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1. Introduction 

In survey sampling for estimating the parameters it is commonly assumed that all the observations on selected units in the 

sample are available. This may not hold true in many practical situations encountered in sample surveys and some observations 

may be missing for various reasons, for instance see Toutenburg and Srivastava (1998). Imputation procedure is used to substitute 

values for missing data. In literature, various imputation procedures are available, some of them are better over others. 

Statisticians have recognized that for some time that failure to account for the stochastic nature of incompleteness can spoil 

inference. A natural question arises what one needs to assume to establish ignoring the incomplete mechanism. Rubin(1976)  

addressed three concepts: missing at random (MAR), observed at random (OAR) and parameter distribution (PD). Heitjan and 

Basu (1996) have distinguished the meaning of missing at random (MAR) and missing completely at random (MCAR) in a very 

acceptable way. In what follows MCAR is used in the present investigation. 

Let               be a finite population of N identifiable units taking values              on study variable y. Let x 

be an auxiliary variable taking the corresponding values              for the units            . We wish to estimate the 

population mean  ̅  ∑    ⁄ 
   

 of the study variable y. A simple random sample without replacement (SRSWOR), s of size n is 

drawn from the population U for estimating the population mean. Let r be the number of responding units out of sampled n units. 

Let the set of responding units be denoted by 

D and that of non-responding units be denoting by cD . For every unit Di , the value 
iy  is observed. However for the 

cDi , the 
iy  values are missing and imputed values are to be derived. We assume that imputation is carried out with the aid of 

quantitative auxiliary variable x, such that 
ix , the value of x for unit i, is known and positive for every si . In other words, the 

data  si:xs is   are known and cDDs  . 

In many situations the values of the auxiliary variable x may be available for each unit in the population. In such a case 

knowledge on population mean X  and variance 2
x (or population mean square 2

xS ) and possibly on some other parameters 

may be utilized simultaneously, for instance see Das and Tripathi (1978, 1981), Srivastava and Jhajj (1980, 1981), Jhajj et al 

(2005) and Singh and Agnihotri (2008). Thus it is worth to mention that the imputation may be carried out with the aid of 

quantitative auxiliary variable for which the data  si:xx is   and the population mean X  or variance 2
x  (or population 

mean square 2
xS ) or coefficient of variation 

xC  or both X  and 2
x  (or 2

xS ) are known.  

It is to be mentioned that assuming MACR Singh and Horn (2000), Ahmed et al (2006) and Shukla and Thakur (2008), 

Pandey et al (2015) have given some methods of imputation and considered their corresponding estimators for population mean 

Y of the variable y under investigation. In this paper following the same procedure as adopted by Srivastava (1971), Srivastava 

and Jhajj (1981) and Singh et al (2001) we have given some general procedure of imputation and derived their corresponding 
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families of estimators of the population mean Y . It is interesting to note that this study unifies the imputation procedures of Singh 

and Horn (2000), Singh and Deo (2003), Ahmed et al (2006), Shukla and Thakur (2008) and Pandey et al (2015). 

2. Notations and Useful Results 

For simplicity we assume that population size N is very large as compared to sample size r and n so that finite population 

correction (fpc) terms are ignored. In what follows we shall use the following notations: 
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Using the concept of two phase sampling by following Rao and Sitter (1995), for given r and n, we have  

          021210   EEEEE  

and  
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where xyyxyx CCK  .  

and to the first degree of approximation, 
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Thus we have following Lemmas: 

Lemma 2.1:  To the first degree of approximation, 
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We assume that 11  so that we may expand   1
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   as a series in powers of 1 . Expanding, multiplying out and neglecting 

terms of 1 and 1  having power greater than two we have 
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Taking expectation of both sides of (2.1) we have  
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Taking expectation of both sides of (2.3) we get 
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Hence the lemma. 
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Lemma 2.2:  To the first degree of approximation, 
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We assume that 12  so that we may expand   1
21


   as a series in powers of 2 . Expanding, multiplying out and 

neglecting terms of 2 and 2  having power greater than two we have 
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Taking expectation of both sides of (2.3) we have  
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Squaring both sides of (2.3) and neglecting terms of 2 and 2  having power greater than two we have 
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Taking expectation of both sides of (2.4) we get 
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Thus the lemma is proved. 

Lemma 2.3:  To the first degree of approximation, 
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Taking expectation of both sides of (2.5) we have  
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which proves the lemma. 

Lemma 2.4:  To the first degree of approximation, 
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which can be written as 
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Taking expectation of both sides of (2.6) we get  
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where xyyxyx CCK   

Similarly we can express  
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Taking expectation of both sides of (2.8) we get  
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which proves the lemma. 

3. Some known Procedures of Imputation and Estimators  

In this section we give some classical methods of imputation which are available in the literature. 

3.1 Ratio Method of Imputation 

Following the notations of Lee et al (1994), in the case of single value imputation, if the ith unit requires imputation, the value xib̂  

is imputed, where  
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where D and 
CD  denote the responding and non-responding units in the sample. This method of imputation is called the 

ratio method of imputation. Under this method of imputation, the point estimator of the population mean is given by 
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3.2 Mean Method of Imputation 

Under mean method of imputation, the data after imputation take the form : 












C
r

i

i
Diify

Diify
y.                                                                                                                                                   (3.4) 

and the point estimator (3.2) becomes 
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3.3 Compromised method of Imputation 

Singh and Horn (2000) suggested the compromised imputation procedure, where the data take the form, 
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where  is a chosen constant, such that the variance of the resultant estimator is minimum. It is to be mentioned that this 

procedure is also using information from imputed values for the responding units in addition to non-responding units. The point 

estimator (3.2) of the population mean Y  under compromised method of imputation becomes: 
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3.4 Power Transformation Method of Imputation 

Singh and Deo (2003) proposed a power transformation imputation procedure, where the data take form: 
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where 1  is a suitably chosen constant, such that the variance of the resultant estimator is minimum. The limitation of 

adjusting responding units in the methods proposed by Singh and Horn (2000) and Singh et al (2001) has been removed under this 

imputation procedure. The point estimator (2.2) of the population mean Y  under proposed method of imputation becomes 
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For 101 , and 1 , the point estimator 2t  respectively reduces to ry , 
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transformation method of imputation is some sort of compromise between mean, ratio and product methods of imputation. 

3.5 Ahmed et al (2006) Methods of Imputation: 

When the population mean 
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(A.4)  
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where jiy  denotes the ith available observation for the jth imputation method; and si ' (i=1 to 7) are suitably chosen 

constant, such that the variance(s) of the resulting estimator(s) is minimum. 

The point estimator (3.2) of the population mean Y  under proposed methods of imputation ((A.1) - (A.7)) respectively turn out to 

be: 
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It is to be mentioned that for 12   and -1, the class of estimators 2t respectively reduces to: 
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When the population mean X  of the auxiliary variable x is not known, Ahmed et al (2006) suggested the following 

imputation procedures: 
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The point estimator (3.2) of the population mean Y  under suggested procedures of imputation ((A.8) - (A.10)) respectively 

becomes: 
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Here we note that the estimator 8t  at (3.29) is same as obtained by Singh and Deo (2003). 

3.6 Shukla and Thakur (2008) Methods of Imputation 

When the population mean X  of the auxiliary variable x is known, Shukla and Thakur (2008) suggested the following 

method of imputation: 
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and  when the population mean X  of the auxiliary variable x is not known, Shukla and Thakur (2008) proposed the following  

method of imputation: 
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where    21  kkA ,    41  kkB ,      432  kkkC , Nnf   and  k0  is a constant. Under the 

imputation procedures ((S.1) –(S.3)), the point estimator (3.2) respectively becomes: 

 kyt r 113                                                                                                                                                                                (3.35) 

 kyt r 214                                                                                                                                                                               (3.36) 

 kyt r 315                                                                                                                                                                               (3.37) 

3.7 Pandey, Thakur and Yadav (2015) Methods of Imputation 

Pandey et al (2015) three imputation strategies using known population mean X  of the auxiliary variable x  based on 

exponential ratio-type estimator envisaged by Bahl and Tuteja (1991). Let ijy  denote the ith available observations for the jth 

imputation. 
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Resulting point estimator of the population mean Y is 
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Resulting point estimator of the population mean Y is 
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Resulting point estimator of the population mean Y is 
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For further study in this context the reader are referred to Pandey and Yadav (2016, 2017, 2018) and Mohamed et al (2018).      

4. Some Suggested General Methods of Imputation and their Estimators 

In what follow, jiy  denotes the ith available observation for the jth imputation method. We 
suggest the following imputation 

procedures: 
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where  uyl r , ,  v,yg r  and  w,yh r  are the functions of  u,yr ,  v,yr  and  w,yr  respectively. The functions
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The point estimators of the population mean Y under (4.1), (4.2) and (4.3) methods of imputation are respectively given by 
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etc. are members of the family of estimators ly  given by (4.4), where 11 b,, ,    21  kkA ,    41  kkB , 

       k,kkkC 0432 are constants and Nnf  . We note that the estimators 
 3
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                                                                      (4.8) 

etc. are members of the family of estimators gy  given by (4.5), where 211 b,,  are suitably chosen constants. 
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Remark 4.3 

It is to be noted that the estimators 
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                                                                          (4.9) 

etc. are members of the family of estimators hy  given by (4.6), where 311 b,,  are suitably chosen constants. 

5. Biases and Mean Squared Errors of the Families of Estimators gl y,y  and hy  

To the first degree of approximation (ignoring finite population correction terms) the biases and mean squared errors of gl y,y  

and hy  are respectively given by 

        ,1,21,2 1222
2 YlKYYlnCyB yxxl                                                                                                                                    (5.1) 

             ,1,21,211 1222
2 YgKYYgCnryB yxxg                                                                                                              (5.2) 

        ,1,21,2 1222
2 YhKYYhrCyB yxxh                                                                                                                                  (5.3) 

           ,21,1, 22
22

yxxyl KYYlYlnCrSyMSE                                                                                                                    (5.4) 

              ,21,1,11 22
22

yxxyg KYYgYgCnrrSyMSE                                                                                                  (5.5) 

         ,21,1,1 22
22

yxxyh KYYhYhCSryMSE    (5.6) 

where  1,Ylij ,  1,Ygij  and    2,1,,1, jiYhij  denote the second order derivatives of the functions  .l ,  .g  and  .h

respectively about the point  1,Y . It is to be mentioned that the biases and mean squared errors of the estimators  
91, toiy i

l  , 

  101 toi,y j
g   and 

  91 toi,y l
h   can be obtained from {(5.1),(5.4)}, {(5.2), (5.5)},and {(5.3),(5.6)} respectively just by 

putting the values of derivatives       1,,1,,1, 22122 YlYlYl ,       1,,1,,1, 22122 YgYgYg  and       1,,1,,1, 22122 YhYhYh . The 

mean squared error of gl y,y and hy  respectively in (5.4), (5.5) and (5.6) are minimized for 

      XYhYgYl  1,1,1, 222                                                                                                                                               
(5.7) 

           222 1111.min yxyx nrrSyMSE yl     ,                                                                                                                 (5.8) 

        222 111.min yxyx nrSyMSE yg     ,                                                                                                                             (5.9) 

    22 1.min yxrSyMSE yh   .                                                                                                                                                 (5.10) 

Thus we state the following Theorem: 

Theorem 5.1 

To the first degree of approximation 

(i)            222 1111 yxyx nrrSyMSE yl    

with equality holding if   XYl 1,2 . 

(ii)         222 111 yxyx nrSyMSE yg    

with equality holding if   XYg 1,2 . 

(iii)     22 1 yxrSyMSE yh   

with equality holding if   XYh 1,2 . 

We also state the following theorem: 
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Theorem 5.2 

The suggested family of estimators gy is more efficient than the family of estimators ly at its optimum condition if 2nr  . 

Proof: 

From (4.8) and (4.9) we have  

    hg yMSEyMSE .min.min      22 12 yxrnS y   

which is less than ‘zero’ if  

        
     012  rn  

i.e. if     rn 12   

i.e. if   2nr  . 

Thus the theorem is proved. 

Theorem 5.3 

The suggested family of estimators hy  is the best among the families of estimators ly , gy  and hy .  

Proof: 

From (5.8), (5.9) and (5.10) we have  

    hg yMSEyMSE .min.min      22 12 yxrnS y   

which is less than ‘zero’ if  

     012  rn  

i.e. if    rn 12   

i.e. if  2nr  . 

Thus the Theorem is proved. 

         011.min.min 22  yhl SnryMSEyMSE yx ,                                                                                                          (5.11) 

      01.min.min 22  yhg SnyMSEyMSE yx .                                                                                                                      (5.12) 

From the above it is clear that the proposed family of estimators hy  has least MSE than the families of estimators  ly and gy  at 

their optimum conditions. Hence the theorem. 

6. Efficiency Comparisons When the Value of the Derivative Does Not Coincide With Its Optimum Value  

6.I:  To compare the family of estimators ly with the conventional unbiased estimator ry , the ratio estimator    nrl xXyy 1  

and the product estimator 
   Xxyy nrl 2

 we write the variance of ry
 
and mean squared errors of  1

ly  and  2
ly  to the first 

degree of approximation (ignoring finite correction factor) are respectively given by 

  rSyVar yr
2  ,                                                                                                                                                                        (6.1) 

        yxxyl KnCYrSyMSE 212221                                                                                                                        (6.2) 

        yxxyl KnCYrSyMSE 212222                                                                                                                       (6.3) 

From (5.4), (6.1), (6.2) and (6.3) it is observed that the suggested family of estimators ly  is more efficient than  

(i) the conventional unbiased estimator ry  if 

     XYlX   ,0.max1,,0.min 2 ,                                                                                                                                       (6.4) 

(ii) the usual ratio estimator 
 1
ly  if   

        2,.max1,2,.min 2  RXXRYlRXXR ,                                                                                                         (6.5) 

(iii) the usual product estimator  2
ly  if   

        2,.max1,2,.min 2  RXXRYlRXXR                                                                                                       (6.6) 

6.II:  To compare the family of estimators gy  with usual unbiased estimator ry , usual ratio estimator    rnrg xxyy 1  and the 

product estimator    nrrg xxyy 2 , we write the mean squared errors of  1
gy  and  2

gy to the first degree of approximation, 

respectively as  
            yxxyg KCnrYrSyMSE 2111 221  ,                                                                                                                      (6.7) 

            yxxyg KCnrYrSyMSE 2111 222  .                                                                                                                       (6.8) 

From (5.4) (6.1), (6.7) and (6.8) we note that the suggested family of estimators ly  is more efficient than ry ,
 1
gy  and 

 2
gy

respectively if the following inequalities: 

     XYgX   ,0.max1,,0.min 2 ,                                                                                                                                      (6.9) 

        2,.max1,2,.min 2  RXXRYgRXXR ,                                                                                                      (6.10) 
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        2,.max1,2,.min 2  RXXRYgRXXR .                                                                                                 (6.11) 

6.III:  Further compare the family of estimators hy  with usual unbiased estimator ry , usual ratio estimator    rrh xXyy 1  and 

the usual product estimator 
   Xxyy rrh 
2

, we write the  

mean squared errors of 
 1
hy and 

 2
hy  to the first degree of approximation, as         yxxyh KCCrYyMSE 212221  ,                                                                               

(6.12) 
        yxxyh KCCrYyMSE 212222  .                                                                                                                                     (6.13) 

From (6.1) (6.12) and (6.13) it is easily observed that the proposed family of estimators hy  is better than  

(i) the unbiased estimator ry  if 

     XYhX   ,0.max1,,0.min 2 ,                                                                                                                                   (6.14) 

(ii) usual ratio estimator 
 1
hy  if   

        2,.max1,2,.min 2  RXXRYhRXXR ,                                                                                                    (6.15) 

(iii) usual product estimator  2
hy  if   

        2,.max1,2,.min 2  RXXRYhRXXR                                                (6.16) 

6.1V:  Suppose the form of the estimators under (5.1), (5.2) and (5.3) are similar i.e.      1,1,1, 222 YhYgYl  . Then from 

(5.4), (5.5) and (5.6) we note that the family of estimators hy  is better than the families of estimators ly and gy if 

     XYhX  2,0.max1,2,0.min 2  . 

7. Estimators Based on Estimated optimum Values 

It is to be mentioned that   XYz 1,2 with hglz ,,  is seldom known in practice, hence it is worth advisable to replace this 

by its estimated optimum value based on the sample data at hand. Since the optimum value of  1,2 Yz  is 

   sayXYz  1,2                                                                                                                                                              
(7.1) 

or 2
xxy SXS , 

where      




N

i

iixy NYyXxS

1

1 . 

Replacing xyS  and 
2
xS  and X  by their unbiased estimators  

 
   





r

i

ri rxxS
rx

1

22 1 ,
 

     




r

i

riri ryyxxS
rxy

1

1 and rx  respectively in (7.1) we define a consistent estimate 

of   as 

  rr x ˆˆ   .                                                                                                                                                                                 (7.2) 

Thus the following the procedure adopted by Singh and Tracy (2001) and Singh and Horn (2000), we define the following 

imputation methods based on ‘estimated optimum’ value: 

I. 
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Diifrnyruynl

Diify
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ˆ,,*
*
1

                                                                                                                         (7.3) 

II. 
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Diifrnyrvyng

Diify
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ˆ,,*
*
1

                                                                                                                       (7.4) 

III. 
    








c
rr

i

h
Diifrnyrwynh

Diify
y





ˆ,,*
*
1

                                                                                                                       (7.5) 

where  ̂,,* uyl r ,  ̂,,* vyg r  and  ̂,,* wyh r are the functions of  ̂,,uyr ,  ̂,,vyr  and  ̂,, wyr  respectively. The functions

 ̂,,* uyl r ,  ̂,,* vyg r  and  ̂,,* wyh r  assume values in bounded closed convex subset 3RQ*  , which contain the point  

 ,,YM 1  and are such that 

        

     

      









1*
1

*
1

*
1

***

MhMgMl

YMhMgMl
                                                                                                                                            (7.6) 

       
      XMhMgMl  *

2
*
2

*
2                                                                                                                                              (7.7) 

and       0*
3

*
3

*
3  MhMgMl                                                                                                                                                    (7.8) 
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where  Mz j
* with **** ,, hglz   and 3,2,1j ; denote the first order partial derivative of the function   .*

jz  about the point 

 ,1,YM  . 

The point estimators of the population mean Y  under (7.3), (7.4) and (7.5) methods of imputation are respectively given by  

 ̂,,*
* uyly rl
 .                                                                                                                                                                        (7.9)                                                                                            

 ̂,,*
* vygy rg
 .                                                                                                                                                                      (7.10)                                                                                            

 ̂,,*
* wyhy rh
 .                                                                                                                                                                      (7.11) 

Under the conditions (7.6) (7.7) and (7.8) it can be shown to the first degree of approximation that  

            fyl
yMSEnrrSyMSE yxyx .min111 222

*   ,                                                                                                (7.12) 

         gyg
yMSEnrSyMSE yxyx .min1 222

*   ,                                                                                                              (7.13) 

      hyh
yMSErSyMSE yx .min1 22

*   .                                                                                                                                (7.14) 

It can easily be seen that the proposed family of estimators *h
y  is better than *l

y  and *g
y  . 

8. Some Generalized Procedures of Imputation and Their Estimators 

Let      dwyHbvyGauyL rrr ,,,,,,,,  be the functions of    bvyauy rr ,,,,, and  dwyr ,,  respectively such that 

    ,11  ZLYZL     11  ZGYZG  and     11  ZHYZH with  1,1,YZ   and such that these satisfy the 

following conditions: 

1. Whatever be the sample chosen    b,v,y,a,u,y rr and  d,w,yr  assume values in abounded closed convex subset,
*R ,

**R and
***R respectively of the three dimensional real space containing the point  1,1,YZ  .  

2. In 
*R ,

**R and
***R  respectively the functions    bvyGauyL rr ,,,,,

 
and  dwyH r ,,  are continuous and bounded. 

3. The first and second order partial derivatives of    b,v,yG,a,u,yL rr
 
and  dwyH r ,,  exist and are continuous and 

bounded in 
*R ,

**R and
***R  respectively. 

8.I: When the population mean X  and mean square 
2
xS  are known, we define the following imputation procedure as: 
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                                                                                                                      (8.1) 

8.II: When the population mean X  and mean square 
2
xS of the auxiliary variable x are not known, we define the following 

imputation procedure as: 
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                                                                                                                    (8.2) 

8.III: When the population mean X  and mean square 
2
xS  are not known, w 

e define another imputation procedure as: 
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                                                                                                                  (8.3) 

Under (8.1), (8.2) and (8.3) the point estimators of the population mean Y are  

       
 auyLy rL ,,  ,                                                                                                                                                                    (8.4) 

        bvyGy rG ,, ,                                                                                                                                                                     (8.5) 

        dwyHy rH ,, .                                                                                                                                                                   (8.6) 

9. Properties of the Suggested Generalized Estimators GL yy ,  and Hy  

9.I: To obtain the biases of the estimators GL yy ,  and Hy we further assume that third order partial derivatives of 

   bvyGauyL rr ,,,,,
 

and  dwyH r ,, exist and are continuous and bounded. Then expanding    bvyGauyL rr ,,,,,
 

and 

 dwyH r ,,  about the point  1,1,YZ   in a third order Taylor’s series we obtain: 
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where  YyYy rr  **  ,  11 **  uu  ,  11 **  aa  ,  ,11 **  vv    11 **  ww  ,  11 **  bb  ,

 11 **  dd  , 10 *  . 

      3,2,1,,, jZHZGZL jjj denote the first order partial derivatives of    .,. GL  and  .H  about the point  1,1,YZ  . Noting 

that       YZHZGZL  ,       1111  ZHZGZL  and expressing (8.7), (8.8) and (8.9) in terms of 21210  ,,,,  we 

have 
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                                                                     (9.5) 
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                                                                         (9.6) 

Taking expectation both sides of (9.4), (9.5) and (9.6) we obtain the biases of the estimators GL y,y  and Hy  up to the terms of 

order 
1n  
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Up to the terms of order 
1n , the mean squared errors of GL yy ,  and Hy  respectively are  
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                                                              (9.11) 
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                                                                            (9.12) 

Minimization of (9.10), (9.11) and (9.12) yield the optimum values of          ZGZGZLZL 3232 ,,,  and     ZH,ZH 32

respectively as 
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and 
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2
.                                                                                                                                                                              (9.15) 

Substitution of   , in (9.10), (9.11) and (9.12) respectively yield the minimum mean squared errors of GL y,y  and Hy  

respectively as 

        22 11.min yxnrSyMSE yL    ,                                                                                                                                (9.16) 

           22 111.min yxnrrSyMSE yG    ,                                                                                                                   (9.17) 

       22 1.min yxrSyMSE yH  .                                                                                                                                       (9.18) 

Thus we state the following Theorem: 

Theorem 9.1  

To the first degree of approximation, 

9. I         22 11 yxnrSyMSE yL   

       with equality holding if 

         ZL2 and   ZL3 . 

9. II            22 111 yxnrrSyMSE yG   

       with equality holding if 

         ZG2 and   ZG3 . 

9. III         22 1 yxrSyMSE yH   

          with equality holding if 

          ZH2 and   ZH3 . 

where   and   are same as defined by (7.13).   

Remark 9.1 

The following estimators: 

                 

             ,11,111

,111,1111,

5
1

4

321






auyyauyy

auyyauyyauyy

rLrL

rLrLrL





 

          ,loglogexp,11exp 76 auyyauyy rLrL    etc are members of the proposed family of estimators Fy , 

where  and   are suitably chosen constants. The biases and mean squared errors of the estimators   71, tojy jL   can be 

easily obtained from (8.7) and (8.10) just by putting the suitable values of the derivatives          ZLZLZLZLZL 33232232 ,,,, . 

Remark 9.2 

The following estimators: 

                 

             ,11,111
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5
1
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321
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avyyavyybvyy

rGrG

rGrGrG





 

          ,loglogexp,11exp 76 bvyybvyy rGrG    etc are members of the family of estimators Gy . The biases 

and mean squared errors of the estimators   71, tojy jG   can be easily obtained from (9.8) and (9.11) just by putting the values 

of the derivatives          ZGZGZGZGZG 33232232 ,,,, . 
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Remark 9.3 

The following estimators: 

                 

             ,11,111

,111,1111,

5
1

4

321






dwyydwyy

dwyydwyydwyy

rHrH

rHrHrH





 

          ,loglogexp,11exp 76 dwyydwyy rHrH    etc are members of the family of estimators Hy . The 

biases and mean squared errors of the estimators   71, tojy jH   can be easily obtained from (9.9) and (9.12) just by putting the 

values of the derivatives          ZHZHZHZHZH 33232232 ,,,, . 

It is to be mentioned that the families of estimators GF yy ,  and Hy  are very large.If the parameters in    bvyGauyF rr ,,,,,
 
and 

 d,w,yH r  are so chosen that they satisfy (9.13), (9.14) and (9.15) respectively, the resulting estimators will have mean 

squared errors given by (9.16), (9.17) and (9.18). 

10. Estimators Based on Estimated Optimum Values 

The optimum values of    ZLZL 32 ,  given by (9.13) can be expressed as  
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In practice the exact values of ̂ and ̂  or the guessed values of   and   closer to exact values of  and   may be rarely 

known in practice, hence it is advisable to replace them by their estimates from sample values. The consistent estimates of  and 

  are respectively given by  
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where
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being non-negative integers. 

Thus the imputation methods based on estimated optimum values   ˆ,ˆ  of   , are given by 
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where   ˆ,ˆ,a,u,yL r
*

,   ˆ,ˆ,b,v,yG r
*

 and   ˆ,ˆ,d,w,yH r
*

 are the functions of   ˆ,ˆ,a,u,yr ,   ˆ,ˆ,b,v,yr  and

  ˆ,ˆ,d,w,yr  respectively such that 
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where
 

  ,,,,yJ r 11 , 

 
 

Jry

L
JL






.*
*
1 ,   

 

J
u

L
JL






.*
*
2  ,  

 

J
a

L
JL






.*
*
3 ,  

 

J

L
JL

̂

.*
*
4




  ,  

 

J

L
JL

̂

.*
*
5




 ,  

 
 

Jry

G
JG






.*
*
1 ,   

 

J
v

G
JG






.*
*
2  ,  

 

J
b

G
JG






.*
*
3 ,  

 

J

G
JG

̂

.*
*
4




  ,  

 

J

G
JG

̂

.*
*
5




 ,  

 
 

Jry

H
JH






.*
*
1 ,  

 

J
w

H
JH






.*
*
2  ,  

 

J
d

H
JH






.*
*
3 ,  

 

J

H
JH

̂

.*
*
4




  ,  

 

J

H
JH

̂

.*
*
5




 .  

Under the imputation methods (10.3), (10.4) and (10.5) the point estimators of the population mean  

Y as  

  ˆ,ˆ,,,*
* auyLy rL
                                                                                                                                                                    (10.7) 

  ˆ,ˆ,,,*
* bvyGy rG
                                                                                                                                                                  (10.8)  
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  ˆ,ˆ,,,*
* dwyHy rH
                                                                                                                                                               (10.9) 

It can be shown to the first degree of approximation that  

         LyL
yMSEnrSyMSE yx .min11 22

*   ,                                                                                                             (10.10) 

            GyG
yMSEnrrSyMSE yx .min111 22

*     ,                                                                                               (10.11) 

        HyH
yMSErSyMSE yx .min1 22

*   .                                                                                                                  (10.12) 

11. Efficiency Comparisons 

From (10.10) and (10.11) we have 

       LGLG
yMSEyMSEyMSEyMSE .min.min**  ,                                                   

which  is less than zero if 

 2nr  .                                                                                                                                                                                      (11.1) 

From (10.10), (10.11) and (10.12) we have  

        

       ,011

.min.min

22

**





y

HLHL

Snr

yMSEyMSEyMSEyMSE

yx                                                                                                        (11.2) 

        

    .0

.min.min

22

**





yxnS

yMSEyMSEyMSEyMSE

y

HGHG


                                                                                                      

(11.3) 

From (11.2) and (11.3) it follows that the proposed family of estimators  HH
yory * is better than  hh

yory * . Thus the family of 

estimators  HH
yory *  is the best estimator among the families of estimators  l*l

yory  ,  gg
yory * ,  h*h

yory , 

 LL
yory * ,  GG

yory * and  HH
yory * . 

12. Conclusion 

The proposed generalized procedure of imputation methods are theoretically sound and of notable importance. It covers 

imputation methods reported by Singh and Horn (2000), Ahmed et al (2006),Shukla and Thakur (2008) and Pandey et al (2015) 

and their point estimators of the population mean. The suggested imputation methods in (8.1) (or (10.3)), (8.2) (or (10.4)) and 

(8.3) (or (10.5)) would be worth using when the relationship between study variate y and the auxiliary variate x is markedly non-

linear and   112   x  is small. From the biases and MSEs of the resulting 

 families of estimators  *ll yory ,  *gg yory ,  *hh yory ,  *LL yory ,  *GG yory and  *HH yory  of the proposed imputation 

methods, the biases and MSEs of any estimator belonging to these families of estimators can be easily obtained just by inserting 

the suitable values of the derivatives. Thus the envisaged procedure of imputation unifies several results. It is further noted that the 

suggested imputation methods and the resulting families of estimators  *LL yory ,  *GG yory and  *HH yory  are more efficient 

than those considered by Singh and Horn (2000), Ahmed et al (2006) , Shukla and Thakur (2008) and Pandey et al (2015). So the 

envisaged imputation  

procedures  *ll yory ,  *gg yory ,  *hh yory ,  *LL yory ,  *GG yory and  *HH yory  are put forward for their use in practice.  
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