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Introduction 

  According to Ventsel & Krauthammer [1], thin plates 

are initially flat structural members bounded by two parallel 

planes, called faces, and a cylindrical surface, called an edge 

or boundary. The generators of the cylindrical surface are 

perpendicular to the plane faces. The distance between the 

plane faces is called the thickness (h) of the plate. Most often, 

the plate thickness is always assumed to be very small 

compared with other characteristic dimensions of the faces 

(length, width, diameter, etc.). Thin Plates are widely used in 

Engineering work; hence production of new plates is 

inevitable. 

Presently, new engineering materials are being produced 

with the following characteristics: - lighter weight, higher 

strength, high modular ratio and high temperature resistance. 

Combinations of materials with the above special properties 

to produce different plates and shells have gone a long way to 

create the field of laminated composite materials in which 

laminated composite plate is a member. Composite materials 

consist of two or more materials which together produce 

desirable properties that cannot be achieved with any of the 

constituents alone [2]. 

Thin laminated composite plate analysis is based on 

Classical plate theory and it gives an acceptable result. 

Classical plate theories (CPT) are based on Kirchhoff's 

hypothesis which assumes that normal to the mid–surface of 

the plate before deformation remains straight and normal to 

the mid–surface after deformation. These theories are widely 

used for the analysis of thin plates [3]. 

Buckling is one of the failure modes experienced when 

thin laminated composite plates are in use which needs to be 

evaluated; Other forms of failure modes include pure bending 

and free vibration [4]. There are different methods of 

analyzing buckling of thin laminated composite plates but 

most of the methods are based on assumed displacement 

function ([2]; [4]; [5]; [6]; [7]; [8]). Some also, assume 

displacement function as well as finite element method [4]. 

The assumed function is either based on Navier or levy 

method. It is widely agreed that assumed displacement 

function will always give results that differ from the exact 

ones except where the displacement function assumed is the 

exact displacement function. 

Due to the fact that most buckling analyses on thin 

laminated composite plates are done using assumed 

displacement function, the present research aims at using the 

Euler-Bernoulli equilibrium equation which has been 

accepted as the deflected shape of beam strip to analyzed thin 

laminated composite plate.  

2.0. Displacement Field and Kinematics of a Lamina of 

Thin Laminated Plate 

Some governing assumptions in this study are the plane 

stress assumption (normal stress along z-axis, x-z plane and 

y-z plane shear stresses are zeros), another assumption is 

normal strain along z axis is so small that neglecting it shall 

not affect the gross response of the plate. Itemizing the 

assumptions gives.  

i.      

ii.      

iii.      

iv.      
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ABSTRACT 

This work presents the buckling analysis of thin laminated composite plates using Euler-

Bernoulli equilibrium equation. The project aims at obtaining the exact equation which 

will not depend on assumed shape function which charcterised the anlaysis of composite 

plates. The present study is based on classical plate theory which is widely used for 

analysis of thin plates. The governing equation for the thin laminated plate were obtain 

considering the total potential energy function which was in turn minimized to obtain 

equation for analysis of buckling. Numerical work examples were performed considering 

different aspect ratios and elastic moduli for SSSS laminated plates at orientation 

0/90/90/0. The results were compared with the works of Reddy and that of Osman and 

Sulieman. The maximum percentage difference between the present work to the work of 

Reddy for SSSS laminated plate is 0.06 while the difference with Osman and Sulieman 

work has maximum of 1.81. Reddy presented also an exact method base on the SSSS 

shape function, recorded minimal difference may be as result of round off errors 

introduced along the computation line while the difference with that of Osman and 

Sulieman is because he used finite element method with assumed shape function which 

gives approximate result. 
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Two in-plane displacements and one out-of-plane 

displacement (u, v and w respectively) constitute the 

displacement field. 

From the fourth assumption it is taken that the out-of-

plane displacement (deflection) is constant along z-axis, 

which means it is not a function of z. However, the two in-

plane displacements (u and v) are functions of all coordinates 

(x, y and z). From assumption ii and iii, it is taken that 

corresponding x-z and y-z planes' shear strains are zeros. 

Thus, the in-plane displacements are given as: 

    
  

  
                                                   

 

    
  

  
                                                   

 

The in-plane displacements of the middle surface (u0 and 

v0) are not constants [9]. Using equations 1 and 2 and the no-

constant values of u0 and v0, in-plane strains are defined as: 
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2.1. Constitutive relations for a lamina of thin laminated 

plate. 

The Hook's law equation for one lamina in laminated 

plate is given as: 
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Using the transformation matrix [T], equation 6 is 

transformed from (1-2 local) coordinate system to (x-y 

global) coordinate system as [10].  
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Here the transformation matrix, [T] is defined as: 
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Substituting equation 8 into equation 7 gives: 
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Where: 

                                

         
                         

                                        

                                

                     
                    

                                 
        

                                

Substituting equations 3, 4 and 5 into equation 9 gives: 
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2.2. Total potential energy functional for a laminated thin 

rectangular plate. 

The total potential energy functional for a laminated thin 

rectangular plate is given as [1]: 
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Substituting equations 11a and 11b into equation 12 gives: 
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Carrying out the multiplication and closed domain integration 

of equation 13 with respect to z gives: 
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"m" stands for the number of a lamina in the laminated plate, 

n is the total number of laminas "s" is the non dimensional 

coordinate along z-axis defined as s = z/t. 

Let the summation of the following three constants be one. 

That is: 

                                                             

Substituting equation 18 into equation 14 to multiply the 
in-plane load, Nx (that is: Nx = n1Nx+ n2Nx + n3Nx) 
rearranging the resulting quation gives: 
                                            
Where: 

   
   

 

 
∬  (

   

  
[
   

  
]

 

  
   

  
   

  

   

  

 
   

  
[
   

  
]

 

   
   

  
   

  

   

  

 
   

  
[
   

  
]

 

 
   

  
[
   

  
]

 

) 

  (
   

 

   

  
 
   

   
 

          

 

   

  

   

    

 
          

 

   

  

   

    

 
   

 

   

  

   

   
) 

 (   *
   

   
+

 

            *
   

    
+

 

    *
   

   
+

 

 )    

  

 
∬(

  

  
)

 

                    

  

 
    

 

 
∬*

   

  
   

  

   

  
 

   

  
   

  

   

  

  
   

 

   

  

   

    
 

   

 

   

  

   

   

     

   

   

   

    
+             

  

 
∬(

  

  
)

 

                  

  

 
    

 

 
∬*

   

  
   

  

   

  
  

   

  
   

  

   

  

  
   

 

   

  

   

    
 

   

 

   

  

   

   

     

   

   

   

    
+            

  

 
∬(

  

  
)

 

                   

For easy understanding of the meanings for m, n and z is 

illustrated with a four-lamina laminated plate shown on 

Figure 1 

 

 

 

 

Figure 1: A laminated plate that is made of four laminas 
2.3.General and direct Variation of Total potential energy 

functional for a laminated thin rectangular plate. 

Minimizing equations 20a, 20b and 20c with respect to 

w, u0 and v0 and making some rearrangements shall give the 

respective equations: 
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For equations 22a, 22b, 22c, 23a, 23b and 23c to be true, the 

following shall hold (where c and d are yet to be determined 

constants): 

    
   

   

  

  
    

  

  
                          

 

    
   

   

  

  
     

  

  
                          

 

Substituting equations 24a and 24b into equation 21a and 

making some rearrangements and observing that an integral 

can only be zero if its integrand is gives: 
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Dividing equation 25 by [D22 - dB22] gives: 
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The exact solutions to equation 26 (in terms of non-

dimensional coordinates) for pure bending analysis, buckling 

analysis and free vibration analysis were obtained to be (see 

[Ibearugbulem 2016] for details): 
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From equations 27a, it was gathered that: 

                                               

Substituting equation 27d into equations 24a and 24b 
gives: 

         

  

  
   

  

  
                               

         

  

  
    

  

  
                           

                                              

Substituting equations 27b, 28a and 28b into equations 20a, 

20b and 20c and writing the outcomes in terms of non 

dimensional coordinates gives: 
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Minimizing equations 29a  29b and 29c with respect to β1 
and rearrange gives respectively: 
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Minimizing equations 29a  29b and 29c with respect to β2 
gives: 
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Minimizing equations 29a  29b and 29c with respect to β3 
gives: 
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Adding the equations 30a, 30b and 30c together and 
rearranging the outcome gives: 
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Substituting equation 18 into equation 33a and 
rearranging the outcome gives: 
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Adding the equations 31a, 31b and 31c together and 
rearranging the outcome gives: 
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Adding the equations 32a, 32b and 32c together and 
rearranging the outcome gives: 
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Solving equations 34a and 34b simultaneously gives: 
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Substituting equations 35a and 35b into equation 33b and 
rearranging gives: 
Substituting equations 35a and 35b into equation 33b and 
rearranging gives: 
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Rearranging equations 37 gives: 
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3.0 Numerical Example   

A thin rectangular plate simply supported along all the 

four edges is made of four laminas that are laminated 

together. The laminas were arranged as 0/90/90/0. Some of 

the material properties include: G12/E2 = 0.5; V12 = 0.25; 

E1/E2 varies from 5 to 40. It is required to determine the 

deflection of the plate under uniformly distributed lateral 

load, critical buckling load under uniaxial in-plane load and 

fundamental natural frequency when the plate is undergoing 

free vibration.  The reference elastic modulus, E0 is taken to 

be E2. Hence, 
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If the aspect ratio is a/b and the parameters are in terms 

of long length "b" then: 

   
  [   

 ]  [  ⁄ ]  
The exact deflection function for buckling analyses of 

SSSS plate after satisfying the boundary condition using 

equations 27a is: 

                      
The stiffness coefficients from the obtained using the 

polynomial and trigonometric deflection functions are shown 

on Table 1: 

Table 1. Stiffness coefficients (k-vakues) for SSSS plate. 

 

 

 
4.0 Results and Discussions    

The result for buckling analysis were presented on Table 

2 and Table 3 in terms of short and long lengths of the plate 

respectively. Results from the present study were compared 

with the results from the works of Reddy [2] and Osman and 

Suleiman [3]. The work of Reddy was based on Navier theory 

and Levy's theory; it is regarded as exact method because the 

shape function he used was an exact shape function for the 

SSSS plate while the work of Osman and Suleiman was based 

on shape function and finite element method of analysis 

which is an approximate method. These comparisons were 

presented on Table 4 to Table 8. 

 
𝒌𝒙 𝒌𝒙𝒚 𝒌𝒚 𝒌𝒙𝒙𝒚 𝒌𝒙𝒚𝒚 𝒌𝑵 

Trig 24.3523 24.3523 24.3223 0 0 2.4674 
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From Table 2 and Table 3 it was observed that the 

buckling load increase as the ratio of elastic modulus (E1/E2) 

increases. It was also seen from Table 2 that the buckling load 

increases as the aspect ratio (b/a) decreases. This means that 

the buckling coefficient is higher when the elastic modulus is 

constant and the ratio of the length in terms of the shorter 

span is high; The reverse is the case when considering the 

ratio of the length in terms of the longer span.   The 

percentage differences recorded on Table 4 to Table 8 

between the values from the present study and the values 

from Reddy, one would see consistency and very minimal 

difference. The observed maximum percentage difference is 

0.06. This means that the values obtained herein is almost the 

same with the values obtained by Reddy (exact method). The 

recorded minimal difference may be as result of round off 

errors introduced along the computation line. The case is not 

the same with the comparison with the values from the work 

of Osman and Suleiman. A slightly higher percentage 

differences were recorded. The maximum percentage 

difference recorded is 1.81. This difference is expected 

because they used finite element method, which is known as 

approximate method. 

Table 2. Critical buckling load in terms of short 

length, "a" from the present study, [
   

 

  ̅̅ ̅̅
]     

                                              

  
   
   

  

    
    

      
     

       
     

      
     

      
     

2/3 11.769 11.867 11.941 11.960 11.991 

1 5.649 6.346 6.960 7.123 7.403 

2 3.475 4.532 5.469 5.718 6.147 

Table 3. Critical buckling load in terms of long length, "b" 

from the present study, [
   

 

  ̅̅ ̅̅
]     

                                              

    
   
   

  

    
    

      
     

       
     

      
     

      
     

1.5 5.231 5.274 5.307 5.315 5.329 

1 5.649 6.346 6.960 7.123 7.403 

0.5 13.900 18.126 21.878 22.873 24.590 

Table 4. Difference between values from the present study 

those from Reddy for     ⁄    [
   

 

  ̅̅ ̅̅
]     

p = a/b Present Reddy % diff. with Reddy 

1.5 5.231 5.233 0.05 

1 5.649 5.650 0.02 

0.5 13.900 13.900 0.00 

Table 5. Difference between values from the present study those 

from Reddy and Osman for     ⁄     [
   

 

  ̅̅ ̅̅
]     

p = a/b Present Reddy Osman % diff. 

with 

Reddy 

% diff. 

with 

Osman 

1.5 5.274 5.277 5.215 0.06 1.13 

1 6.346 6.347 6.274 0.02 1.14 

0.5 18.126 18.126 17.958 0.00 0.94 

Table 6. Difference between values from the present study those 

from Reddy for     ⁄     [
   

 

  ̅̅ ̅̅
]     

p = a/b Present Reddy % diff. with Reddy 

1.5 5.307 5.310 0.05 

1 6.960 6.961 0.02 

0.5 21.878 21.878 0.00 

 

Table 7. Difference between values from the present study those 

from Reddy and Osman         ⁄     [
   

 

  ̅̅ ̅̅
]     

p = 

a/b 

Present Reddy Osman % diff. 

with 

Reddy 

% diff. 

with 

Osman 

1.5 5.315 5.318 5.221 0.05 1.81 

1 7.123 7.124 7.003 0.02 1.71 

0.5 22.873 22.874 22.566 0.00 1.36 

5.0 Results and Discussions    

The Buckling Analysis of Thin Laminated Composite 

Plates with Exact Displacement Functions is carried out 

considering the total potential energy functional. The 

important thing about thee method is that it can be apply no 

matter the type of boundary condition under consideration. 

References      

[1] Ventsel E. and Krauthammer, K. (2001). Thin Plates and 

Shells. New York: Marcel Decker Inc Pp.1-8. 

[2] Reddy, J. N. (2004). Mechanics of laminated composite 

plates and shells theories and analysis (2nd Ed.). London: 

CRC Press LLC ISBN: 0849315921 

[3] Osman, M. Y., and Suleiman, O. M. E. (2017). Buckling 

Analysis of Thin Laminated Composite Plates using Finite 

Element Method. International Journal of Engineering 

Research and Advanced Technology (IJERAT), Volume. 03 

Issue.3, pp. 1-7  

[4] Singh, S.K and Chakarabarti, A. (2012). Buckling 

Analysis of laminated Composite Plates Using an Efficient 

C0 FE model. Latin American Journal of solids and 

Structures. Vol 1, Pp 1-13. 

[5] Fares, M. E. (1999). Non-linear bending analysis of 

composite laminated plates using a refined first-order theory. 

Composite Structures (Elsevier Science Ltd) vol. 46, pp. 257-

266 

[6] Han, S., Lee S., and Rus, G. (2006). Post buckling 

analysis of laminated composite plates subjected to the 

combination of in-plane shear, compression and lateral 

loading. International Journal of Solids and Structures 

(Elsevier Science Ltd) vol 43, pp. 5713–5735 

[7] Ferreira, A. J. M., Roque, C. M. C. and Jorge, R. M. N. 

(2005). Analysis of composite plates by trigonometric shear 

deformation theory and multiquadrics. Computers and 

Structures (Elsevier Science Ltd), Vol. 83, Pp. 2225–2237 

[8] Subramani, T. and Sharmila, S. (2014). Prediction of 

Deflection and Stresses of Laminated Composite Plate with 

Artificial Neural Network Aid. International Journal of 

Modern Engineering Research (IJMER). Vol. 4, Iss. 6, Pp. 

51-58 

[9] Mohammed, O. and Suleiman, E. (2016).  Deflection and 

Stress Analysis of Fibrous Composite Laminates. 

International Journal of Advanced Research in Computer 

Science and Software Engineering. Volume 6, Issue 8, pp. 

105-115. 

[10] Ibrahim, S.M., Carrera, E., Petrolo, M. and Zappino. E 

(2012). Buckling of composite thin walled beams by refined 

theory. Composite Structures Vol 94, Pp 563-570 

[11]   Ibearugbulem, O.M., Ezeh J.C., Anya U.C and 

Okoroafor, S.U (2020). Simple approach to analysis of thin 

laminated composite structure using exact displacement 

function. International Journal of Scientific and Engineering 

Research. Vol 11 iss, 3 Pp 1106-1117. 

[12] Kubiak, T (2013). Static and Dynamic Buckling of Thin-

Walled Plate Structures. Springer International Publishing 

Switzerland.  DOI: 10.1007/978-3-319-00654-3_2. 

[13] Ibearugbulem, O.M (2016). Class Note of Theory of 

Elasticity (unpublished). Department of Civil Engineering, 

Federal University of Technology, Owerri, Nigeria.  


