Available online at www.elixirpublishers.com (Elixir International Journal)

Discrete Mathematics

Elixir Dis. Math. 147 (2020) 54924-54926

\vec{P}_{2k} – Factorization of Complete Bipartite Symmetric Digraphs

Bal Govind Shukla

Department of Applied Sciences, Bansal Institute of Engineering and Technology, Lucknow -226021(India).

ARTICLE INFO

Article history: Received: 26 April 2020; Received in revised form: 20 October 2020; Accepted: 31 October 2020;

Keywords

Complete Bipartite Graph, Factorization of Graph, Symmetric Graph, Digraphs, Spanning Subgraph.

ABSTRACT

Min-li Yu [1] gives the necessary and sufficient conditions on path factorization of complete multipartite graphs and earlier for path factorization of complete bipartite graph Kazuhiko Ushio[2] gave the necessary and sufficient conditions for the existence of the P_k -design when k is odd. However, for the odd value of k the path factorization problem of complete bipartite graphs i.e. $\boldsymbol{P}_{\boldsymbol{k}}$ -factorization of complete bipartite graphs, have been studied by many number researchers [3,4,5,6,7]. For any positive integer p, the necessary and sufficient conditions for the existence of the P_{2n} -factorization of a complete bipartite graph were studied by Hong Wang [8]. Beiliang Du [9] extended the work of Hong Wang [8] and gave the necessary and sufficient conditions for the existence of P_{2k} -factorization of the complete bipartite multigraphs. In path factorization of complete bipartite symmetric digraphs B. Du [10] already discussed the necessary and sufficient conditions for the existence of \vec{P}_3 -factorization of complete bipartite symmetric digraphs. Here in this paper, we will discuss necessary and sufficient conditions for the existence of \vec{P}_{2k} -factorization of complete bipartite symmetric digraphs, and also in this paper, we construct the \vec{P}_{2k} -factorization of complete bipartite symmetric digraphs $K_{m,n}^*$.

© 2020 Elixir All rights reserved.

1. Introduction

Consider the complete bipartite symmetric digraph $K_{m,n}^*$ with two partite sets V_1 and V_2 where total numbers of points in V_1 are m i.e. $|V_1| = m$ and total numbers of points in V_2 are in *n* i.e. $|V_2| = n$ points, and for any positive integer k, a directed path on 2k points is denoted by \vec{P}_{2k} . A spanning subgraph \vec{F} of $K_{m,n}^*$ is called a path factor if each component of \vec{F} is a symmetric path of order at least two. In particular, a spanning subgraph \vec{F} of $K_{m,n}^*$ is called a \vec{P}_{2k} – factor of $K_{m,n}^*$ if each component of \vec{F} is isomorphic to \vec{P}_{2k} . If $K_{m,n}^*$ is expressed as an arc disjoint sum of \vec{P}_{2k} – factors, then this sum is called a \vec{P}_{2k} – factorization of complete bipartite symmetric digraphs $K_{m,n}^*$. It is easy to see that a \vec{P}_{2k} – factorization of complete bipartite symmetric digraphs $K_{m,n}^*$ gives rise to a P_{2k} - factorization of complete bipartite graph $2K_{m,n}$. In this paper we will give the necessary and sufficient conditions for the existence of \vec{P}_{2k} – factorization of complete bipartite symmetric digraphs $K_{m,n}^{+}$.

2. Mathematical Analysis

In the study of \vec{P}_{2k} – factorization of complete bipartite symmetric digraphs $K_{m,n}^*$, the following theorem i.e. theorem

2.1 is used to gives the necessary conditions for the complete bipartite symmetric digraph $K_{m,n}^*$ to be \vec{P}_{2k} – factorable.

Theorem 2.1: If $K_{m,m}^*$ has \vec{P}_{2k} – factorization then $K_{sm,sm}^*$ has \vec{P}_{2k} – factorization for any positive integer s.

Proof: Let $K_{s,s}$ is a 1-factorable[11], and $\{H_1, H_2, ..., H_s\}$ be a 1-factorization of it. For each i with $\{1 \le i \le s\}$, replace every edge of H_i with a $K_{m,m}^*$ to get a spanning subgraph G_i of $K_{sm,sm}^*$, such that the $G'_i s\{1 \le i \le s\}$ are pair wise edge-disjoint and there sum is $K_{sm,sm}^*$. Since $K_{m,m}^*$ is \vec{P}_{2k} -factorable, therefore G_i is also \vec{P}_{2k} -factorable, and hence, $K_{sm,sm}^*$ is also \vec{P}_{2k} -factorable.

By using the following theorem i.e. theorem 2.2 we prove the necessary conditions for \vec{P}_{2k} – factorization of the complete bipartite symmetric digraph $K_{m,n}^*$.

Theorem 2.2: If a complete bipartite symmetric digraph $K_{m,n}^*$ has \vec{P}_{2k} -factorization then m = n and $m \equiv 0 \pmod{k(2k-1)}$, where k,m and n are positive integers.

Proof: Since $K_{m,n}^*$ be a complete bipartite symmetric digraph with two partite sets V_1 and V_2 where the total number of points in V_1 i.e. $|V_1| = m$ and a total number of

points in V_2 i.e. $|V_2| = n$ points. Let $\{\vec{F}_1, \vec{F}_2, \dots, \vec{F}_r\}$ be the factors of a \vec{P}_{2k} – factorization of the complete bipartite symmetric digraph $K_{m,n}^*$. Let \vec{F}_i for each $1 \le i \le r$ have t components in each factor since \vec{F}_i is a spanning subgraph of complete bipartite symmetric digraph $K_{m,n}^*$ hence we have $= n = \frac{kt}{2}$. The total numbers of \vec{P}_{2k} factors in each \vec{P}_{2k} – factorization of the complete bipartite symmetric digraph $K_{m,n}^*$ hence we have $= n = \frac{kt}{2} \cdot \text{The total numbers of } \vec{P}_{2k}$ factors in each \vec{P}_{2k} – factorization of the complete bipartite symmetric digraph $K_{m,n}^*$ are $|\vec{F}_i| = \frac{m(2k-1)}{k}$, which is an integer that does not depend on the individual P_{2k} –factors. Hence m = n and

$$m \equiv 0 \pmod{k} \qquad \dots (1)$$

Let *d* be the total number of components of \vec{P}_{2k} – factors in \vec{P}_{2k} –factorization of the complete bipartite symmetric digraph $K_{m,n}^*$ then, $d = \frac{2m^2}{(2k-1)}$ and hence total number of \vec{P}_{2k} factors in \vec{P}_{2k} – factorization of $K_{m,n}^*$ are given by

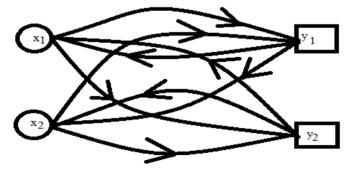
$$r = \frac{u}{t}$$
$$r = \frac{\frac{2m^2}{(2k-1)}}{\frac{2m}{k}} = \frac{km}{(2k-1)}$$

Where r is a positive integer. Since gcd(k, (2k - 1)) = 1 therefore

 $m \equiv 0 \pmod{(2k-1)}$... (2) Hence by combining these two results from equations (1) and (2), when m = n then we have

 $m \equiv 0 \pmod{k(2k-1)}$

To show \vec{P}_{2k} – factorization of the complete bipartite symmetric digraph $K_{m,n}^*$. We consider a particular case for k = 1, m = 2 and n = 2 i.e. here we construct \vec{P}_2 – factorization of the complete bipartite symmetric digraph $K_{2,2}^*$.



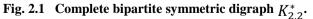


Fig. 2.2 to Fig. 2.3 shown the \vec{P}_2 – factors of complete bipartite symmetric digraph $K_{2,2}^*$.

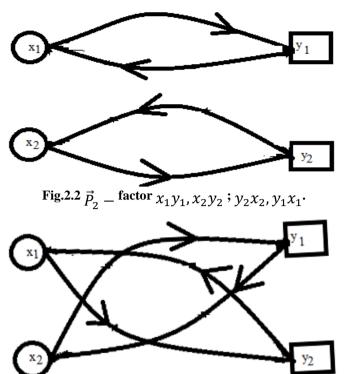


Fig. 2.3 $\vec{P}_2 = \text{factor } x_1 y_2, x_2 y_1; y_1 x_2, y_2 x_1.$

Now in following theorem (2.3), we have proved the sufficient condition for the existence of the \vec{P}_{2k} –factorization of the complete bipartite symmetric digraph $K_{m n}^*$.

Theorem 2.3: Let k, m and n are positive integers, if m = n and $m \equiv 0 (modk(2k-1))$, then $K_{m,n}^*$ has a \vec{P}_{2k} – factorization.

Proof: Let m = n and $m \equiv 0 (modk(2k - 1))$, hence we can suppose that m = k(2k - 1)s where *s* is any positive integer. Hence from the previous theorem i.e. theorem2.1, to show $K_{m,n}^*$ has a \vec{P}_{2k} – factorization it is only needs to show that $K_{k(2k-1),k(2k-1)}^*$ have a \vec{P}_{2k} – factorization. Let V_1 and V_2 be two partite sets of $K_{k(2k-1),k(2k-1)}^*$ and the set

$$V_1 = \{x_{i,j} \colon 1 \le i \le k, 1 \le j \le (2k - 1)\},\$$

$$V_2 = \{ y_{i,i} : 1 \le i \le k, 1 \le j \le (2k - 1) \},\$$

Now we are in position to construct \vec{P}_{2k} – factors of the complete bipartite symmetric digraph $K_{k(2k-1),k(2k-1)}^*$. It is already mention that the addition in the first and second subscripts of the $x_{i,j}$'s and $y_{i,j}$'s are taken in the addition modulo $\{1, 2, ..., k\}$ and $\{1, 2, ..., (2k - 1)\}$ respectively.

Now for each *i* with $1 \le i \le k$ and for each *j* with $1 \le j \le (2k - 1)$, let

$$E_{2i-1} = \{x_{i,j}y_{i,j+2i-2} \colon 1 \le i \le k, 1 \le j \le (2k-1)\}$$
 and

 $E'_{2i-1} = \{y_{2i+j-2}x_{i,j}: 1 \le i \le k, 1 \le j \le (2k-1)\}$ For each *i* with $2 \le i \le k$ and for each *j* with $1 \le j \le (2k-1)$, let

 $E_{2i-2} = \{x_{i,j}y_{i-1,(j+2i-3)}: 2 \le i \le k, 1 \le j \le (2k-1)\}$ and

 $E'_{2i-2} = \{y_{(i-1),(2i+j-3)}x_{i,j}: 2 \le i \le k, 1 \le j \le (2k-1)\}$

Now we construct the digraph \vec{F} which is a union of two vertex sets of directed paths $E_i \cup E'_i$ for each $1 \le i \le 2k - 1$. Let $\vec{F} = \bigcup_{i=1}^{2k-1} \{E_i, E'_i\}$ be a \vec{P}_{2k} – factor of the complete bipartite symmetric digraph $K_{k(2k-1),k(2k-1)}^{*}$. Now define a bijection σ from $V_1 \cup V_2$ onto $V_1 \cup V_2$,

$$\sigma: V_1 \cup V_2 \xrightarrow{onico} V_1 \cup V_2$$

such that

 $\sigma(x_{i,j}) = x_{i+1,j}$ and $\sigma(y_{i,j}) = y_{i+1,j}$ for all i, j with $1 \le i \le k$ and $1 \le i \le (2k - 1)$. Now we construct the diagraph for each *i* and *j* with the condition, $1 \le i, j \le k$, let

 $\vec{F}_{i,j} = \{\sigma^i(x)\sigma^j(y) : x \in V_1, y \in V_2, xy \in \vec{F}\}$ It is shown that the digraph $\vec{F}_{i,j}$ is a line disjoint \vec{P}_{2k} – $K_{k(2k-1),k(2k-1)}^*$ and their union is also factors of $K_{k(2k-1),k(2k-1)}^*$. Hence we see that $K_{m,m}^*$ has a \vec{P}_{2k} – factorization.

Now for the main result, we will combine two theorems i.e. theorem 2.2 and theorem 2.3.

Theorem 2.4: The complete bipartite graph $K_{m,n}^*$ has a \vec{P}_{2k} -factorization if and only if m = n and $m \equiv$ $0 \pmod{k(2k-1)}$

Proof: By applying theorem 2.2 and theorem 2.3 along with theorem 2.1, it can be seen that when m = n and $m \equiv$ $0 (mod \ k(2k-1))$ the graph $K^*_{m,n}$ has a \vec{P}_{2k} factorization, where k, m and n are positive integers.

References

[1]. Yu Min-li: On path factorization of complete multipartite graphs. Discrete Mathematics, 122(1993) 325-333.

[2].Ushio K: G-designs and related designs. Discrete Mathematics, 116(1993) 299-311.

[3]. Ushio K: P_3 -factorization of complete bipartite graphs. Discrete Mathematics, 72 (1988) 361-366.

[4].Wang J and Du B: P_5 _factorization of complete bipartite graphs. Discrete Mathematics, 308 (2008) 1665 - 1673.

[5].Wang J: p_7 _factorization of complete bipartite graphs. Australasian Journal of Combinatorics, volume 33 (2005), 129-137.

[6].Rajput U S and Shukla Bal Govind: P_{q} –factorization of complete bipartite graphs. Applied Mathematical Sciences, volume 5(2011), 921-928.

[7].Du B and Wang J: P_{4k-1} -factorization of complete bipartite graphs. Science in China Ser. A Mathematics 48 (2005) 539 - 547.

[8].Wang H: P_{2v} -factorization of a complete bipartite graph, discrete math.120 (1993) 307-308.

[9].Du Beiliang: P_{2k} -factorization of complete bipartite multi graph. Australasian Journal of Combinatorics 21(2000), 197 - 199.

[10].Du B.: \vec{p}_2 _factorization of complete bipartite symmetric digraphs. Australasian Journal Of Combinatorics, 19(1999)

275-278. [11]. Harary F.: Graph theory. Adison Wesley, Massachusetts 1972.