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1. Introduction 

Autoregressive models are utilized by specialized experts to estimate securities costs. For example, moving averages, 

regression and trends take into consideration past prices in an attempt to make forecasts of future prices.  The main difference is 

that numerous technical indicators endeavor to catch composite nonlinearity of monetary costs to maximize profits, while 

autoregressive models entirely try to limit the mean squared errors and may yield more exact figures for linear underlying 

processes. An AR (2) autoregressive process is the second order process, meaning that the current value is based on the previous 

two values. Statistical process control techniques have found widespread application in industry for process improvement and for 

estimating process parameters or determining capability. Traditionally, control charts are developed assuming that the sequence of 

process observations to which they are applied are uncorrelated. Unfortunately, this assumption is frequently violated in practice. 

The presence of autocorrelation has a profound effect on control charts developed using the assumption of independent 

observations. The primary impact is to increase frequency with which false action signals are generated, that is, the in-control 

power function of the control chart is much shorter than advertised. Even very low levels of serial correlation will produce 

dramatic disturbances in these control charts properties. These disturbances lead to erroneous conclusions about the state of 

control of the process. Many authors have seen the effect of autocorrelation on the control charts for non-normal population. Chen 

(2004) used the Burr distribution to find the economic design of VSI control charts under non-normal population. Chen and Chiou 

(2005) studied the VSI control charts when the process data are correlated. Yang and Hancock (1990) studied the effect of non-

normal population on control charts for correlated data. Montegomery and Mastrangelo (1991) presented the methods for applying 

statistical control charts to auto-correlated data.  

2. Power Function of the Average Control Chart under AR (2) Model for Non-normal Population 

Consider the equation expressing AR (1) process given by the following model: 

,                                                                                                                                                  (2.1)    

where  the response at time t is,  is a population mean,  is a stationary time series with zero mean and standard 

deviation σ. Suppose that a correlation test revealed the presence of data dependence and the identification technique suggested 

autoregressive model of order two AR (2) say, then t can be expressed as: 
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Following Kendall and Stuart (1976) it can be shown that for stationarity, the roots of the characteristic equation of the 

process in equation (2.2),  

 ( )           
 .                                                                                                                      (2.4)  

must lies outside the unit circle, which implies that the parameters   and    must satisfy the following conditions,                            

                                                                                                                                         (2.5) 

Suppose that   
   and   

   are the roots of the characteristic equation of the process given by equation (2.4) then,

Suppose that   
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For stationarity we require |  |          .Thus, there occurs three situations: 

(i) Roots     and    are real and distinct   
       . 

(ii) Roots     and    are real and equal    
       . 

(iii)Roots    and    are complex conjugate   
       . 

When the correlation is present in the data we have for the distribution of sample mean , its mean and variance is as follows   

,                                                                                                                                                      (2.8) 
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where     (       )  depends on the nature of the roots   and  , and for different situations is given as follows: 

(i) If the roots    and    are real and distinct: 
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(ii) If the roots     and    are real and  equal: 
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(iii) If the roots    and    are complex conjugate:  
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where,    
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For non-normal population, the density function is given by the first four terms of an Edgeworth series: 
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The distribution of the sample mean is given by Singh (1983), as:    

 ( ̅)  
√ 

 
{ (

 ̅  

  √ ⁄
)  

   

 √ 
 ( ) (

 ̅  

  √ ⁄
)  

   
 

   
 ( ) (

 ̅  

  √ ⁄
)  

  
   

   
 ( ) (

 ̅  

  √ ⁄
)} 

                   (2.14) 

Now integrating equation (2.14) afterreplacing   by   , we have: 
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 ( )( )  
  

  
 ( ). 

If the samples of size n are taken from the population  (      ⁄ ) and the value of the mean is plotted with the control limits 

    √ ⁄ , then the power of detecting the change of process is given by the following formula: 

  ̅    { ̅      √ ⁄ }    { ̅      √ ⁄ }                                                                                              (2.16) 

Standardizing the above equation (2.16), 
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The power function for normal distribution is obtained by converting equation (2.16) into the standardized form, we have: 
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where       
    

 
. 

The Power Function of the average control charts when the underlying population is non-normal is obtained by putting above 

value of equation (2.19) in equation (2.15):  
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The values of the power curve are obtained by using the equation (2.20) is given in Table-1 to Table-6 and its diagrammatical 

representation is given in Fig-1 to Fig-4. 

3. Numerical Illustration 

The values of power functions for some chosen values of 

(     )  (   ) (     ) (     ) (       ) (      ) (      ) and three different roots (i) real and equal viz.           

(     )  (         ) (ii) real and distinct viz.(     )  (       ) (iii) complex conjugate (     )  (        ) along 

with the independent case under non-normality have been worked out using equation (2.20) and given in the Table-1 to 6 for                      

           To give a visual comparison, the power curves have been drawn in Fig-1 to 4 for different values of        . A 

comparison of various curves for AR(2) process with classical control chart under non-normality shows that complex conjugate 

roots have the tendency to bring the power curve for independent observation. However, there is a marked difference in the power 

curve for the other two situations (i) and (ii). In both the situations there is a large deviation from the power curve in independent 

case under non-normality but from the visual representation it is clearly seen that at one point all the curves are intersect each 

other, which implies that, a large autocorrelation results in a reduction of power function when       and vice versa. In 

practical situations, though, the case of real and equal roots hardly arises. It is seen from the table that possibility of shifts not only 

in the mean parameters but also in the auto-regression parameters         can take place. A shift in the auto-regressive 

parameters may result from assignable causes occurring over production time, but also from the  

 

Table 1. Values of Power Function for Average Control Chart under non-normal population when   . 

              

(     ) 
  

(   ) (     ) (     ) (       ) (      ) (      ) 

d  
0.0 0.19436 0.19625 0.18378 0.18567 0.20248 0.19247 

0.3 0.28167 0.28151 0.28795 0.28779 0.27257 0.28183 

0.5 0.35631 0.35555 0.37326 0.37250 0.33731 0.35708 

0.8 0.48313 0.48337 0.51015 0.51039 0.45666 0.48289 

1.0 0.57078 0.57279 0.59878 0.60078 0.54542 0.56878 

1.3 0.69541 0.69997 0.71645 0.72101 0.67918 0.69085 

1.5 0.76843 0.77288 0.78114 0.78560 0.76081 0.76397 

1.8 0.85716 0.85504 0.85654 0.85443 0.86151 0.85928 

2.0 0.90154 0.88856 0.89391 0.88094 0.91129 0.91451 

2.5 0.94787 0.94897 0.93464 0.93574 0.96083 0.94676 

3.0 0.96765 0.96677 0.95388 0.95301 0.98005 0.96852 
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Table2. Values of Power Function for Average Control Chart under non-normal population when    . 
              

(     ) 
  

(   ) (     ) (     ) (       ) (      ) (      ) 

d  
0.0 0.34380 0.34424 0.34727 0.34772 0.33687 0.34336 

0.3 0.45081 0.45171 0.46680 0.46770 0.43485 0.44992 

0.5 0.53511 0.53721 0.55574 0.55784 0.51692 0.53301 

0.8 0.66409 0.66850 0.68300 0.68741 0.65019 0.65969 

1.0 0.74321 0.74807 0.75599 0.76086 0.73590 0.73836 

1.3 0.84174 0.84206 0.84242 0.84274 0.84530 0.84144 

1.5 0.89162 0.88309 0.88523 0.87670 0.90062 0.90016 

1.8 0.94368 0.94511 0.93125 0.93269 0.95621 0.94225 

2.0 0.96568 0.96505 0.95252 0.95190 0.97778 0.96632 

2.5 0.98510 0.98300 0.97421 0.97211 0.99418 0.98720 

3.0 0.99196 0.98972 0.98358 0.98134 0.99860 0.99421 

Table 3. Values of Power Function for Average Control Chart under non-normal population when    . 

              

(     ) 
  

(   ) (     ) (     ) (       ) (      ) (      ) 

d  
0.0 0.42624 0.42656 0.43590 0.43622 0.41372 0.42591 

0.3 0.53885 0.54101 0.55527 0.55742 0.52408 0.53669 

0.5 0.62373 0.62752 0.64037 0.64416 0.61113 0.61994 

0.8 0.74630 0.75118 0.75606 0.76094 0.74199 0.74143 

1.0 0.81645 0.81916 0.81888 0.82159 0.81885 0.81373 

1.3 0.89717 0.88827 0.88957 0.88068 0.90723 0.90606 

1.5 0.93445 0.93662 0.92293 0.92510 0.94672 0.93228 

1.8 0.96977 0.96888 0.95723 0.95634 0.98123 0.97066 

2.0 0.98312 0.98131 0.97224 0.97043 0.99242 0.98494 

2.5 0.99364 0.99169 0.98654 0.98458 0.99924 0.99560 

3.0 0.99690 0.99532 0.99216 0.99058 1.00000 0.99849 

Table 4. Values of Power Function for Average Control Chart under non-normal population when n=5. 

               

(     ) 
  

(   ) (     ) (     ) (       ) (      ) (      ) 

d  
0.0 0.05651 0.05736 0.04851 0.04936 0.06465 0.05566 

0.3 0.15357 0.15362 0.15237 0.15242 0.15343 0.15353 

0.5 0.25973 0.25915 0.26724 0.26667 0.25051 0.26030 

0.8 0.46871 0.46849 0.48603 0.48581 0.45109 0.46892 

1.0 0.61738 0.61836 0.63328 0.63426 0.60255 0.61640 

1.3 0.80629 0.80732 0.81017 0.81120 0.80403 0.80525 

1.5 0.89278 0.88926 0.88879 0.88527 0.89762 0.89629 

1.8 0.96463 0.96443 0.95661 0.95641 0.97222 0.96483 

2.0 0.98553 0.98470 0.97905 0.97822 0.99129 0.98636 

2.5 0.99702 0.99634 0.99413 0.99346 0.99941 0.99770 

3.0 0.99912 0.99874 0.99782 0.99744 1.00000 0.99950 

 

Table 5. Values of Power Function for Average Control Chart under non-normal population when    . 

               

(     ) 
  

(   ) (     ) (     ) (       ) (      ) (      ) 

d  
0.0 0.09610 0.09632 0.09251 0.09273 0.09941 0.09588 

0.3 0.33281 0.33252 0.34099 0.34070 0.32404 0.33310 

0.5 0.55929 0.55949 0.57047 0.57067 0.54834 0.55908 

0.8 0.84641 0.84632 0.84641 0.84632 0.84699 0.84650 

1.0 0.94547 0.94567 0.94050 0.94069 0.95043 0.94528 

1.3 0.99333 0.99349 0.99045 0.99060 0.99593 0.99317 

1.5 0.99888 0.99870 0.99792 0.99774 0.99971 0.99906 

1.8 0.99996 0.99994 0.99988 0.99985 1.00002 0.99998 

2.0 1.00000 0.99999 0.99999 0.99998 1.00000 1.00000 

2.5 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

3.0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
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Table 6. Values of Power Function for Average Control Chart under non-normal population when    . 
              

(     ) 
  

(   ) (     ) (     ) (       ) (      ) (      ) 

d  
0.0 0.15112 0.15114 0.15061 0.15063 0.15129 0.15111 

0.3 0.53802 0.53809 0.54679 0.54687 0.52933 0.53794 

0.5 0.80145 0.80174 0.80341 0.80369 0.79991 0.80117 

0.8 0.97580 0.97565 0.97207 0.97192 0.97938 0.97595 

1.0 0.99679 0.99661 0.99534 0.99516 0.99811 0.99696 

1.3 0.99994 0.99993 0.99986 0.99985 1.00001 0.99996 

1.5 1.00000 1.00000 0.99999 0.99999 1.00000 1.00000 

1.8 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

2.0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

2.5 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

3.0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

 

 

Fig 1. Power Curve for average control chart when (     )  (   ) 
 

 

Fig 2. Power Curve for average control chart when (     )  (     ) 
 

Fig 3. Power Curve for average control chart when (     )  (       ) 
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Fig 4. Power Curve for average control chart when (     )  (         ) 
 

misidentification of the auto-regression model ex. a biased estimate of the auto-regression parameters        . Hence, we 

recommend using the power curves for average control chart under the process model where the shifts in the mean and the auto-

regression parameters are possible. 
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