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ABSTRACT

This work presents the buckling analysis of thin laminated composite plates using Euler-
Bernoulli equilibrium equation. The project aims at obtaining the exact equation which
will not depend on assumed shape function which charcterised the anlaysis of composite
plates. The present study is based on classical plate theory which is widely used for
analysis of thin plates. The governing equation for the thin laminated plate were obtain
considering the total potential energy function which was in turn minimized to obtain
equation for analysis of buckling. Numerical work examples were performed considering
different aspect ratios and elastic moduli for SSSS laminated plates at orientation
0/90/90/0. The results were compared with the works of Reddy and that of Osman and
Sulieman. The maximum percentage difference between the present work to the work of
Reddy for SSSS laminated plate is 0.06 while the difference with Osman and Sulieman
work has maximum of 1.81. Reddy presented also an exact method base on the SSSS
shape function, recorded minimal difference may be as result of round off errors
introduced along the computation line while the difference with that of Osman and
Sulieman is because he used finite element method with assumed shape function which
gives approximate result.

Introduction

According to Ventsel & Krauthammer [1], thin plates
are initially flat structural members bounded by two parallel
planes, called faces, and a cylindrical surface, called an edge
or boundary. The generators of the cylindrical surface are
perpendicular to the plane faces. The distance between the
plane faces is called the thickness (h) of the plate. Most often,
the plate thickness is always assumed to be very small
compared with other characteristic dimensions of the faces
(length, width, diameter, etc.). Thin Plates are widely used in
Engineering work; hence production of new plates is
inevitable.

Presently, new engineering materials are being produced
with the following characteristics: - lighter weight, higher
strength, high modular ratio and high temperature resistance.
Combinations of materials with the above special properties
to produce different plates and shells have gone a long way to
create the field of laminated composite materials in which
laminated composite plate is a member. Composite materials
consist of two or more materials which together produce
desirable properties that cannot be achieved with any of the
constituents alone [2].

Thin laminated composite plate analysis is based on
Classical plate theory and it gives an acceptable result.
Classical plate theories (CPT) are based on Kirchhoff's
hypothesis which assumes that normal to the mid—surface of
the plate before deformation remains straight and normal to
the mid—surface after deformation. These theories are widely
used for the analysis of thin plates [3].

Buckling is one of the failure modes experienced when
thin laminated composite plates are in use which needs to be
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evaluated; Other forms of failure modes include pure bending
and free vibration [4]. There are different methods of
analyzing buckling of thin laminated composite plates but
most of the methods are based on assumed displacement
function ([2]; [4]; [5]; [6]; [7]; [8]). Some also, assume
displacement function as well as finite element method [4].
The assumed function is either based on Navier or levy
method. It is widely agreed that assumed displacement
function will always give results that differ from the exact
ones except where the displacement function assumed is the
exact displacement function.

Due to the fact that most buckling analyses on thin
laminated composite plates are done using assumed
displacement function, the present research aims at using the
Euler-Bernoulli equilibrium equation which has been
accepted as the deflected shape of beam strip to analyzed thin
laminated composite plate.

2.0. Displacement Field and Kinematics of a Lamina of
Thin Laminated Plate

Some governing assumptions in this study are the plane
stress assumption (normal stress along z-axis, x-z plane and
y-z plane shear stresses are zeros), another assumption is
normal strain along z axis is so small that neglecting it shall
not affect the gross response of the plate. Itemizing the
assumptions gives.

i'a'zz =0
ii'sz =0
iii.‘ryz =0
iV'SZZ = 0
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Two in-plane displacements and one out-of-plane
displacement (u, v and w respectively) constitute the
displacement field.

From the fourth assumption it is taken that the out-of-
plane displacement (deflection) is constant along z-axis,
which means it is not a function of z. However, the two in-
plane displacements (u and v) are functions of all coordinates
(x, y and z). From assumption ii and iii, it is taken that
corresponding x-z and y-z planes' shear strains are zeros.
Thus, the in-plane displacements are given as:

dw

u=—zE+u0 1
dw

v=—zd—y+v0 2

The in-plane displacements of the middle surface (u, and
V) are not constants [9]. Using equations 1 and 2 and the no-
constant values of ugy and vy, in-plane strains are defined as:

du . duy, d*w
gxxzaz‘ggx'l'g;cxzﬁ_zﬁ 3
dv - dvy, d*w
gyy=d_y=5£y+‘5lyy=d—y_zd_yz 4
e ve - d*w N du, d*w N dv,
Vay = Exy T Eyx = dedy dy dedy dx
That is:
. du, dv, d*w
o = By o = (G ) iy

2.1. Constitutive relations for a lamina of thin laminated

plate.
The Hook's law equation for one lamina in laminated
plate is given as:
o011 e;; ez 07
O22|=Eg|e1z ez 0 [|€22 6
T12 0 0 Y12
E{1/E
Where: eq; = &;
1- HxyMyx

or = M21-E11/Eo _ B12-E22/Eo

12 1- Hxylyx 1- HxyMyx
o = Ey/Ey . _Gyz

22 1- Hxylyx P EO

E, is the reference Elastic modulus. it can be E{; or
E;,.E;j are the modulii of elasticity and y;; are

the and Poisson’s ratios of an anisotropic lamina.
Using the transformation matrix [T], equation 6 is
transformed from (1-2 local) coordinate system to (x-y
global) coordinate system as [10].

Oxx e;n ez 0 Exx
Oyy | = Ey {[T]_l €12 €z [T]_T} Eyy 7
Txy2 0 0 €33 ny
Here the transformation matrix, [T] is defined as:
m? n? 2mn
[T1=| n? m? —2mn 8
-mn mn (m?-n?
Where: m = CosO and n = Sinf
Substituting equation 8 into equation 7 gives:
Oxx aj; Qg2 Q337 [Exx
[ayy =Ey|Q21 Qzz Q33 8yyl 9
Txy az; az; Aasz]|Vxy
Where:

a;; = mte;; +2m*n?(e, + 2e33) + ntey,
_ 4 4 2,2
a;; = e, (n* +m*) + m*n(eqq + ey, — 4e33)
— 3 3
a3 = m°n(eqq — eg; — 2e33) + mn°(eq; — €33 + 2e33)
a,, = n*ey; + 2m?*n?(e , + 2e53) + mte,,

ay3 = mn3(eqq — 6’12 — 2e33)
+m n( ey, +eqx+ 2933)
azz = m?n*(eyq — 2eq; + ey, — 2e33) + egz(m* +n*)
az1 = QAq2, az; = a3 and az; = axs
Substituting equations 3, 4 and 5 into equation 9 gives:
Uxx
lo] = [ayy
Tyy
Where:
a1 Q12 Qg3
[al-]-] = [an azz azsl 11a
az; azz Qass

= Eo[au][g] 10a

du, d*w
e dx  Zax?
4 8’”‘ dv, d*w 11b
gl = = —_——Z—
Yo dy ~dy?
(duo N dv0> d*w
[\ dy dx dedy_

2.2. Total potential energy functional for a laminated thin
rectangular plate.

The total potential energy functional for a laminated thin
rectangular plate is given as [1]:

H=%fff[a][s] dx.dy.dz—%ff(“ii—:)z dxdy 12

Substituting equations 11a and 11b into equation 12 gives:

= % f j f [7[ay][e] dxdydz
A 5 ey 1

Carrying out the multiplication and closed domain integration
of equation 13 with respect to z gives:

E0t3 Ay duo A dugdvy  Asz [dug)’
s Celal e e e

A33 duy dv, A33 dvo

t_ZEEJF )

Ay rd
+ 22[ Vo )
dy

2 (Bll duo dZW (812 + 2333) duO dZW

t dx dx? t dy dxdy
, (Buz +2B33) dv d?w
t dx dxdy
B,, dvy d*w
)
Ajzdugduy, Azdugdvy By duy d*w
(Tzad—y T dx dx 0Tt dx dxdy
B3 dvod w d*w d*w
- +2Dy3———r
t dx dx? dx? dxdy)

2 2

d*w d*w
+| Dqq W +2(Dqy +2D33) d xdy

2



54364 Ibearugbulem et al./ Elixir Civil Engg. 142 (2020) 54362-54368

t2 dy dy t2 dy dx
B, duy d*w

A23 duo de A23 dvo dvo 323 dVO d w
t dy dxdy

N, dw
Where
_ m=n
A= 4y and A, =t ) a;(sy, —Sp-1) 15
t

B, £’}
By =— and B, = ?Z a;(sh = sh-1) 16
3m n

D, ot
D; = t_3] and D,,. =3 Z a;;(s3,

m=1

-s34) 17

m" stands for the number of a lamina in the laminated plate,
is the non dimensional

n is the total number of laminas "s"
coordinate along z-axis defined as s = z/t.

Let the summation of the following three constants be one.

That is:

n1+n2+n3=1 18

Substituting equation 18 into equation 14 to multiply the
in-plane load, Ny (that is: Nx = niNy+ n:Nx + n3Ny)

rearranging the resulting quation gives:

N=1,+1,+ 1 19
Where:
E0t3 Aqp duo Ay, dug dv
=2 ( 2 dx dy
o duo] A dty vy
©? t? dy dx

A33 de] Azz [dvo )

5 <811 duy, d*w (Bq + 2B33) duo d*w
t dx dx? t ‘dy dxdy
(B4 + 2B33) dvy d*w
+ t dedy
B,, dvyd*w
)

d?w)’ d?w |
+ D11 W + Z(DIZ + 2D33) d dy

+D dwl* Nxff(dw) dx d
22 [ dy? “h5 dx x ey

N

Oa

2 dx dy 2 dx dx
B13 duo dZW B13 de dZW

t dx dxdy t dx dx?
d’w d*w ix. d N, dw>2 dxdv  20b
dx? dxdy| - y_HZTﬂ(E x ey

2
_ 2Et® ﬂ' Az dugduy Ag;dugydv,

+2D1; dx? dxdy

B,3dvy d*w  B,;duyd*w

't dydxdy t dy dy?

+2D dw d'w dx.d N"H(dw>2 dxd 20
2 dy? dxdy X ay-ms5 dx ray ¢

3
_ 2E0t3 ff A23 duo de A23 de de

For easy understanding of the meanings for m, n and z is
illustrated with a four-lamina laminated plate shown on
Figure 1

Ip=1IC5= t/2
Laminal:m=1; Zy | =2p Zym =y

=I5 = t/4 ;
Lomina2im=2; 2, 1 =21 Z5z =5

Zp=15=10 "
Laomina 3m =3 I, 1= 231 Iy =2

Z3=IL853= —t/4

Lomina $m=4; Z, 1 =231 T, = 24

Iy =IL85y= —t/2

Figure 1: A laminated plate that is made of four laminas
2.3.General and direct Variation of Total potential energy
functional for a laminated thin rectangular plate.

Minimizing equations 20a, 20b and 20c with respect to
W, Ug and vg and making some rearrangements shall give the
respective equations:

anl—o—ﬂ (s 63u°+(3 +2B33) )
ow t\ 1 93 12 337 9xay?

03170 63170
+ (B2 + 2333)@ + BZZa_yg

*w atw
+(Punggr + 20002 +2D39) 5 o5
64w

4 Tl ff ~dx d 21
E0t3 raey a

anz_ ﬂ' _3p uo _g v,
ow ax? 1839y 18 9x

dxdy

n2N
.U- sdxdy  21b
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I
=)
I

oIl 1ﬂ‘ 9> - v, B du,
ow t)) ay? 2 9x 2y

E0t3
0111 1 dw
a2 —[Anuo-Bna]
dw
dxd [A“ Yo~ B“d_y
dw
dxdy [A33170 B33d_y

dzuo

[Aszuo

anz ff 2 A13 Bl3 dW]
auo dxdy gzt t dx

As3 Bq3 dw
———| dxd
+dx2[t2 Vom Ty dy xay

=0 22b
al'l3 2 A23 Bzgduw
————| dxdy =0 22
auo ﬂ-dy Vo t dy] Xy ¢
on, ﬂ d? A12 By, dw
6170 dxdy Yo t dx
dZ [AZZ BZZ dw
dy Vo t dy
dxdy o t dx
dZ A33 B33 dw
| g )| e
=0 23a
avo ﬂ Tl @] Gxdy=0 23
oIl ﬂ d? A23 B3 dw]
avo gz e t dx
2——|—5vg————| | dxd
dxdy[ 2 07 ¢ dy xay

=0 23c
For equations 22a, 22b, 22c, 23a, 23b and 23c to be true, the
following shall hold (where ¢ and d are yet to be determined
constants):

B tBij ow _ taw 24
to = AU ax - dax a
tBi]- ow —dt ow 24b
A 0y ay

Substituting equations 24a and 24b into equation 21a and
making some rearrangements and observing that an integral
can only be zero if its integrand is gives:

ff ([Du — ¢By4] (:T‘I

+ Z[DIZ - CBIZ - dBlZ + 2D33 - 2CB33
4

—2dB33] m—5=— + [Dy2 — dez]—a4W
dx%dy? ay*
nN, d*w
E 0 do? )dxdy 0 25

Dividing equation 25 by [Dy, - dB»,] gives:

J‘f a*w +64w+n1Nx d*w dxd
f1 6x4 Rk 0x29y2  dy* E t3 dx? rey

=0 26
[D11 — ¢By4]
Where: =
f1 [D2; — dBy,]
_ 2[D12 - CBIZ — dBlZ + 2D33 — 2C833 — 2d833]

k [D3; — dBj,]

The exact solutions to equation 26 (in terms of non-
dimensional coordinates) for pure bending analysis, buckling
analysis and free vibration analysis were obtained to be (see
[Ibearugbulem 2016] for details):

w = (ay + a;R + a, cos kR + a; sinkR) (b, +
b,Q + b, cos gQ + b sin gQ) 27a]

2
Where: k = /%

From equations 27a, it was gathered that:
w=f,h 27b

Substituting equation 27d into equations 24a and 24b
gives:

dh dh
u0=C.t.ﬂ1a=ﬂza 28a
=d.t Oh = Oh 28b
Vo = a. 'ﬁlay _B3ay
32 =C. tBl and 33 =d. tBl 28c

Substituting equations 27b, 28a and 28b into equations 20a,
20b and 20c and writing the outcomes in terms of non
dimensional coordinates gives:

o5

e [ZAIZBZﬂS + 243383 + Az B2’
9%h ﬂ 9%h
+ A33332] <W> + A, a_34 (6_Q2> )
a2h\’
-2 <B11ﬁ1ﬂz (W)
2
+ (B12 + 2B33) —5— BIBZ <6ROQ>
3133(

_Eot’ab
2a*

+ (B12 + 2B33)

+ BZZ B;ES <aQZ> )
, (9h
+| D11B1 (W)
B.2( 3%h
+2(Dqy3 +2D33) —- <6R6Q>
B2 [9%h
v (5) )
) dR dQ

nyN,ab Zﬂ‘ (dh 2
" 2a? B dR

2
6ROQ>

dRdQ
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B2 3*h d*h
“a OR% ARAQ
B2Bs 3*h  3*h
a OR2 9RAQ
B1B» 3*h 8*h
—3Bi— dR2dRAQ
B1B; 0°h 0*h
13 a4 "@RZARAQ
B.20*h 9*h

a OR2ARAQ

nyN.ab _, ([ (dh\?
SR8 ﬂ(ﬁ) dRdQ 29b
B.Bs 9*h 9*h

a3 dRAQ 9Q>

B1Bs 9*h 8*h
23 a3 9RAQ Q2

B2 9*h 3*h
* a3 9R3Q 3Q2

_ 2Et*ab ﬂ
T 2a*

+2D43—

dR .dQ

2E0t3ab ﬂ
T 2a*
B2 8*h  3*h
23 a3 QRAQ Q2
BB, @*h 8%h
~By—; aRaQ.aQZ+2D2
) dR dQ 29¢

n3N,ab Zﬂ' (dh 2
222 P dR

Minimizing equations 29a, 29b and 29c¢ with respect to 31
and rearrange gives respectively:

+A

R.dQ

din, ﬂz
——=0=—|By 1Bk, + (Byz + 25'33)
dg4
+(Byy + 2333) Fs Ky + By — /33 ky)
+ B1 (D11k + _2 (D12 + 2D33)k,,
D,, nyN,a?
+ 2k, ) o Biky 300
dIl, B1 B2
d—ﬁ1:0:<4D13 _3813;
ﬂ3 nzN az
— Bi3 a)kxxy T;ﬁﬂﬁv 30b
dIl3 B1 B2
ap, 0= <4D23§—323§
ﬂ3 n3N a
3323 )kxyy E t3 ﬁlkN 30c

Minimizing equations 29a, 29b and 29c with respect to 32
gives:

dil; ab
B, " ot [(Au[i'zk +— [A12ﬁ'3 + Az3B2 + AzzBslk, )
B

— By1B1k, — (By2 + 2333) 1
=0 3la

dnz ab BZ B3 Bl

ag, " a* (2413 Ky + A1 Ky = 3B ey |
=0 31b

dH3 ab ﬂ3 Bl

dp, =0= a* [A23 ?kxw - kxyy 31c

Minimizing equations 29a, 29b and 29c with respect to 33
gives:
dH1 _ ab[ Bg

ag, a2 k, + [A1zﬁz + A33B2 + A33Bslk,

I?1 If1
=B — a4 —(B12 +2B33) — 2 ]
=0 32a
dIt, ab B. B4
d_ﬂ3 = 0 = [A13 —kxxy 313 ; . kxxy] 32b
dIi; ab B. Bs
_dﬂ =0= [A23 kxyy + 2A23 kxyy
3

—3B,;3 gkxyy] 32¢

2,82
Where: k, = ff (%) dR .dQ :
= azhzdd'k— aZthd
xy‘ﬂ(ﬂk@@) fode: y‘ﬂ(a—QZ> ka0
*h 8*h dR.d
ff&RzaRaQ Q
d’h d*h
k., ﬂaRaQ 207 dR .dQ: k, —th dR .dQ

dh\?
Adding the equations 30a, 30b and 30c together and

rearranging the outcome gives:
dil  dIi, dl'lz dIl; .
= = 0. Thatis:

— = +
dg, dp; dﬂ1 dg,
dr 2 D,,
=B1 (Dllkx + P (D12 + 2D33)k,y + ?ky

dp, v D
13 23
po Kypy +4— kxyy>

k k
-B; <Bllkx + (B2 + 2333)% + 3Bq3 ch + B3 ;yy>

+4—

kxxy

k.y k,
—B3| (B12 + 2333)? + Bzzy + Bq3

kyy\ a*
+3Bz3? E, t3 (n1+nz

N,
+n3)?31k1\[ 33a

Substituting equation 18 into equation 33a and
rearranging the outcome gives

N.a?
Eo ——3 Bikn = B4 <D11k +— (D12 + 2D33)k,,
D, D3 D3
+ Fky + 47kxxy + 4?kxyy)
k k k,
—B- <Bllkx + (By2 + 2B33) % +3By3—>+ By3 a3y>
kxxy

ky ky
—B3| (B1z + 2333)? + B, pors + B13

kxyy
+3By3—3 33b
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Adding the equations 31a, 31b and 31c together and
rearranging the outcome gives:

k k
B (Allkx + A33 ﬁ + 2443 Zry>

kxxy

kxy kxy
+ B3 (AIZ pe) + Aszﬁ + Ay

k k
+3B;3 Z‘y + By %) 34a

Adding the equations 32a, 32b and 32c together and
rearranging the outcome gives:

k k k
B. (A12 2+ A33 xy + A3 —

k k
y xy xyy
+ B3 (Azz P + A3z P + 243 P )

ky kyy
=p1 Bzzz"‘ (Byz + 2333)?

k k
4+ B3 —2 4 3B, ;”) 34b

Solving equations 34a and 34b simultaneously gives:

(dq2.-dz3 — dq3.d3;)
=T = 35a
BZ Zﬂl ﬁl (dlzz _ dlldzz)
(dq2.dq3 — dq1dy3)
B3z =T3B1 =P 35b
(d12” — dy1dz,)

Where:
dyy =Apk, +A @+2A Ky 36a
11 11 kx 33 a,: 13 ka )
dlZ = AIZLZ}I+A33L2y+A13 Xy +A23 ;ﬁy 36b
k k k
o2 = Az 3 2+ Ass—y 4+ 2453 ;yy 36¢
k
dy3 = Biiky + (B12 + 2333)% +3By3—~
kyyy
+ By —— poc 36d
k,
dy; = Bzz + (B1z + 2333) + By —>
k
+3B23 3" 36e

Substituting equations 35a and 35b into equation 33b and
rearranging gives:
Substituting equations 35a and 35b into equation 33b and
rearranging gives:
D44 2 /Dy, D33 Dy, k,
ky=E et (Pt 222k + o S
N 0 {( DO X +— DO + DO Xy DO 4
D k D
+ 4£_ﬂ+ 4%]@‘”’
Dzz a Dzza

T, (B12 + 2B33)
_D—0<Bllk Tkxy

3B;3 B33

(B12 + 2Bj33) B,
_— k., + k
DO a? x

Y g Y
B3 3B;;
+ 7kxxy + —a3 kxyy 37

Rearranging equations 37 gives:
N.a? N.a? kry + kry + k
x4 _ T8 g, < T1 T2 T3) 38

Dot3 D, ky
Where:
Dy 2 Dy, D33 Dy, k,
Kpy = [~k + — < +2—>k
n (Do x D, D, Dy a4
D13 kxxy D23
+4—. ——k 40
DZZ a D22a3 ry ¢
T, (B12 + 2B33) 3Bq3
Kpy = —D—0<Bl1kx e L
B3
+?kxyy> 40d
(B12 + 2B33) B, B3
k”:_D_o(T S
3B;3

+ ? kxyy) 40e

3.0 Numerical Example
A thin rectangular plate simply supported along all the
four edges is made of four laminas that are laminated
together. The laminas were arranged as 0/90/90/0. Some of
the material properties include: G/E; = 0.5; Vi, = 0.25;
E./E, varies from 5 to 40. It is required to determine the
deflection of the plate under uniformly distributed lateral
load, critical buckling load under uniaxial in-plane load and
fundamental natural frequency when the plate is undergoing
free vibration. The reference elastic modulus, E; is taken to
be E,. Hence,
E,t3 E,t3 k,

. = 39a
qa4 b= qa4 Y kpy + Ry + kg3
N,a?> N,a®> N.,a? kpi +krp + k
- Nam  N.a =E2<T1 T2 T3> 40a
a*ma? B a*ma? B a*ma?
Dgt* D, D,

ki +krp, + k
_ 2( T1 T2 T3> 40b
k;

If the aspect ratio is a/b and the parameters are in terms
of long length "b" then:
N,b? = [N,a?] x [b/a]?

The exact deflection function for buckling analyses of
SSSS plate after satisfying the boundary condition using
equations 27a is:
w=ASinmnR .Sin nrQ

The stiffness coefficients from the obtained using the
polynomial and trigonometric deflection functions are shown
on Table 1:

Table 1. Stiffness coefficients (k-vakues) for SSSS plate.

kx kxy ky kxxy kxyy kN

Trig | 24.3523 | 24.3523 | 24.3223 0 0 2.4674

4.0 Results and Discussions

The result for buckling analysis were presented on Table
2 and Table 3 in terms of short and long lengths of the plate
respectively. Results from the present study were compared
with the results from the works of Reddy [2] and Osman and
Suleiman [3]. The work of Reddy was based on Navier theory
and Levy's theory; it is regarded as exact method because the
shape function he used was an exact shape function for the
SSSS plate while the work of Osman and Suleiman was based
on shape function and finite element method of analysis
which is an approximate method. These comparisons were
presented on Table 4 to Table 8.
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From Table 2 and Table 3 it was observed that the
buckling load increase as the ratio of elastic modulus (E1/E2)
increases. It was also seen from Table 2 that the buckling load
increases as the aspect ratio (b/a) decreases. This means that
the buckling coefficient is higher when the elastic modulus is
constant and the ratio of the length in terms of the shorter
span is high; The reverse is the case when considering the
ratio of the length in terms of the longer span. The
percentage differences recorded on Table 4 to Table 8
between the values from the present study and the values
from Reddy, one would see consistency and very minimal
difference. The observed maximum percentage difference is
0.06. This means that the values obtained herein is almost the
same with the values obtained by Reddy (exact method). The
recorded minimal difference may be as result of round off
errors introduced along the computation line. The case is not
the same with the comparison with the values from the work
of Osman and Suleiman. A slightly higher percentage
differences were recorded. The maximum percentage
difference recorded is 1.81. This difference is expected
because they used finite element method, which is known as
approximate method.

Table 2. Critical buckling load in terms of short

2
length, ""a’* from the present study, [NL’;T‘:] +m?

Table 7. Difference between values from the present study those
2
from Reddy and Osman for E;/E, = 25, [Nl’;_b ] + m?
2

p= | Present Reddy | Osman | % diff. | % diff.

a/b with with
Reddy Osman

15 5.315 5.318 5.221 0.05 1.81

1 7.123 7.124 7.003 0.02 1.71

05 | 22873 22.874 | 22566 | 0.00 1.36

x E, E /E; | E{/E; E,/E; E,/E,
=b /E, =10 = 20 = 25 = 40
/a =5

2/3 11.769 11.867 11.941 11.960 11.991
1 5.649 6.346 6.960 7.123 7.403
2 3.475 4.532 5.469 5.718 6.147

Table 3. Critical buckling load in terms of long length, ""b"

Nxb®| | 5
from the present study, [ ] =T
2

D
1 E,
=a /E E,/E, E,/E, E,/E, E,/E,
/b =5 =10 = 20 = 25 = 40
15 5.231 5.274 5.307 5.315 5.329
1 5.649 6.346 6.960 7.123 7.403
0.5 13.900 18.126 21.878 22.873 24.590

Table 4. Difference between values from the present study
2
those from Reddy for E;/E, = 5, [N;_b ] +m?
2

p=ab Present Reddy % diff. with Reddy

1.5 5.231 5.233 0.05
1 5.649 5.650 0.02
0.5 13.900 13.900 0.00

Table 5. Difference between values from the present study those
2
from Reddy and Osman for E; /E, = 10, [N"b ] +m?
2

D
p=a/b | Present | Reddy | Osman | % diff. % diff.
with with
Reddy Osman
15 5.274 5.277 5.215 0.06 1.13
1 6.346 6.347 6.274 0.02 1.14
0.5 18.126 | 18.126 | 17.958 | 0.00 0.94

Table 6. Difference between values from the present study those

2
from Reddy for E; /E, = 20, [Nl’;_b ] +m?
2

p=a/b | Present | Reddy | % diff. with Reddy
15 5.307 5.310 | 0.05
1 6.960 6.961 | 0.02
0.5 21.878 | 21.878 | 0.00

5.0 Results and Discussions

The Buckling Analysis of Thin Laminated Composite
Plates with Exact Displacement Functions is carried out
considering the total potential energy functional. The
important thing about thee method is that it can be apply no
matter the type of boundary condition under consideration.
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