes that
associate objects with data values (string, integer, date, etc.)
and not attributes of other objects such as object properties.

In this section we will describe some of the data
properties of the classes we created for our ontology. The
data properties we have developed are shown in Figure 10:

(=)= [x]

V- mtopDataProperty

m accolade_description
™ address

m classGradeName

m classroom_capacity

m classroom_name

m classroom_projector
m classroom_smartBoard
m classroom_sound

m courseName
mfirst_name

m labClassRoom_chemistry
mlabClassRoom_info

m labClassRoom_physic
mlast_name

m otherStaff_faculty

m phone

® punishment_description
m school_address

m school_name

@ SchoolTrip_EndDate

m SchoolTrip_StartDate
m schoolTrip_VisitPlase
wmstaff_faculty
mstaff_ID

m student_ID

Figure 10 . Data properties.

The accolade_description and punishment_description
attributes are alphanumerics (string) belonging to the
Accolade and Punishment classes respectively and contain a
description of the type of praise and punishment respectively.
In Figure 11 we see that the attribute belongs to the Accolade
class and is of string type.

Description: accolade_description mEEE
Enuivalent To
SubProperty Of
Domains (intersection)
Accolade

Ranges

@string
Disjoint With

Figure 11 . accolade_description

The address, first name, and last name attributes are
alphanumeric (string) belonging to the Person class and
contain values for the address, name and surname of the
persons. Parent, Student, Staff, OtherStuff, and Teacher
classes inherit these attributes from the Person class.

Figure 12 shows that address attribute belongs to the
Person class and is a string type.

Description: address DEEE
Equivalent To
SubProperty Of
Domains (ntersection)
Person

Ranges

@ string
Disjoint With

Figure 12 . address
The classroom_projector, classroom_smartBoard,
classroom_sound, lab Class Room_chemistry, lab Class
Room_info and labClassRoom_physic attributes are boolean,
S0 they can take true or false values and describe how a class
can be used. In Figure 13 we see the Classroom_projector
attribute that belongs to the LectureClassRoom class and is a

boolean type.

Equivalent To

SubProperty Of

Domains (ntersection)

LectureClassRoom

Fanges
@boolean

Disjoint With

Figure 13. Classroom_projector.
Individuals
Individuals are instances of classes. For our own
ontology, we will present some indicative instances to
describe how the modelling of a high school/secondary
school information system works. Figure 14 shows a part of
the instances we have created.

Individuals: Informatics

|| X

1st_grade_High_School o
& 1st_grade_Secondary_School
1st_High_School_Thessalonikis
2nd_grade_High_School

2nd_grade_Secondary_School
3rd_grade_High_School

3rd_grade_ Secondary_School
& Accolade_distinction

Ancient_Greek_Language

Biclogy

& Chemistry

& Computer_Studies

English

EnglishTeacher

& Gymnast

History

LabcClassRoom1

LectureClassRoom1

Mathematician

Mathematics

Modern_Greek_Language

& Parentl

e NLIlalaal-e

Figure 14 . Individuals.

54223 Konstantinos Kotrotsios et al./ Elixir Inform. Tech. 140 (2020) 54219-54225

We originally created an instance of the school class
called 1st_High_school_Thessalonikis. The characteristics of
the instance are shown in Figure 15.

Description: 15t High_School Thessalonikis.

wEmE Wl Property assertions: 15t High_School Thessalonkis

Types Object property assertons
School mschoolHasClasses
®mschoolHasClasses LabClassRoom1
ame Individual A5
Data property assetions
mschool_name "lo Alkeio
Ocooahovikng”~*string

mschool_address "Eyvartiag 63
53321 Ozooohovikn"~string

Diferert Individuals

Hegative object property assertions

Hegative data property assetions

Figure 15. 1st_ High_School_Thessaloniki.

We see that the instance we created belongs to the
School (Types) class. It has schoolHasClasses as object
properties, in which it accepts two instances: LabClassRoom
and LectureClassRoom. Also, as data properties, it is given
two string values for school_name and for school_address.

Description: 1st_grade_High_School

mE =E Jll Property assertions: 1st_grade_High_School

Type. Bbiect proparty assetion
ClassGrade mhasCourses Chemistry

mhasCourses Physics

ame Inividul A mhasCourses Computer_Studies

®WhasCourses Physical_Education

Oittrent Incivicusls mhasCourses Biology

mhasCourses
Modern_Greek_Language
mhasCourses English
®mhasCourses History
mhasCourses Mathematics
mhasCourses
Ancient_Greek_Language
m classSetInClassroom
LectureClassRoom1

Oata property sssarions
= classGradeName “1st grade High
School"~~string

Figure 16 .1st_grade_High_School.

The instances we have created from the ClassGrade class
arelst_grade_High_School,2nd_grade_High_School,3rd_gra
de_High_School,1st_grade_Secondary_School,2nd_grade Se
condary_School, and 3rd_grade_Secondary _School. The
features of the 1st_grade_High_School instance are shown in
Figure 16.

Description: 1st_grade_High_School

ME EIE () Property assertions: 1st_grade_High_School

Type: biect property: assertion

ClassGrade mhasCourses Chemistry
mhasCourses Physics
jame Individual As mhasCourses Computer_Studies
mhasCourses Physical_Education
Ditferent Individuals mhasCourses Biology

mhasCourses
Modern_Greek_Language
mhasCourses English
mhasCourses History
mhasCourses Mathematics
mhasCourses
Ancient_Greek_Language

mclassSetInClassroom
LectureClassRoom1

Data propery assertion

mclassGradeName "1st grade High
School"~"string

Figure 16 . 1st_grade_High_School.

We see in the 1st_grade_High_School instance features
that it has as object properties the hasCourses in which it
receives instances of the Courses class, and the
classSetinClassRoom in which it receives instances of the
ClassRoom class. To classGradeName data properties which
is alphanumeric (string), has been given the value “Ist grade
high school”. One of the highlights of the Course class we
have created is Biology (image 17).

Description: Biology WS=E Jl Property ssseriions: Biology [EEE]

Types Object property assertians
Course mteachedInGrade
2nd_grade_Secondary_School
wmteachedInGrade
1st_grade_High_School
wmteachedInGrade
1st_grade_Secondary_School
mteachedInGrade
3rd_grade_Secondary_School
wmteachedInGrade
2nd_grade_High_School
wmteachedInGrade
3rd_grade_High_school

Diferert. Individual:

Data property assettions
®m courseName “Biology™~“string

Hegative object propety assertions

Hegative data praperty assertions

Figure 17. Biology
This instance contains attributes of the teachedInGrade
type in which we have instances of GlassGrade class and in
addition we have the courseName attribute which is
alphanumeric and contains the name of the course.
From the Student class we have created multiple
instances. Specifically the instance Studentl (image 18).

Description: Student! m=me il roperty assertions: Student

Type: biect property assertion

Student = guardianBy Parentl
Accolade_distincti

mstudy 1st_grade_Secondary_School

Different Individuals Data property assertion:

= student_ID "152632"~~decimal
= first_name “Nikoc¢"~*string
mlast_name "NikoAdou™”*string

Hegative object prop

Hegative data property as

Figure 18. Student.

We see that it has GuardianBy features that contain a
Parent class instance with parentl value which is the pupil’s
guardian, hasAccolade instance of Accolade class, that is, the
student has been awarded, a study instance of classGrade
class showing which class the pupil attends. We also have
values for the student’s name, surname and code.

Finally, from the Teacher class instances in Figure 19 we
see the instance teacherl.

Where it has teaches as attributes that are instances of the
Courses class and show us what lessons the particular teacher
teaches, the isSpecialized attribute is of the TeacherFaculty
type and contains the teacher’s specialty.

Reasoner

We have used Pellet for the control of ontology. An
automated OWL-DL reasoning program, written in java. It
collaborates with the Jena framework and is the primary
solution for applications written in java. It has the ability to
classify ontologies together with their relationships. It also
has a built-in engine for SPARQL.

We first executed the pellet with the classify parameter
image which shows the class hierarchy as a result.

[dsphinx ~/M5c/Semantic Web] pellet.sh classify schoolManager.owl
Classifying 18 elements

Classifying: 100% complete in 00:00

Classifying finished in 00:00

owl:Thing
schoolManagment : Accolade
schoolManagment : ClassGrade
schoolManagment : Classroom
schoolManagment : LabClassRoom
schoolManagment : LectureClassRoom
schoolManagment : Course
schoolManagment : Person
schoolManagment : Parent
schoolManagment : Staff
schoolManagment : Otherstaff
schoolManagment: Teacher
schoolManagment : Student
schoolManagment : Punishment
schoolManagment : School Trip
schoolManagment : School
schoolManagment : TeacherFaculty

Figure 20 . Pellet classify.

54224 Konstantinos Kotrotsios et al./ Elixir Inform. Tech. 140 (2020) 54219-54225

With the consistency parameter we checked the
consistency in our ontology image.

Sc/Semantic Web] pellet.sh consistency schoolManager.owl

Figure 21 . Pellet consistency.
With the info parameter we see information for ontology
(Figure 23)

Figure 22. Pellet info.
Finally, with the lint parameter we check if there are
problematic cIasses(Figur).

noger-ow

Part Il SPARQL
SPARQL (Simple Protocol and RDF Query Language)

SPARQL (Simple Protocol and RDF Query Language) is
the official query language for RDF. It was standardized by
the W3C RDF Data Access Working Group and in 2008 the
W3C was formally established for SPARQL 1.0. SPARQL is
for RDF precisely what SQL is for relational databases, or
what XQuery is for XML. And because the Semantic Web is
based on RDF knowledge representation, SPARQL and its
related protocols are paramount in it.

Trying to use Semantic Web without SPARQL is like
trying to use a relational database without SQL [6].

SPARQL queries are based on triple patterns. A triple
pattern is the same as a RDF triple, except that one or more of
its resources-components are variable. A variable is denoted
by ?name or $name, where name is its name. For variables
the prefix ? or $ is the same [8].

The SPARQL engine that executes a query searches from
all resources, those that verify the query triple patterns, in
accordance with the RDF suggestions in the knowledge base
with which the SPARQL engine is connected.

SPARQL has many similarities to SQL. A query in
SPARQL can contain conjugations, disjunctions, optional
limitations, limitations on the number of results, and
generally almost all of the basic fundamental elements that
SQL has (Figure 24).

There are four SPARQL query formats: SELECT,
CONSTRUCT, ASK and DESCRIBE.

e SELECT: These are queries that return the objects in a
table format

(resources and verbal) that verify the desired triple patterns

e CONSTRUCT: These are queries that return an RDF
graph, according to a graph template included in the query.

e ASK: These are queries that answer whether or not there is
a solution for some triple patterns, without stating what that
is, if it exists, eg.

ASK

WHERE {

<http://dbpedia.org/resource/School> a?type.
<http://dbpedia.org/resource/School>
<http://dbpedia.org/property/schooltype> "1o Abvkelo"

o DESCRIBE: These are queries that return an RDF graph
containing data about some of the resources declared in the
query, e.g.

DESCRIBE <http://dbpedia.org/resource/Teacher> .

There are SPARQL implementations for many programming
languages and tools such as:

e the connection to a SPARQL interface and the
semiautomatic construction of a query, and
o the translation of SPARQL queries into other query
languages (eg. SQL, XQuery, etc.).
SPARQL 1.1 was designated as W3C Recommendation on
March 21, 2013 [7]. [9].

PREFIX (Namespace Prefixes)

=.g. PREFIX plant: <http://www.linkeddatatools.com/plants>

SELECT (Result Set)

FROM (Data Set)

- FROM <http://www.linkeddatatools.com/plantsdata/plants.rdf>

WHERE (Query Triple Pattern)

e.g. WHERE { ?planttype plant:planttype ?name }

ORDER BY, DISTINCT etc (Modifiers)

Ewéva 24 . Tomkn ovvraén epotipetos SPARQL.
ANNEX A - SPARQL QUESTIONS
On all queries, the Ontology School was used because
the Greek version of dbpedia (el.dbpedia.org) is out of order.
In the exercise it is mentioned that the examples are

executed at a DBpedia endpoint, unfortunately there are some
restrictions to these, for example: SERVICES outputs
“Virtuoso 42000 Error SQ200: Must have privileges on view
DB.DBA.SPARQL_SINV_2". We therefore used also different
endpoints for the exercise needs.

SPARQL query #1

Endpoint : http://dbpedia.org/snorql

SPARQL Query

SELECT DISTINCT ?property ?hasValue ?isValueOf
WHERE {

{ <http://el.dbpedia.org/resource/Zyokeio> ?property
?hasValue }

UNION

{ ?isValueOf ?property
<http://el.dbpedia.org/resource/Xyoieio> }
} LIMIT 300

Description

Displays the ontology names in languages other than Greek
(Ontology School).

Results

SPARQL results
IaValueot

Epatpuo SPARQL #2

Endpoint : http://dbpedia.org/snorgl

SPARQL Query

SELECT distinct ?property ?desc
WHERE {
:School ?property ?desc .
FILTER (lang(?desc) = "en™)

}

Description

Displays the related information - properties such as abstract,
commentary for English.

Results

 peopany.

54225

Konstantinos Kotrotsios et al./ Elixir Inform. Tech. 140 (2020) 54219-54225

SPARQL query # 3 SPARQL query #5

Endpoint : http://dbpedia.org/snorgl Endpoint : http://dbpedia.org/snorql
SPARQL Query SPARQL Query

PREFIX : <http://dbpedia.org/resource/> SELECT distinct ?Category ?Concept ?type
SELECT distinct ?Category ?Concept WHERE {

WHERE {
?Category ?type ?Concept .
FILTER (?Category IN (:School, :G
FILTER (lang(?Concept) ="en") .
} LIMIT 10

ymnasium, :Lyceum)) .

Description

Displays the related information - properties such as abstract,
commentary for English. The difference with the previous query
is that it looks for Gymnasium and Lyceum beyond the School
ontology.

Results

?Category ?type ?Concept .

FILTER ((?Category IN (:Lesson, :Teacher, :School,
:Paraprofessional , :Classroom , :Grade, :Course , :Person,
:Student, :Lyceum, :Gymnasium, :Punishment)) && (
lang(?Concept) ="en")) .

} order by ?Concept

Description

Displays the related information - properties such as label,
comment, abstract for English for the ontologies that would be
used in our model. The results are sorted based on the description.

SPARQL results

‘Schoo

atudonts (or “pupis’ Most which

: stoden The names vaey by

iow), but genarally e ‘sducation

ages 3-5). Unwarsty, college or seminery may

o a school of dance. Altemative schoois may

‘commorky compulsory. In 1hess syslees, students progress.
beiow), but generally

ot

. such . hawzss, yeshivas, and ofhers; of schools that have & Nighee

“Gen
mairty in Eurcpe. usualy it

students (or “pupds”) u s cursies have eysims ffomaleducation tich &
treough

' o008 o schools mmlmmmm wary by counlry (iscussed i fhe Regional section
ucaion Gen

SPARQL query #4

Endpoint :

http://dbpedia.org/snorg|

SPARQL Query

SELECT distinct ?Category ?Concept
WHERE {
?Category ?type ?Concept .
FILTER ((?Category IN (:Teacher, :Paraprofessional))
&& (lang(?Concept) ="en")) .
} order by ?Concept

Description

Displays related information - properties such as label,
comment for English for Teacher and Paraprofessional
ontologies sorted by ?Concept variable

Teacher
Teacher &

Results

SRR ¥t y-‘om

A i s N i 0 W st i s oo A s
mwmdmnd!mm afion. I many couriies, @ person who wishes lo become @ teacher must first
y o pamge o wemree o ouing o
A (st} Tha role ofteacher i chen formal and ongoing, caried ot a &
schoo i education. . 8 per
pedagogy. the sci g Teachers, prok , may have fo

Toachers may ey
Toachers may

Trom oge. i
continus their education ter hey qualdy, a process known as

y
crafismanship or vocaional rsinig, the rts, relion, civics, y roles, o e skl
i , 3 govemess.

3 famiy membe, o by sidls

teachers, such s gurs, mullahs, rablis, pasiors/ycuth pastcrs and lamas, May teech reigious texts such as the Curan, Torah or Bitke "Ben
Classrooen & secondary school in Perdernby, Siers Leone en

*Parsprolessions” Den

ok ok Desvenees have ptesgcnd Rosraon Th0
akonge)

i various occupationsl feics.
Graeh ol o e ot ki o 0 o S o Sk s screseben s 900
ido a prolessional *@en

&
b 0t imasios v peesnind eersse. The Gk el ‘o’ 8 o hae v booid o by 50 5 n ‘prdel’: e, & eraprolessionl 6 008
Who wok w diroct

bt lacks the lficial For axample. i

. whi ofhers recuire only

sccation such as that of groor This concept of &

or Europe, for axample." @en

“Schocia* Sen
“Taacher @en

“Teachar, schocitoschor Gen

“Toaching abiltes, leasart disposiin, patence’ @en

Results

SPARQL results:

Toacher
Cassroom &

Ciassroom &

involvas s commant
Alesson may ook (e, apan o e pied
8 shot period of taugh st & padiculsr subect of

poge
WP b o prem & o ity @en
Lesson @ winvaives in #
oy a texibock (ahich,
o gasoact taught sutyect of
imm«mpdmnmu: o sy, Lawaons w0 el gt
envicrment. in a wider serze. a previously
sithar Vo vyl c panil
mistake ney hen
1 coned S
Person *A person such s & buman, ®
b et s i Swort dacis, by ller St aﬂm e e o lace, i arciot Fome, e word s’)
ot e crgraly e o e ks o i, Th Vs ks ezt o 51200
ey

subject matter.

 ocabnof oot um« oihe words mewing and
aryi Hr.._ rfuence i
e

ot o oo i
oo e o porset, oo s chen e o _«omnmumu-mmm “a people”), 50 the plral
s phicscphicel

Person 'A parson s & beng, such as
oy e sirrs Gt docoon: by e ot b ot o0 o oo nmmmmmm (Lot
“perscnas’ in the stage

s comment &

S pmacpan aigouty
play*Sen

References

[1] http://www.w3.0rg/TR/2004/REC-owl-guide-

200402 10/#StructureOfOntologies (Maiog 2014)

[2] http://acuity.sourceforge.net/acuitycontrollerwebpages/Owl
HowToBasics.html (Matog 2014)

[3] http://protegewiki.stanford.edu/wiki/WebProtege
2014)

[4] Antoniou, G., & Van Harmelen, F. (2004). A semantic web
primer. MIT press.

[5] Dunkel, J., Bruns, R., & Ossowski, S. (2006). Semantic e-
Learning agents. In Enterprise Information Systems VI (pp.
237-244). Springer Netherlands.

[6] http://www.w3c.gr/press/pressreleases/2008/01/spargl-pres
srelease.el.html (Maiog 2014)

[7] http://www.w3.0rg/TR/sparql11-query/

[8] Toby Segaran, Colin Evans, Jamie Taylor, Programming
the Semantic Web, O'Reilly Media, 2009.
[9]1 Bob DuCharme, Learning SPARQL,
Inc.", 2011

(Matog

"O'Reilly Media,

http://www.w3c.gr/press/pressreleases/2008/01/sparql-pres%20srelease.el.html
http://www.w3c.gr/press/pressreleases/2008/01/sparql-pres%20srelease.el.html
http://www.w3.org/TR/sparql11-query/
http://shop.oreilly.com/product/9780596153823.do#tab_04_0
http://www.google.gr/search?hl=el&tbo=p&tbm=bks&q=inauthor:

