
Konstantinos Kotrotsios et al./ Elixir Inform. Tech. 140 (2020) 54219-54225 54219

Part I

Modeling of High School’s Information System

Introduction

For the elaboration of the work was used WebProtege, a

web application of collaborative writing and development of

OWL ontologies.

OWL is an ontologies’ language that is based on the

well-known RDF and RDFS, and its initials mean Web

Ontology Language, and was created, just like RDF, in order

to be interpreted by computers [4]. The difference with RDF

is that it is a much richer language with much greater

vocabulary and much better capability of interpretation by

computers.

There are three versions of OWL: OWL Lite, OWL DL

(contains Lite) and OWL Full (contains DL) [1].

The composition OWL is based on RDF and RDFS

languages which are based on the “triple” of RDF/XML

composition [2]. The key features of an OWL ontology’s

composition are:

• The header

• The class

• The instances of the classes

• The properties

Ηeader

The header is essentially the root of the ontology and is

defined as a rdf:RDF element that specifies a number of

namespaces. The namespaces used in the rdf:RDF tags exist

to identify the vocabulary of other tags in onrder to be used

later in the ontology. To understand this, we will use an

example of rdf:RDF header

<rdf : RDF

 xmlns= “http:// example.org /Example#”

 xmlns:exd=“http://example.org/Example#”

 xmlns:owl= “http://www.w3.org/2002/07owl#”

 xmlns:rdfs=“http://www.w3.org/2000/01rdf-

schema#”

 xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-

syntax-ns#”

 xmlns:xsd=

“http://www.w3.org/2001/XMLSchema#” >

In our example, the xmlns = “http:// example.org

/Example#” and

xmlns:exd =“http://example.org/Example#” are our

default namespaces.

Class

An OWL class is expressed in RDF/XML through an

owl:Class element. The owl:Class tag contains the statement

of an rdf:ID element that locally identifies the class name in

this ontology file.

<owl:Class rdf:ID="Object">

</owl:Class>

Various additional elements are particularly important

for determining the class.

An rdfs:subClassof element allows an abstract clustering

to be subdivided into smaller groups. This shows that all

members of the class declared are also members of the

superclass defined by rdf:resource.

As shown in the example, 'Person' is defined as a

subclass of 'Object', which means that all 'Persons' are

'Object' at the same time.

<owl:Class rdf:ID="Person">

 <rdfs:subClassOf rdf:resource="#Object"/>

</owl:Class>

An owl:oneOf element combined with rdfs:subClassOf

can be used to define a class by deregulating instances that

belong to this class.

In the example shown below the owl:Class “Season”

may be just one of the 'Spring', 'Summer', 'Fall', and 'Winter'

instances.

Tele:

E-mail address: kotrotsios@mycompany.com.gr

 © 2020 Elixir All rights reserved

ARTICLE INFO

Article history:

Received: 7 February 2020;

Received in revised form:

14 March 2020;

Accepted: 25 March 2020;

Keywords

WebProtege,

Sparql,

Ontology,

School system,

Semantic web.

Semantic Web Modeling of a High School’s Information System along

with Sparql Queries
Konstantinos Kotrotsios, Konstantinos Karamitsios and Foteini Emmanouilidou

MyCompany Projects O.E.

ABSTRACT

In the first part of this work we will present the modelling of a high school information

system with the use of WebProtege. System ontologies and class properties will be

presented. In the second part we will present an introduction for SPARQL and examples

of queries that were made, with the results returned to us.

 © 2020 Elixir All rights reserved.

Elixir Inform. Tech. 140 (2020) 54219-54225

Information Technology

Available online at www.elixirpublishers.com (Elixir International Journal)

Konstantinos Kotrotsios et al./ Elixir Inform. Tech. 140 (2020) 54219-54225 54220

<owl:Class rdf:ID="Season">

 <rdfs:subClassOf>

 <owl:Class>

 <owl:oneOf rdf:parseType="Collection">

 <Season rdf:ID="Spring"/>

 <Season rdf:ID="Summer"/>

 <Season rdf:ID="Fall"/>

 <Season rdf:ID="Winter"/>

 </owl:oneOf>

 </owl:Class>

 </rdfs:subClassOf>

</owl:Class>

Let us note that classes can also be anonymous. In the

example above, the 'Season' owl:Class element is anonymous.

Also the owl:Restriction element also creates anonymous

classes.

Also the owl:equivalentClass declares that this class is

the same as another. Example: ('PoliticalDivision' is the same

as 'AdministrativeBoundary')

<owl:Class rdf:ID="PoliticalDivision">

 <owl:equivalentClass

rdf:resource="#AdministrativeBoundary"/>

</owl:Class>

Instances

Class instances are defined by specifying the class of

which they are instances. For example, the following

statement sets an instance with ID 'George' of the Person

class.

<Person rdf:ID="George"/>

Properties

Of course we could not create a meaningful ontology by

simply associating classes. So using the ontology properties

we display elements and specific facts about class members.

It is a binary relationship and is expressed by two types of

properties:

• datatype properties

• object properties

Owl Datatype Properties

An owl:DatatypeProperty element expresses the

relationship between an instance and a given value. As the

example shows, the 'hasAge' property is declared with a value

for the 'Person' instance.

<owl:DatatypeProperty rdf:ID="hasAge">

 <rdf:type

rdf:resource="http://www.w3.org/2002/07/owl#FunctionalPr

operty"/>

 <rdfs:domain rdf:resource="#Person"/>

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#nonNe

gativeInteger"/>

</owl:DatatypeProperty>

<Person rdf:ID="Joe">

 <hasAge>32</hasAge>

</Person>

Owl Object Properties

An owl:ObjectProperty element expresses the

relationship between two instances. As shown in the example,

the definition of ObjectProperty as 'hasWife' is used to

declare a 'Male' value.

<owl:ObjectProperty rdf:ID="hasWife">

 <rdfs:domain rdf:resource="#Man"/>

 <rdfs:range rdf:resource="#Woman"/>

</owl:ObjectProperty>

<Man rdf:ID="Joe">

 <hasWife rdf:resource="#Susan"/>

</Man>

Figure 1. Ontology Example.

In the figure above we see an example of a simple

ontology showing all of its elements [5]. Embedded XML

Schema datatypes including the known integer, string,

boolean, time and date types can be used for property types.

WebProtege

The process of writing ontologies in OWL language is

greatly simplified by WebProtege [3]. Having created an

interface through an open source web application enables you

through collaborative writing to create the classes and

properties with just a few clicks.

In this way you can collaboratively write an ontology

with your team, leaving comments or notes to other members

of the group as well as leaving your project free for use by

others.

WebProtege offers you a multitude of options when it

comes to creating ontologies. Some of these support OWL 2,

a default working environment that provides access to

frequently used OWL structures, full change and history

tracking for all team members, customizable interface and

support of multiple formats for downloading ontology or

uploading another in the web environment.

Ontologies

Introduction

In the present work we attempted to implement an

ontology for modelling a high school/secondary school

information system. We used webProtégé as an ontology

development tool. Then we introduced the ontology in

Protégé 4.3.0 to get a better graphic representation.

Ontology Description

For the modelling of the high school/secondary school

information system we considered that:

 The classrooms belong to the school.

 A class corresponds to each classroom.

 Students belong to a class.

 Teachers have a specialty.

 Teachers teach lessons.

 The lessons correspond to a class.

 Students attend-belong to classes.

Class Hierarchy

At the top of our hierarchy are nine classes: Course,

Punishment, Person, TeacherFaculty, SchoolTrip,

ClassRoom, School, GlassGrade and Accolade which were

implemented by Protégé as Thing class subclasses.

Next, we have developed the Parent, Staff and Student

classes as subclasses of the Person class. A person can be

either a student or parent, or belong to the school staff. From

the Staff class we created two new classes that inherit its

attributes, the OtherStaff and Teacher classes. Of which

school staff can be either an educator or have another

capacity.

Konstantinos Kotrotsios et al./ Elixir Inform. Tech. 140 (2020) 54219-54225 54221

Figure 2 . Representation of ontology’s hierarchy.

The Classroom class inherits the features of the other two

classes, LabClassRoom and LectureClassRoom. In which a

room can be either a lab or a lecture room.

Figure 2 shows the hierarchy of classes.

Object Properties

Object properties in Protégé refer to the characteristics of

the classes that receive instances of other classes as values,

through which the classes are linked. In the ClassRoom class

we have two object properties, classInSchool and

classroomHasClass (Figure 3).

Figure 3 . Object Properties Class Classroom.

With the classInSchool property we declare that the

Class Room class must have a School class object, which will

be the school that the classroom belongs to. The

classInSchool property has the Functional attribute because

the classroom can only belong to one school. The

classroomHasClass property accepts an object of the

ClassGrade class that describes which class is hosted in that

classroom.

In the School class we have an object property,

SchoolHasClasses (Figure 4).

Figure 4 . Object Properties Class School.

Which accepts Classroom items that show which classrooms

the school has Class Grade class declares school class (1st

grade Secondary School, 1st grade High School, etc.). In

Class Grade we have three object properties:

classSetInClassroom, going School Trip, has Courses (Figure

5).

Figure 5 . Object Properties Class ClassGrade

The classSetInClassroom property accepts an object of

the Classroom class that indicates which classroom the class

is housed in. The going School Trip property is associated

with the School Trip class and indicates that a class

participated in an excursion. Finally, with the has Courses

property, Course class objects are declared that show the

lessons a class has.

The Parent class refers to the guardians of the students. It

has a guardian Of property (Figure 6) that is associated with

the Student class and indicates of which students they are

guardians.

Figure 6 . Object Properties Class Parent

Student class refers to students and has four properties:

has Accolade, has Punishment, study, guardian By (Figure 7).

The has Accolade and has Punishment properties refer to

objects in the Accolade and Punishment classes respectively

that refer to whether the student has been praised or punished.

The study property is associated with the ClassGrade class

and indicates which class the student belongs to. Finally, the

guardian By property connects the Student class to the Parent

class and refers to the student's guardian.

Figure 7 - Object Properties Class Student

The Teacher class has two properties: isSpecialize and

teaches (Figure 8). The isSpecialize property points to objects

of TeacherFaculty class from which the teacher receives his

specialty. The teaches property points to courses of Course

class that are the lessons he teaches.

Figure 8 . Object Properties Class Teacher.

Konstantinos Kotrotsios et al./ Elixir Inform. Tech. 140 (2020) 54219-54225 54222

Finally we have the Cource class with teached By and

teachedInGrade properties (Figure 9). The teached By

property accepts Teacher class objects that show which

teacher teaches the lesson. The teachedInGrade property

accepts ClassGrade objects that show which class each lesson

belongs to.

Figure 9 . Object Properties Class Course.

Data Properties

Data properties are the properties of the classes that

associate objects with data values (string, integer, date, etc.)

and not attributes of other objects such as object properties.

In this section we will describe some of the data

properties of the classes we created for our ontology. The

data properties we have developed are shown in Figure 10:

Figure 10 . Data properties.

The accolade_description and punishment_description

attributes are alphanumerics (string) belonging to the

Accolade and Punishment classes respectively and contain a

description of the type of praise and punishment respectively.

In Figure 11 we see that the attribute belongs to the Accolade

class and is of string type.

Figure 11 . accolade_description

The address, first_name, and last_name attributes are

alphanumeric (string) belonging to the Person class and

contain values for the address, name and surname of the

persons. Parent, Student, Staff, OtherStuff, and Teacher

classes inherit these attributes from the Person class.

Figure 12 shows that address attribute belongs to the

Person class and is a string type.

Figure 12 . address

The classroom_projector, classroom_smartBoard,

classroom_sound, lab Class Room_chemistry, lab Class

Room_info and labClassRoom_physic attributes are boolean,

so they can take true or false values and describe how a class

can be used. In Figure 13 we see the Classroom_projector

attribute that belongs to the LectureClassRoom class and is a

boolean type.

Figure 13. Classroom_projector.

Individuals

Individuals are instances of classes. For our own

ontology, we will present some indicative instances to

describe how the modelling of a high school/secondary

school information system works. Figure 14 shows a part of

the instances we have created.

Figure 14 . Individuals.

Konstantinos Kotrotsios et al./ Elixir Inform. Tech. 140 (2020) 54219-54225 54223

We originally created an instance of the school class

called 1st_High_school_Thessalonikis. The characteristics of

the instance are shown in Figure 15.

Figure 15. 1st_High_School_Thessaloniki.

We see that the instance we created belongs to the

School (Types) class. It has schoolHasClasses as object

properties, in which it accepts two instances: LabClassRoom

and LectureClassRoom. Also, as data properties, it is given

two string values for school_name and for school_address.

Figure 16 .1st_grade_High_School.

The instances we have created from the ClassGrade class

are1st_grade_High_School,2nd_grade_High_School,3rd_gra

de_High_School,1st_grade_Secondary_School,2nd_grade_Se

condary_School, and 3rd_grade_Secondary _School. The

features of the 1st_grade_High_School instance are shown in

Figure 16.

Figure 16 . 1st_grade_High_School.

We see in the 1st_grade_High_School instance features

that it has as object properties the hasCourses in which it

receives instances of the Courses class, and the

classSetinClassRoom in which it receives instances of the

ClassRoom class. To classGradeName data properties which

is alphanumeric (string), has been given the value “1st grade

high school”. One of the highlights of the Course class we

have created is Biology (image 17).

Figure 17. Biology

This instance contains attributes of the teachedInGrade

type in which we have instances of GlassGrade class and in

addition we have the courseName attribute which is

alphanumeric and contains the name of the course.

From the Student class we have created multiple

instances. Specifically the instance Student1 (image 18).

Figure 18. Student.

We see that it has GuardianBy features that contain a

Parent class instance with parent1 value which is the pupil’s

guardian, hasAccolade instance of Accolade class, that is, the

student has been awarded, a study instance of classGrade

class showing which class the pupil attends. We also have

values for the student’s name, surname and code.

Finally, from the Teacher class instances in Figure 19 we

see the instance teacher1.

Where it has teaches as attributes that are instances of the

Courses class and show us what lessons the particular teacher

teaches, the isSpecialized attribute is of the TeacherFaculty

type and contains the teacher’s specialty.

Reasoner

We have used Pellet for the control of ontology. An

automated OWL-DL reasoning program, written in java. It

collaborates with the Jena framework and is the primary

solution for applications written in java. It has the ability to

classify ontologies together with their relationships. It also

has a built-in engine for SPARQL.

We first executed the pellet with the classify parameter

image which shows the class hierarchy as a result.

Figure 20 . Pellet classify.

Konstantinos Kotrotsios et al./ Elixir Inform. Tech. 140 (2020) 54219-54225 54224

With the consistency parameter we checked the

consistency in our ontology image.

Figure 21 . Pellet consistency.

With the info parameter we see information for ontology

(Figure 23).

Figure 22. Pellet info.

Finally, with the lint parameter we check if there are

problematic classes (Figure 23).

Figure 23 . Pellet lint.

Part II SPARQL

SPARQL (Simple Protocol and RDF Query Language)

SPARQL (Simple Protocol and RDF Query Language) is

the official query language for RDF. It was standardized by

the W3C RDF Data Access Working Group and in 2008 the

W3C was formally established for SPARQL 1.0. SPARQL is

for RDF precisely what SQL is for relational databases, or

what XQuery is for XML. And because the Semantic Web is

based on RDF knowledge representation, SPARQL and its

related protocols are paramount in it.

 Trying to use Semantic Web without SPARQL is like

trying to use a relational database without SQL [6].

 SPARQL queries are based on triple patterns. A triple

pattern is the same as a RDF triple, except that one or more of

its resources-components are variable. A variable is denoted

by ?name or $name, where name is its name. For variables

the prefix ? or $ is the same [8].

 The SPARQL engine that executes a query searches from

all resources, those that verify the query triple patterns, in

accordance with the RDF suggestions in the knowledge base

with which the SPARQL engine is connected.

SPARQL has many similarities to SQL. A query in

SPARQL can contain conjugations, disjunctions, optional

limitations, limitations on the number of results, and

generally almost all of the basic fundamental elements that

SQL has (Figure 24).

There are four SPARQL query formats: SELECT,

CONSTRUCT, ASK and DESCRIBE.

 SELECT: These are queries that return the objects in a

table format

(resources and verbal) that verify the desired triple patterns

 CONSTRUCT: These are queries that return an RDF

graph, according to a graph template included in the query.

 ASK: These are queries that answer whether or not there is

a solution for some triple patterns, without stating what that

is, if it exists, eg.

ASK

WHERE {

<http://dbpedia.org/resource/School> a?type.

<http://dbpedia.org/resource/School>

<http://dbpedia.org/property/schooltype> "1ο λύκειο"

}

 DESCRIBE: These are queries that return an RDF graph

containing data about some of the resources declared in the

query, e.g.

DESCRIBE <http://dbpedia.org/resource/Teacher> .

There are SPARQL implementations for many programming

languages and tools such as:

 the connection to a SPARQL interface and the

semiautomatic construction of a query, and

 the translation of SPARQL queries into other query

languages (eg. SQL, XQuery, etc.).

SPARQL 1.1 was designated as W3C Recommendation on

March 21, 2013 [7]. [9].

Εικόνα 24 . Τςπική σύνταξη επωτήματορ SPARQL.

ANNEX A - SPARQL QUESTIONS

On all queries, the Ontology School was used because

the Greek version of dbpedia (el.dbpedia.org) is out of order.

In the exercise it is mentioned that the examples are

executed at a DBpedia endpoint, unfortunately there are some

restrictions to these, for example: SERVICES outputs

“Virtuoso 42000 Error SQ200: Must have privileges on view

DB.DBA.SPARQL_SINV_2". We therefore used also different

endpoints for the exercise needs.

SPARQL query # 1

Endpoint : http://dbpedia.org/snorql

SPARQL Query

SELECT DISTINCT ?property ?hasValue ?isValueOf

WHERE {

 { <http://el.dbpedia.org/resource/Σσολείο> ?property

?hasValue }

 UNION

 { ?isValueOf ?property

<http://el.dbpedia.org/resource/Σσολείο> }

} LIMIT 300

Description

Displays the ontology names in languages other than Greek

(Ontology School).

Results

Επώτημα SPARQL # 2

Endpoint : http://dbpedia.org/snorql

SPARQL Query

SELECT distinct ?property ?desc

WHERE {

 :School ?property ?desc .

 FILTER (lang(?desc) = "en")

}

Description

Displays the related information - properties such as abstract,

commentary for English.

Results

Konstantinos Kotrotsios et al./ Elixir Inform. Tech. 140 (2020) 54219-54225 54225

SPARQL query # 3

Endpoint : http://dbpedia.org/snorql

SPARQL Query

PREFIX : <http://dbpedia.org/resource/>

SELECT distinct ?Category ?Concept

WHERE {

 ?Category ?type ?Concept .

 FILTER (?Category IN (:School, :Gymnasium, :Lyceum)) .

 FILTER (lang(?Concept) = "en") .

} LIMIT 10

Description

Displays the related information - properties such as abstract,

commentary for English. The difference with the previous query

is that it looks for Gymnasium and Lyceum beyond the School

ontology.

Results

SPARQL query # 4

Endpoint : http://dbpedia.org/snorql

SPARQL Query

SELECT distinct ?Category ?Concept

WHERE {

 ?Category ?type ?Concept .

 FILTER ((?Category IN (:Teacher, :Paraprofessional))

&& (lang(?Concept) = "en")) .

} order by ?Concept

Description

Displays related information - properties such as label,

comment for English for Teacher and Paraprofessional

ontologies sorted by ?Concept variable

Results

SPARQL query # 5

Endpoint : http://dbpedia.org/snorql

SPARQL Query

SELECT distinct ?Category ?Concept ?type

WHERE {

?Category ?type ?Concept .

FILTER ((?Category IN (:Lesson, :Teacher, :School,

:Paraprofessional , :Classroom , :Grade, :Course , :Person,

:Student, :Lyceum, :Gymnasium, :Punishment)) && (

lang(?Concept) = "en")) .

} order by ?Concept

Description

Displays the related information - properties such as label,

comment, abstract for English for the ontologies that would be

used in our model. The results are sorted based on the description.

Results

References
[1] http://www.w3.org/TR/2004/REC-owl-guide-

20040210/#StructureOfOntologies (Μαιος 2014)
[2] http://acuity.sourceforge.net/acuitycontrollerwebpages/Owl

HowToBasics.html (Μαιος 2014)
[3] http://protegewiki.stanford.edu/wiki/WebProtege (Μαιος

2014)
[4] Antoniou, G., & Van Harmelen, F. (2004). A semantic web

primer. MIT press.
[5] Dunkel, J., Bruns, R., & Ossowski, S. (2006). Semantic e-

Learning agents. In Enterprise Information Systems VI (pp.

237-244). Springer Netherlands.
[6] http://www.w3c.gr/press/pressreleases/2008/01/sparql-pres

srelease.el.html (Μαίος 2014)
[7] http://www.w3.org/TR/sparql11-query/
[8] Toby Segaran, Colin Evans, Jamie Taylor, Programming

the Semantic Web, O'Reilly Media, 2009.
[9] Bob DuCharme, Learning SPARQL, "O'Reilly Media,

Inc.", 2011

http://www.w3c.gr/press/pressreleases/2008/01/sparql-pres%20srelease.el.html
http://www.w3c.gr/press/pressreleases/2008/01/sparql-pres%20srelease.el.html
http://www.w3.org/TR/sparql11-query/
http://shop.oreilly.com/product/9780596153823.do#tab_04_0
http://www.google.gr/search?hl=el&tbo=p&tbm=bks&q=inauthor:

