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1. Introduction

In survey sampling for estimating the parameters it is commonly assumed that all the observations on selected units in the
sample are available. This may not hold true in many practical situations encountered in sample surveys and some observations
may be missing for various reasons, for instance see Toutenburg and Srivastava (1998). Imputation procedure is used to substitute
values for missing data. In literature, various imputation procedures are available, some of them are better over others.
Statisticians have recognized that for some time that failure to account for the stochastic nature of incompleteness can spoil
inference. A natural question arises what one needs to assume to establish ignoring the incomplete mechanism. Rubin(1976)
addressed three concepts: missing at random (MAR), observed at random (OAR) and parameter distribution (PD). Heitjan and
Basu (1996) have distinguished the meaning of missing at random (MAR) and missing completely at random (MCAR) in a very
acceptable way. In what follows MCAR is used in the present investigation.

Let U = (U4, Uy, ... Uy) be afinite population of N identifiable units taking values (y,, y,, ... yy) on study variable y. Let x
be an auxiliary variable taking the corresponding values (x;,x,,...xy) for the units (U4, U,,...Uy). We wish to estimate the
population mean y = ¥V | y, /N of the study variable y. A simple random sample without replacement (SRSWOR), s of size n is
drawn from the population U for estimating the population mean. Let r be the number of responding units out of sampled n units.
Let the set of responding units be denoted by
D and that of non-responding units be denoting by D¢ For every unit j e D, the value Y, is observed. However for the

i c DS the Y. values are missing and imputed values are to be derived. We assume that imputation is carried out with the aid of
1

quantitative auxiliary variable x, such that y , the value of x for unit i, is known and positive for every i € s . In other words, the
1

data S, = (Xi ‘je S) areknownand ¢ _ p, p°¢-
In many situations the values of the auxiliary variable x may be available for each unit in the population. In such a case

knowledge on population mean " and variance o2 (or population mean square 82) and possibly on some other parameters
X X

may be utilized simultaneously, for instance see Das and Tripathi (1978, 1981), Srivastava and Jhajj (1980, 1981), Jhajj et al
(2005) and Singh and Agnihotri (2008). Thus it is worth to mention that the imputation may be carried out with the aid of

uantitative auxiliary variable for which the data — . i and the population mean or variance _2 (or population
q y X, =(x sies) pop X o2 (orpop
mean square Sz) or coefficient of variation ¢ orboth % and _2 (or Sz)are known.

X X Oy X

It is to be mentioned that assuming MACR Singh and Horn (2000), Ahmed et al (2006) and Shukla and Thakur (2008),
Pandey et al (2015) have given some methods of imputation and considered their corresponding estimators for population mean
y of the variable y under investigation. In this paper following the same procedure as adopted by Srivastava (1971), Srivastava

and Jhajj (1981) and Singh et al (2001) we have given some general procedure of imputation and derived their corresponding
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families of estimators of the population mean y~. It is interesting to note that this study unifies the imputation procedures of Singh
and Horn (2000), Singh and Deo (2003), Ahmed et al (2006), Shukla and Thakur (2008) and Pandey et al (2015).
2. Notations and Useful Results

For simplicity we assume that population size N is very large as compared to sample size r and n so that finite population
correction (fpc) terms are ignored. In what follows we shall use the following notations:

N D D (. Xi , Sx-%F 5, w&-%)F ¢ NV N X,
= _I'X = —'X = —, — | r , — i n lY — -
Yr Ly re AT Izzl n S0 Z:l: (—r—l) S, ; (n—l) |:Zi N § N’
. v N _
S :Z( - X) /(N-1), Mg = _Zl(yi —Y) ( ) /N g )being non-negative integers.
i1 i=

C3 ZSi/Y_Z =,Uzo/Y_2 ,C? :Sf/iz Zﬂoz/)zz ' Pyx :/ull/(sysx)! Ao :ﬂlz/(Y_Sf)lyl :/103/85 Br=r1
ﬂz(x):ﬂm/sf-

h— 51+51 -

._‘
™
B
v
)
o
<
\':‘/
I
/\
=
)
o
)
o
o
SN
(x
|
Il
=

:(1""71 V 12(
)

&o(b-1)= (77250 &0¢2),

V-1 (b-1)=(n &) (7o —&2) = o —me; 261+ 615,)

Using the concept of two phase sampling by following Rao and Sitter (1995), for given r and n, we have

E(go): E(gl): E(gz)Z E(’7 1)= E(’?z)ZO

and

E(&‘é)z(l/f)Cé, ( ) (J/n)C ( ) ( I’)CX, (50‘91) ( n) yXx: (50771)=(]/r) nyCf’ (51771) ( n)
where K, =p,, C, /Cy.

and to the first degree of approximation,

E(e2)= /) (8,(x)-1). E22 )= @) (8,(x)-1). Eleyns )= /) (8,(0)-1), Elege, )= /) 2o Eleg 1ma)= 6/r) 2

Eleye,)= ) 1Cy, Eleym,)=6/r) C,, Eleymy )= Wn) 7iCy Ely )= Wr) 1,
Thus we have following Lemmas:
Lemma 2.1: To the first degree of approximation,

E(v—1)=0 and E(v-1) = (l_lj c2
¥y n
Proof: We have

v-1=2r g

Xn

_ X(+m)
- )7(1+Zl)_1

=(L4m)Qre) -1
We assume that |81| < 150 that we may expand (1+ 81)—1 as a series in powers of ¢; . Expanding, multiplying out and neglecting

terms of 77, and &; having power greater than two we have

(V=1)=lp & + 22 -~y @.1)
Taking expectation of both sides of (2.1) we have

E(v-1)=0

Squaring both sides of (2.1) and neglecting terms of 77, and &, having power greater than two we have

(v-1) = (7712 +&f - 277151) (2.2)

Taking expectation of both sides of (2.3) we get
E(v-1) [1 1} cz.

y n
Hence the lemma.
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Lemma 2.2: To the first degree of approximation,

E(b—-1)=0 and E(b-1)° :(%—%j( ,(x)-1)

Proof: We have

Sx(n)
S)%(l+772)_1
2
SZ(l+e,)
=(L+m,)A+e,) " -1
We assume that |82| <1so that we may expand (1+ & )‘1 as a series in powers of &,. Expanding, multiplying out and

neglecting terms of 77, and &, having power greater than two we have

(b_l):(ﬂz_52+522_77252) (2.3)
Taking expectation of both sides of (2.3) we have

E(b-1)=0

Squaring both sides of (2.3) and neglecting terms of 77, and &, having power greater than two we have

(b —1)2 = (7722 + 522 - 2772£2> (2.4)

Taking expectation of both sides of (2.4) we get

E(b-1) = [;——y ,0)-1).

Thus the lemma is proved.
Lemma 2.3: To the first degree of approximation,

E{(b—l)(v—l)}»:(g-ij e,

Proof: We have
imq
X

(b-1)(v-1)= [i—l}

{ 1+772 } >?

1+g2 )?(1+£1

{(1+;72 J@+e,)t }{(1+771 1+gl) —1}
—{(l+772)(1 £2+82 ) }{(1+771 (l gl+512—...)—1}

= {(1+ Ty — &y — &7, +522 +g§772 +...)(1+ m—& —&m +512 +6‘127]1 +...)—1}
= 1, ~mmes —mpey + 218, + 02| (2.5)
Taking expectation of both sides of (2.5) we have

Ellb-1)(v-1) = [g—ijylc

which proves the lemma.
Lemma 2.4: To the first degree of approximation,

E{go(v—l)}:[%—%jnycf and  Eley (b )}:(E—ijzo

rn

VR

Proof: We have

. {(1+771)(1+«€1)_l —1}

=&y {(14—771)(1—51 +812 —...)—1}

=g\ 1+m—e —gn +€12 +812771+...—1}
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= |?71 —82 —77181 +812 +771812 +...J
which can be written as

E (V_1)=(50U1_5051)+0(52) (2.6)
Taking expectation of both sides of (2.6) we get
E{so (v—l)}:(%—%) KC?. (.7

where Ky, = p,x C, /C,
Similarly we can express

Eley (b_l)}:go{%_l}

(l+ gz)SX

=&y {(l+ 772) (1+ &y )71 —l}

=(50772 —8032)+0(Ez) (2.8)
Taking expectation of both sides of (2.8) we get
11
E{so (b_l)}:[F_H] Ao - (2.9)

which proves the lemma.
3. Some known Procedures of Imputation and Estimators

In this section we give some classical methods of imputation which are available in the literature.
3.1 Ratio Method of Imputation

Following the notations of Lee et al (1994), in the case of single value imputation, if the ith unit requires imputation, the value bxi

is imputed, where b; =" yi/z x; . The data after imputation becomes

ieD ieD
i if i D
Yo =16x if i e DC

3.1)

C
where Dand D™ denote the responding and non-responding units in the sample. This method of imputation is called the
ratio method of imputation. Under this method of imputation, the point estimator of the population mean is given by

I
Vo == Vi (32)
nia
:'%[:Z:yoi+'zzzyoi}
ieD ieD®

i=r+l

=y, — =ty (say) (3.3)
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3.2 Mean Method of Imputation
Under mean method of imputation, the data after imputation take the form :

Yi ifieD

Yi=q_ . c (3.4)
Y, ifieD

and the point estimator (3.2) becomes

_ 1 _

Ym=—2Yi=Y, (3.5)
IieD

3.3 Compromised method of Imputation
Singh and Horn (2000) suggested the compromised imputation procedure, where the data take the form,

aTnyi+(l—a)6xi if i D
oi —

1-a) X, if i e D 6)

where @ is a chosen constant, such that the variance of the resultant estimator is minimum. It is to be mentioned that this
procedure is also using information from imputed values for the responding units in addition to non-responding units. The point

estimator (3.2) of the population mean Y under compromised method of imputation becomes:

X
t=ay, +1l-a)y, =
Xr (3.7)
3.4 Power Transformation Method of Imputation
Singh and Deo (2003) proposed a power transformation imputation procedure, where the data take form:

Y, if i € D
_ o \a
Yisly, n()f—”] r if i  DC
(38)

where ¢ is a suitably chosen constant, such that the variance of the resultant estimator is minimum. The limitation of
adjusting responding units in the methods proposed by Singh and Horn (2000) and Singh et al (2001) has been removed under this
imputation procedure. The point estimator (2.2) of the population mean Y under proposed method of imputation becomes

t,=y {)_(” jal
2 — Yr| =
Xr (39)

For a; =0,1and —1, the point estimator t, respectively reduces to Y, , tg :yr()f—”j and t, = yr[f—f) Thus the
X X,

transformation method of imputation is some sort of compromise between mean, ratio and product methods of imputation.
3.5 Ahmed et al (2006) Methods of Imputation:

r

N
When the population mean X = ZXi /N of an auxiliary variable x is known, Ahmed et al (2006) have given the following
i=1
imputation procedures:

yi ifieD
—\
(A1) yii=9 1 ~ _L . i€ i DC (3.10)
(n—r) Xn
Yi ifieD
—\0
A2) Yy = 2
(A2) Y2 (nir){nyr (%j —ryr} ifieD®
r
(3.11)
Yi ifieD
(A3) Y3 = Vr+(:53r)(>7—>'<n) e (3.12)
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yi ifieD
A4 L= _ 3.13
( ) y4l yr + n54 (X _)—(r) I.I: | c DC ( )
(n—r)
y; ifieD
(AS) Vi = ¥, + N%% ()7+)‘<n)+ Ss(x, —%,) ifieDC (3.14)
(n-r)
y; ifieD
AB) V. = [ v X 1 3.15
(A.6) Y 1 _ ny, X _ .| ifieD® (3.15)
(n—r)_57xn +(@1-6,)X |
y, ifieD
A7 = i v X i 3.16
(A7) vy 1 _ ny, X __1, iticDC (3.16)
(N—r)| 5%, +(1- ) X |

where Yii denotes the ith available observation for the jth imputation method; and ¢;'s (i=1 to 7) are suitably chosen
constant, such that the variance(s) of the resulting estimator(s) is minimum.

The point estimator (3.2) of the population mean Y under proposed methods of imputation ((A.1) - (A.7)) respectively turn out to
be:

X\
ty = Vr[)-(—J (3.17)
X\
ty = Vr[)_(—] (3.18)
ts =¥, +63(X %) (3.19)
ty =Y, +5,(X—%,) (3.20)
t, =y, +65(X =%, )+ 8,(%, - %,) (3.21)
Y, X
tg = —
° o lex +@-8,)X] (3.22)
Y X
tg 2
5%, +=5,)X] (3:23)
It is to be mentioned that for O, =1 and -1, the class of estimators t, respectively reduces to:
try = yr[)_(i] (Ratio estimator) (3.24)
r
and
N )_(r .
ty =Y, 7 (Product estimator) (3.25)

When the population mean X of the auxiliary variable x is not known, Ahmed et al (2006) suggested the following
imputation procedures:

Yi ifieD
_ > \%
(A8) Vg = (ni r)[ny{;_nJ —rVr] i DC (3.26)
noy v |V ificD .
(A9) Y = )7,+59(xi—>‘<,) if i e DC (327)
ifieD
(A10) Y5 = y( )_(j (3.28)
o e s ; L g | ifieD® |
X X n-r
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The point estimator (3.2) of the population mean Y under suggested procedures of imputation ((A.8) - (A.10)) respectively
becomes:

to =Y, ()_(—mjgs (3.29)
. .

by =Y+ ()_(n - )_(r) (3.30)

t, = Yy (3.31)

{510)_(r + (1_ 10 ))_(n }
Here we note that the estimator tg at (3.29) is same as obtained by Singh and Deo (2003).
3.6 Shukla and Thakur (2008) Methods of Imputation

When the population mean X' of the auxiliary variable x is known, Shukla and Thakur (2008) suggested the following
method of imputation:

Yi ifieD

(1) Y=y Vi B . (3.32)
(n—r)[n¢1<k) r] ifieD
Yi ifieD

(S2) Yia=y ¥; (3.33)

[ng,(k)-r] ifieD®

(n-r)
and when the population mean X' of the auxiliary variable x is not known, Shukla and Thakur (2008) proposed the following
method of imputation:

. ifieD

A+C)X + fBX
o (A+C)X + B,
ay (A+ fB)X +CX,
4 (k)= {(A+C)x, + fBX,

SV (A+ 1B)X, +CX,
where A=(k-1)(k-2), B=(k-1)(k-4),C=(k-2)(k-3)(k—4), f =n/N and O<k <oo is a constant. Under the
imputation procedures ((S.1) —(S.3)), the point estimator (3.2) respectively becomes:

e e ——

t =Y, 4 (k) (3.35)
ty =Y, (k) (3.36)
ts =Y. ¢ (k) (3.37)

3.7 Pandey, Thakur and Yadav (2015) Methods of Imputation
Pandey et al (2015) three imputation strategies using known population mean X of the auxiliary variable X based on
exponential ratio-type estimator envisaged by Bahl and Tuteja (1991). Let Yij denote the ith available observations for the jth

imputation.
Yi ifieD
R R X _% 3.38
RRE R HLUTN %S (it I LR O L (339)
(n—r) X+X, ) n
Resulting point estimator of the population mean Y is

X =X
tig = Y, exp| =—— 3.39
16 Yy pEX“‘)_(nj ( )
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Yi ifieD

o J?o{

Resulting point estimator of the population mean Y is

X, — X
t,- =V, ex r n 3.40
17 = Yr P[ X, +X, J ( )

Vi ificD

el e .

Resulting point estimator of the population mean Y is

tm=7am{§‘§] (3.42)
X+

r

For further study in this context the reader are referred to Pandey and Yadav (2016, 2017, 2018) and Mohamed et al (2018).
4. Some Suggested General Methods of Imputation and their Estimators

In what follow, Yii denotes the ith available observation for the jth imputation method. We suggest the following imputation

procedures:
e When the population mean X of the auxiliary variable x is known:
Yi if ieD
Y= L{mc()_/rvu)_ ryr} if ieD® “
(n-r)
¢ When the population mean X of the auxiliary variable x is not known:
Vi if ieD
i=y 1 _ Y e 4.2
Yo =) 2 g (3, .v)- 17, if ieD° “2
(n-r)
¢ When the population mean X of the auxiliary variable x is known:
Yi if ieD
Yhi=y 1 - — i (4.3)
" m{”h(yr,w)—ryr} if i2D®

where I(yr,u), g(yr ,v) and h(yr,w) are the functions of (yr,u), (yr ,v) and (yr,w) respectively. The functions
I()_/r : u), g(yr ,v) and h(yr ,W) assume values in a bounded closed convex subset Q = R, ,which contain the point (\7,1) and
are such that

72)=¥ =17 2)= 20

r

=1, g(\?,l):V:gl(\?,l):agT() =1 and
(Y7,1) ayr (Y7,1)
=1
(r1)
The point estimators of the population mean Y under (4.1), (4.2) and (4.3) methods of imputation are respectively given by

(7 2)=¥ = by (7 1) 0

r

Vi =1(,.u), (4.4)

Vg =9V V), (4.5)
and y, =h(y,,w). (4.6)
Remark 4.1

It is to be mentioned that the point estimators
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|
LN

<
=
Il
<|
c

<l
-
D
Il
-
c

<l <

-

c
|
=

<|
—_
w
L

= {ﬁlu+(1 ﬂl)} ,
y,+b1(1 u) X, (4.7)
_ {(A+C)+IBU}
e (a+ B)+cul”

715, ool AL

V1 =AY+ ) yru?
7O =t =y exp[ 1Y

etc. are members of the family of estimators Y, given by (4.4), where «,f3;,b,, A=(k-1)(k-2), B=(k-1)(k —4),
C= (k - 2) (k —3) (k - 4), 0 < k < ooare constants and f =n/N . We note that the estimators Vl(g), y|(4) and )7|(5) are

=«
3—

<|
=L
(2]
2

due to Ahmed et al (2006) estimators while the estimators y,(ﬁ) and Vl(lo) due to Shukla and Thakur (2008) and Pandey et al

(2015) respectively.
Remark 4.2
The following point estimators

y&¥ = §,v, Singh and Horn(2000) estimator

y& =g,

¥ = a,§, +({L-a;)y,v 2, Singh and Horn(2000) estimator

yW =g,y -y, {a1v+(1—a1)}‘1,} Ahmed et al(2006) estimators

) =7, +b,(L-v) (4.8)
y7 =3, gﬁ:?&;ﬁﬁ Shukla and Thakur (2008),

5 enf20)

7 = ooy + e v

yio —t, =, exp[ +ﬂ Pandey et al (2015)

etc. are members of the family of estimators Vg given by (4.5), where ¢, f3;,b, are suitably chosen constants.
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Remark 4.3

It is to be noted that the estimators
7 =9wh 2 =g, 7 = 7w,
i =¥, +by1-w)X, Ahmed et al(2006) estimators
Y = §, +{owr L-w, )}

6 _y {(A+C)+ Bw}
"{(A+ B)+Cw}

1-
v =9, exp{“zgww)} (4.9)

Shukla and Thakur (2008),

=
I
<

etc. are members of the family of estimators Yy, given by (4.6), where ¢, ,Bl ,b3 are suitably chosen constants.
5. Biases and Mean Squared Errors of the Families of Estimators Y,y  and Y
To the first degree of approximation (ignoring finite population correction terms) the biases and mean squared errors of Y, ,Vg

and Y,, are respectively given by

B(3,)=(C2 /20){i,2(V, 1)+ 27K ,11,(7, 1)} (5.1)
B(_ ) {( r) ( )}( 2/2){922(Y_'1)+2Y_ny912(Y_’ 1)} (5.2)
B(7n) = (C2/2r ) {han(7, 1)+ 2VK 1y, (7, 1) 53)
MSE(y, )=(s2 /r)+(c 2/n) (2, (7, 2)+ 27k, ), (5.4)
MSE (7, )= (82 /r )+ {ayr)- @)y gz(Y 1) {o.07.2)+ 27k, ], (5.5)
MSE(7,) = @/r)ls? +C: hz(Y a7, 1) 27, |, (5.6)

where 1;(7,1), g;(V,1) and hy(¥,1) (i, j=12) denote the second order derivatives of the functions 1(.), g(.) and h(.)
respectively about the point (\7, 1). It is to be mentioned that the biases and mean squared errors of the estimators y,(‘), i=1to9,
ygj), i=1t010 and y,ﬂ'),i =110 9 can be obtained from {(5.1),(5.4)}, {(5.2), (5.5)}.and {(5.3),(5.6)} respectively just by
putting the values of derivatives {Iz(\?, 1). Ilz(\?, 1),I22(\7, 1)} {gz(\?, 1) glz(\?, 1) gzz(\?, 1)} and {h2 (\7, 1) hlz(\?, 1) hzz(\?, 1)} The
mean squared error of Y, yg and Y, respectively in (5.4), (5.5) and (5.6) are minimized for

1,(7,1)= g,(Y, 1) = hy (Y, 1)=—pX (5.7)
minMSE(y, )= S2|4/r) (1- o2 )+ {1/r)-@n)io? | | (5.8)
min.MSE(y, )= $2|/r) - p2 )+ @yn)o2 | (5.9)
min.MSE(y, )= (s2 /r) - p2) . (5.10)
Thus we state the following Theorem:

Theorem 5.1

To the first degree of approximation

(i) MSE(y))2 S2|/r) - o2 )+ {yr) - n)} |
with equality holding if 1,(Y,1)=—pX .

(i) MSE(7, )= SE|r) - o J+ Wn)od |

with equality holding if g,(V,1)=—pX .

(iii) MSE(y,)> (82 /r)l-p2 )

with equality holding if hz(Y , 1): —pX .
We also state the following theorem:
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Theorem 5.2

The suggested family of estimators )79 is more efficient than the family of estimators Y, at its optimum condition if r <n/2.

Proof:
From (4.8) and (4.9) we have

min.MSE(Y, )— min.MSE(y, )= S; {(2/n)- U/r)}p
which is less than ‘zero’ if
{2/n)-r)i<o
i.e.if (2/n)—(@/r)
ieif r<(n/2).
Thus the theorem is proved.
Theorem 5.3

The suggested family of estimators Y}, is the best among the families of estimators Y|, Yy and Y-

Proof:
From (5.8), (5.9) and (5.10) we have

min.MSE(y, ) min.MSE(y, )= S {(2/n)- (/r)}p%
which is less than ‘zero’ if

{2/n)-yr)i<o

i.e.if (2/n)—(/r)

ie if r<(n/2).

Thus the Theorem is proved.

min.MSE(¥, )— min.MSE(¥,, )= {{l/r)-@/n)}p% S’ >0, (5.11)
min.MSE(, )-min.MSE(7, )= /n)p2 2 > 0. (5.12)

From the above it is clear that the proposed family of estimators Y, has least MSE than the families of estimators Y, and Vg at

their optimum conditions. Hence the theorem.
6. Efficiency Comparisons When the Value of the Derivative Does Not Coincide With Its Optimum Value

6.1: To compare the family of estimators Y, with the conventional unbiased estimator Y, , the ratio estimator y,(l) =Y, ()?/)‘(n)

and the product estimator )_Il(z) =Y, ()_(n / X ) we write the variance of Y, and mean squared errors of )7,(1) and 7,(2) to the first
degree of approximation (ignoring finite correction factor) are respectively given by
Var(y,)=SZ/r . (6.1)

wSE(5) - 5 /e v2(c )2, ) ©2)
MsE(y® )= {s2 /r)+¥2(c2/n)a+ 2K, )} 6.3)

From (5.4), (6.1), (6.2) and (6.3) it is observed that the suggested family of estimators ¥, is more efficient than
(i) the conventional unbiased estimator Y if

min.(O,—ﬂ)?)<I2(\7, 1)< max.(O,—,b’)?), (6.4)
(ii) the usual ratio estimator Vl(l) if

min.{-RX, X (R—2)} < 1,V 1)< max.{-RX, X(R - 28)}, (65)
(iii) the usual product estimator yl(z) if

min.- RX ~X(R+28)}<1,(V, 1)< max {-RX,-X (R+28)} (6.6)

6.11: To compare the family of estimators Yy, with usual unbiased estimator Y, , usual ratio estimator yg =¥, (X, /X, ) and the

product estimator yg =¥,(X, /X,), we write the mean squared errors of yg) and y( )to the first degree of approximation,

respectively as

MsE(y®)=(s2 /r )+ ¥ {yr) - @n)ic2@ -2k, )|, 6.7)
(552 ) ¥l -t 2, )| ©9)
From (5.4) (6.1), (6.7) and (6.8) we note that the suggested family of estimators Y, is more efficient than ¥, , yél) and yéz)

respectively if the following inequalities:
min (0,— X )< g, (¥, 1)< max (0, AX), (6.9)
min.{-RX, X(R—24)}< g,(V, 1)< max.{-RX, X(R-24)}, (6.10)
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min.{- RX,—X (R+28)} < g, (7, 1) < max.{- RX,—X (R + 23)}. (6.11)
6.111: Further compare the family of estimators Y, with usual unbiased estimator Y, , usual ratio estimator yf(}) = yr(i/xr) and
the usual product estimator y,ﬂz) =y (‘ /)7) we write the

mean squared errors of yr(1 )and y,(] ) to the first degree of approximation, as MSE( ) [( 2/r){c (1 2K )}J

(6.12)

MSE(y®)=|V2/rficz + 2+ 2k, )| (6.13)

From (6.1) (6.12) and (6.13) it is easily observed that the proposed family of estimators Y, is better than
(i) the unbiased estimator y, if

min (0, X ) < h, (¥, 1)< max.(0, - BX ), (6.14)
(ii) usual ratio estimator y,ﬁl) if

min.{-RX, X(R—2)}< h, (¥, 1)< max.{-RX, X(R—2)}, (6.15)
(iii) usual product estimator y\?) if

min.{- RX —X (R +2/)} < h, (7, 1)< max.{- RX X (R + 23)} (6.16)

6.1V: Suppose the form of the estimators under (5.1), (5.2) and (5.3) are similar i.e. IZ(\?, 1): gz(\7, 1): hz(\?, 1). Then from
(5.4), (5.5) and (5.6) we note that the family of estimators Y}, is better than the families of estimators Y, and Vg if
min.(0,— 25X ) < h, (¥, 1) < max (0, - 28X ).

7. Estimators Based on Estimated optimum Values

It is to be mentioned that 22(\7, 1):—5)7 with z =1,g,h is seldom known in practice, hence it is worth advisable to replace this

by its estimated optimum value based on the sample data at hand. Since the optimum value of 22(\7, 1) is
2,(V,1)=—pX =5 (say) (7.1)
or §=-5,,X/s?

N

where S, =Z (xi - )?)(yi —V)/(N -1) .

i=1
Replacing S,, and 82 and X by their unbiased estimators

r r
Z X —%,) Z ¥, )/(r=1) and X, respectively in (7.1) we define a consistent estimate
i= i=
of O as
S ==k - (7-2)

Thus the following the procedure adopted by Singh and Tracy (2001) and Singh and Horn (2000), we define the following
imputation methods based on ‘estimated optimum’ value:

i -f -(ED
Ly :{y A " (7.3)

{nl*(yr,u,5)— ryr}/(n—r) if ieD®

v _{yi if ieD (7.4)
Yo, {ng*(yr,v,é)—r)‘/r}/(n—r) if isD°
Vi if ieD
W, = {{nh*(yr,w, 3)— ry, }/(n —r) ifieD® (79)
where 1" Y, u u,é), g*(yr,v 5) and h (y,,w 5)are the functions of (yr,u 5) (yr,v,é) and (y,,w, 5) respectively. The functions

I*(yr,u 3) g Ve, V, 5) and h (yr,w, 5) assume values in bounded closed convex subset Q* € R;, which contain the point
M = (Y_,l 5) and are such that

"M)=" (M)=h"(M)=¥ } 76

=1 (M)=g/(M)=h/(M)=1

1,(M)=g5(M)=hy(M)=-pX (7.7)
and I3(M)=g3(M)=hz(M)=0 (7.8)
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where z’}(M)with z"=1",g",h" and j=1,2,3; denote the first order partial derivative of the function z}

;(.) about the point

M=(Y15).

The point estimators of the population mean Y under (7.3), (7.4) and (7.5) methods of imputation are respectively given by

y|* = I*(yr!u1$)' (79)
Vg = a*(5,.v.8). (7.10)
Yo = h*(Vr W, 5)- (7.11)
Under the conditions (7.6) (7.7) and (7.8) it can be shown to the first degree of approximation that

MSE(y, )= 52 [f1- o2 )i+ @) -@n)iot |= minmse(, ), (.12)
MSE(y,: )= 5[l o2 )/rj+ (o3 /n)|= min.mse(, ). (7.13)
MSE (7, )= {526 p )/rf=min MSE(5,). (7.14)

It can easily be seen that the proposed family of estimators yh* is better than ylx and yg* .

8. Some Generalized Procedures of Imputation and Their Estimators
Let L(¥,,u,a),G(V,,v,b), H(¥,,w,d) be the functions of (¥,,u,a),(¥,,v,b) and (y,,w,d) respectively such that

L(Z)=Y = L(2)=1 6(2)=Y =G,(z)=1 and H(Z)=Y = H,(z)=1with Z=(V,11) and such that these satisfy the
following conditions:
1. Whatever be the sample chosen ()7r ,u,a),()_/r ,V,b) and (yr ,W,d) assume values in abounded closed convex subset, R*,

R™andR™ respectively of the three dimensional real space containing the point Z = (\7,1,1).

2.1n R",R™ and R™ respectively the functions L(y,,u,a),G(¥,,v,b) and H(y,,w,d) are continuous and bounded.
3. The first and second order partial derivatives of L(yr ,u,a),G(yr ,V,b) and H(y,,w,d) exist and are continuous and

bounded in R*,R™ and R respectively.
8.1: When the population mean X and mean square SX2 are known, we define the following imputation procedure as:

)i if ieD ot
o= (¥, ,u,a)-ry, }/(n—r) if ieD" 6D

8.11: When the population mean X and mean square Sfof the auxiliary variable x are not known, we define the following
imputation procedure as:

(v if ieD -
Yo = he(, b5, -r)  if ieD® 62

8.111: When the population mean X and mean square Sf are not known, w
e define another imputation procedure as:

Yi if ieD .
T = {H (., w,d)-ry,}/(n-r) if iecD® :
Under (8.1), (8.2) and (8.3) the point estimators of the population mean Y are
Yo = L(yr'u'a) ) (8.4)
Yo =G(¥,,v,b), (8.5)
Yu = H(Y,,w,d). ©56)

9. Properties of the Suggested Generalized Estimators Y, ,Yg and y,

9.1: To obtain the biases of the estimators Yy, ,Ys and Y, we further assume that third order partial derivatives of
L(y,,u,a),G(¥,,v,b) and H(y,,w,d)exist and are continuous and bounded. Then expanding L(¥,,u,a)G(y,,v,b) and
H(Yr ,W,d) about the point Z = (Y_,l,l) in a third order Taylor’s series we obtain:

F(2)+(¥, -V )F(2)+u—-1)F,(2)+(a—1)F,(2)

—2) {(u ~1)° Foa(2)+ (1) Faa(2)+ 20 1) (2 - DFa(2 )}

+2(y, =Y)(u-1) Fo(2)+2(y, -Y)(@a-1)F3(2)

7+(1/6>{(vr -V )B%Jr(ufl)%*(afl)%} F(y:u".a%)

(9.1)

<|
T
Il
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6(2)+(5, 7 6,(2)+ (v-16,(2)+ b-1)65(2)
e e ot i) |
(ue%(vr Vg5 b 1>§b}3 iy
— (93)

H(@)+ (7, -V Hi(2)+ (w-2)H,(2)+ ([d ~2)H4(2)
+(]/2){(W_1)2 Ho2(Z)+(d -1 Hys(2)+ 2(w-1)(d —2)H 23(2)}
+2(7r _V)(W_l H12(Z)+2(7r _V)(d ~1)H5(2)

085 V) -1 w00 5 o)

<l
T
I

where §; =Y +y (7, -Y),u" =14y (u-1),a" =1+y (@a-1),v =1+y " (v-1), W =1+yp " (W-1),b" =1+y"(b-1),
d"=1+yp"(d-1),0<y" <1.
L;(2).G;(z)H;(Z). j=123denote the first order partial derivatives of L()), G()) and H(.) about the point Z = (\7,],1). Noting
that L(Z)=G(Z)=H(Z)=Y,L(2)=G,(z)=H,(Z)=1 and expressing (8.7), (8.8) and (8.9) in terms of &y,&;,E5,71,7], We
have
()_/L —V):Vgo +&L,(2)+6,L5(2)+1/2) {512L22(Z)+ £3Las(Z )+ 268, L44(2)
+ Ny & Liy(Z)+2Veg &, Lis(2))
()_/G —Y_):Vgo +(771 —& +512 —U151b2(2)+(772 —& Jr“322 _Uzgzbs(z)
+ (1/2) {(771 - 51)2 Gzz(z)+ (772 —& )2 633(Z)+ 2(771 —51) (772 —& )st(z) (9.5)
+2Ys, (771 —31) Glz(z)+ 2\750( 72 —52)G13(Z)}
(VH —\7):\750 +771H2(Z)+’72H3(Z)+(1/2) {7712H22(Z)+7722H33(Z)+ 2m 1,
Hya(Z)+2Veq my Hyy(Z)++2Y2, 1, H13(Z)}
Taking expectation both sides of (9.4), (9.5) and (9.6) we obtain the biases of the estimators Y, , Y5 and Yy, up to the terms of
-1

(94)

(9.6)

order n

B(VL):(l/zn){Cszz( ) ( 2() )Laa( )+27’1C |—23( )

_ 9.7)
+2pyCy Cy Lip(Z)+2VA0L15(2)),
B(VG):(]/ZH){(VV) (]/n)}{ 2(322( ) ( 2(X) 1)633( )+271C st( ) 9.8)
+2Y_pyxcy Cx GlZ( )+2Yﬂ“OGl3( )}
B(VH):(]/Z") {szsz(Z)+( 2(X)—1) 33( )+271CXH23(Z) (9.9)
+2VpyCy Cy HpZ)+ 2V Hy,(2), '
Up to the terms of order n_l, the mean squared errors of Y, Y5 and y,, respectively are
MSE(YL) (yL _Y_)
— BN 268 +£213(2)+ £2L3(2)+ 2V e0e1 Ly (2)+ 202, L5 (Z) + 261251, (2) Ly (2)]
[ + G+ (300 20,2 ) 010)

+ 2Py CyCy Ly (2)+ 2V 20 Ly (2]
MSE (¥ )= E(yg -V )
— BV 22 + (- &, P GE(2)+ (1, - 2, FGR(Z)+ 2 — 1) (1, — £, )5,(2)54(2)

+ 2\750(771 —51)G2 (Z)+ 2\750(772 —& )63(2)}
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~ [Wr) S+ (/) - Wn)e26,,(2)+ (8,(0)-162(2)+ 21,C,G,(2) G4 (2)

+ 2 (9.11)
+2YpyXCyCXG2(Z)+ ZYﬂoGs(Z)}]
MSE(¥y )= E(7y ~Vf
= [(1/r)S§ +CIHZ(Z)+(B,(x)-DHE(Z)+2,C,H,(Z) Hy(2) (9.12)

+ 2, CyCyH, (2)+ 2V 2o H, (2 )]

Minimization of (9.10), (9.11) and (9.12) yield the optimum values of {L,(Z), Ls(Z)}, {G,(2),G,(2)} and {H,(Z), H4(Z)}
respectively as

L(2)=[RX/C)[{ors — £y y( () )}/(ﬂz(x) D))=y (Say)},

Ls (Z) [(RX (Pyxcy71 Ao )/( )] 0 (5
G, (Z) =V
) } , (9.14)

(9.13)

Hz(z):‘//}' (9.15)

Substitution of (1//,6’)in (9.10), (9.11) and (9.12) respectively yield the minimum mean squared errors of Y, ,Yg and Y,
respectively as

min.MSE(y, )= S2{y/r)-Wn)p% +4A) | (9.16)
min.MSE(Y ) = [2{/r)- /r)-@n)ip% +4) | (9.17)
min.MSE(V,, ) ( 2/r){[ (p +A)} (9.18)

Thus we state the following Theorem:
Theorem 9.1
To the first degree of approximation,

0.1 MSE(y, )= S2{i/r)-@n)p% +a)
with equality holding if
L,(Z)=ywand Ly(2)=46.
9. 11 MSE(Vs )2 [s2{/r)- (yr)- (n)ip2 + )|
with equality holding if
G,(z)=wand G4(2)=0.

9.1 MSE(yy)= (82 /r) - (02 +A))

with equality holding if
H,(Z)=wand Hy(Z)=6.
where 7 and @ are same as defined by (7.13).

Remark 9.1
The following estimators:

Vi = Yeu®a’ Vi) = Ve[l + alu-2)l/- pla-1)] Vi) = Ve L+ au-1)+ pla-1)}

Vi = Vril-alu -1)-pla-1)f™, Vi) = 1V, +alu-1)+ Bla-1)}

Yie) =Yr expla(u—1)+ sa-1)} Yi@) =Y exp{alog u+ S loga}, etc are members of the proposed family of estimators Vg,
where aand S are suitably chosen constants. The biases and mean squared errors of the estimators Yi(j), i=1t07 can be

easily obtained from (8.7) and (8.10) just by putting the suitable values of the derivatives L,(Z), L3(Z), Ly5(Z), Ly3(2), Lss(2).

Remark 9.2
The following estimators:

Yo = yvb”, Ye(2) = Vr [+ alv-1))/1- pla-1)}] Vo) = Yr i+ alv-1)+ pla-1),

Vet = Vr fl-alv-1)- b -1} Yoe) = {¥, +alv-1)+ po-1)}

Yo(e) = ¥r eXplalv—1)+ B 1)}, Yo(7) = ¥ explarlog v+ 5 logb}, etc are members of the family of estimators Y . The biases
and mean squared errors of the estimators Yo(j), i=1t07 can be easily obtained from (9.8) and (9.11) just by putting the values
of the derivatives G,(Z),G5(Z),G,,(Z),G,3(2).G44(2).
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Remark 9.3
The following estimators:

Yua) = YW d” Yy = ¥, [+ a(w-1)/L- Ad -1)]] V) = ¥, L+ alw-1)+ B(d - 1)}

Vua) = Ve f-alw=1)= 5(d =1} i) = {7, +alw-1)+ s(d -1)}

Yr(e) = ¥r eXpla(w—1)+ B(d —1)}, Y4¢7) = ¥, explarlog w+ B logd}, etc are members of the family of estimators Y, . The
biases and mean squared errors of the estimators y,,(;), j =1to 7 can be easily obtained from (9.9) and (9.12) just by putting the
values of the derivatives H,(Z),H3(Z), H,,(Z), H,3(2), Ha4(2).

It is to be mentioned that the families of estimators Y, ys and Y,, are very large.If the parameters in F(y,,u,a),G(y,,v,b) and

H()‘/r ,W,d) are so chosen that they satisfy (9.13), (9.14) and (9.15) respectively, the resulting estimators will have mean

squared errors given by (9.16), (9.17) and (9.18).
10. Estimators Based on Estimated Optimum Values

The optimum values of L, (Z) , L3(Z) given by (9.13) can be expressed as
v = ()?/Sf(r)) [{ﬂlzﬂos - ﬂll(ﬂo4 - Sf(r))}/(ﬂm - Sx(r)ﬂos - Sf(r))] }
6= {(ﬂllﬂoa - Sf(r)ﬂlz)}/(ﬂm - Sx(r)ﬂoa - Sf(r))

In practice the exact values of y?and 9 or the guessed values of y and @ closer to exact values of y and 6 may be rarely
known in practice, hence it is advisable to replace them by their estimates from sample values. The consistent estimates of { and

(10.1)

0 are respectively given by
= ()_(r/sf(r)) [{fﬁzﬁos - ,[‘11([104 - S)%(r))}/(;[l04 = Sy(r)ioz — Sf(r))] }

0= {(ﬁllﬂ% - 5)%(r)[‘12)}/(ﬁ04 = Sy(r)tos — S;l(r)) (10.2)
r
where i = (1/r)> (i —¥:)P(x %)%, (p.a) being non-negative integers.
j=1
Thus the imputation methods based on estimated optimum values (z/}, é) of (,0)are given by
i if ieD 103)
Yo = {nL*(Vr,u,a,y},é)— ry, }/(n— r) if ieD® '
i if ieD (104
G {nG*(Vr,v,b,y},é)— ry, }/(n -r) if ieD® '
; if ieD
Yi if ie (105)

Yni _{{nH*(Vr,W,d,y},é)— ry, }/(n—r) if ieD®
where L (yr ,u,a,y},é), G (yr ,v,b,y?,é) and H*(yr ,w,d ,g&,é) are the functions of (yr ,u,a,l/},é), (yr ,V,b,y},é) and
()7r w,d ,y},é) respectively such that
L'(J)=G"(3)=H"(0)=Y = Li(3)=Gi(3)=H:(3)=1
L;(3)=G:(3)=H;(3)=w,L5(3)=G:(3)=H;(3)=6 (10.6)
L:(3)=Gi(9)=H;(3)=0,L5(3)=G:(3)=H:(3)=0
where J = (yr ,1,1,1//,9),

G- 20 se-2Y -2 e -2 se-l
ef<J>=%(')J, - sl e0)-2l o)l
Hf<a>=%pJ,H;<a):%’“J wi0)- 2 i) 20 )2l

Under the imputation methods (10.3), (10.4) and (10.5) the point estimators of the population mean
Y as

Y- = L*(yr,u,a,y},@)

Vo = G*(yr,v, by, é) (10.8)

(10.7)
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yH* = H*(yr,W,d,l/;,é) (109)
It can be shown to the first degree of approximation that

MSE(7,- )= S2{yr)-Wn)p? +A)f=min MSE(7, ), (10.10)
MSE (7 ) =[5 /)~ 0/r)- @)% + )| = minMsE(ss ) (1011)
MSE(7,,- )=(S2 /r)1L- (% +A)}=minMSE(yy,). (10.12)

11. Efficiency Comparisons

From (10.10) and (10.11) we have

MSE (Y- )~ MSE(Y,+ ) = min.MSE(y ) — min.MSE(y, )

which is less than zero if

r<(n/2). (11.1)
From (10.10), (10.11) and (10.12) we have

MSE(Y,- )- MSE(y,,- )= {min.MSE(y, ) - min.MSE(y}, )}

= {yr)-wn)i ok +ak3 >0, (11.2)
MSE(y - )— MSE(, - )= {min.MSE( ) — min.MSE(y, )}
= (52/n)(o2 +a)0. (113)

From (11.2) and (11.3) it follows that the proposed family of estimators . (or y,, )is better than y,.(or ). Thus the family of
estimators VH*(or Vi ) is the best estimator among the families of estimators yl* (or )7|) \ yg*(or yg), Vh* (or Vh),
- (or y1). V- (or ¥ )and .- (or 91y ).

12. Conclusion

The proposed generalized procedure of imputation methods are theoretically sound and of notable importance. It covers
imputation methods reported by Singh and Horn (2000), Ahmed et al (2006),Shukla and Thakur (2008) and Pandey et al (2015)
and their point estimators of the population mean. The suggested imputation methods in (8.1) (or (10.3)), (8.2) (or (10.4)) and
(8.3) (or (10.5)) would be worth using when the relationship between study variate y and the auxiliary variate x is markedly non-
linear and (43, (x)— f, —1) is small. From the biases and MSEs of the resulting

families of estimators (Or Y ) y,lor yg*), Vi (Or Y~ ) y.(or y,-). Ve lor y4- Jand y, (or ¥,,-) of the proposed imputation

methods, the biases and MSEs of any estimator belonging to these families of estimators can be easily obtained just by inserting
the suitable values of the derivatives. Thus the envisaged procedure of imputation unifies several results. It is further noted that the
suggested imputation methods and the resulting families of estimators ¥, (or - ), Ve or V- )and vy, (or ¥,,- ) are more efficient

than those considered by Singh and Horn (2000), Ahmed et al (2006) , Shukla and Thakur (2008) and Pandey et al (2015). So the
envisaged imputation
procedures ¥, (or ¥,- )., ¥, lor yg*), Yalor v,- ). y.lor 9, ). Vs lor y- Jand 3, (or ¥, ) are put forward for their use in practice.
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