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1. Introduction 

In seismic exploration, numerical modeling plays an 

important role in studying the propagation of wavefields 

through the medium (or media). These wavefields are 

produced by a seismic source, which can be explosive and so 

on. These sources produce successive controlled energy, that 

propagates through the surface to the interior of the Earth. 

The earth is a non-homogeneous system made up of different 

layers and comprising of different strata. The mechanical and 

chemical properties of the earth change due to the change in 

the temperature and pressure with depth, and this results in 

the formation of strata based on density difference. The least 

dense outermost layer, the crust experiences most of the 

dynamics. The dynamics experienced by the earth result in 

several phenomena and these phenomena are random and 

non-linear in nature. It is easier to study a simple 

homogeneous system analytically, but to study a complex 

non-homogeneous system especially for exploration and their 

consequent processing, and inverse algorithm, numerical 

modeling is being done or required. Different types of models 

and schemes have been developed over the decades to carry 

out numerical modelling of the earth like inite difference 

method (FDM) (Zhu and McMechan, 1991; Dai et al., 1995; 

Wenzlau and Muller, 2009; Itz´a  et  al.,  2016;  O’Brien,  

2010;  Anthony  and  Vedanti,  2020),  pseudo-spectral  

methods (Carcione, 1996b,a; Ozdenvar and McMechan, 

1997), finite element method (Roberts and Garboczi, 2002) 

and spectral element (Morency, 2008). The FDM has been 

widely accepted in Geophysics especially exploration 

seismilogy as a good technique for numerical modeling. This 

method is easy to implement since the derivatives are 

represented as finite differences. It converts both the linear 

and non-linear differential equations into a system of 

equations, which can be further solved by the system of 

algebraic equations and can be easily computed by the 

modern gadgets. Unlike in the collocated finite difference 

scheme, were variables are defined at the same point on the 

grid, In the Staggered Grid Finite difference method (SGFD), 

variables are defined at different points on the grid. The stag- 

gered grid finite difference method which is placed halves the 

grid spacing, improves the accuracy and stability of the 

approximation. In this research work, we applied the SGFD 

to solved the coupled acoustic wave equation and truncate the 

artificial reflections from our computation boundary using 

perfectly match layer absorbing boundary conditions. 

2. Theory 

The first-order velocity-stress acoustic wave equation 

can be described as 
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where P is the acoustic pressure, v is the wave 

propagation speed, ρ is the density and vx and vz are the 

particle velocities. 

Substituting the above equations, we get the second-

order acoustic wave equation which can be written as 
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3. Staggered Grid Finite difference Method 

The finite-difference (FD) method is a numerical 

methods or techniques most often ap- plied in geophysical 

research problems for wave propagation modelling (Virieux, 

1984, 1986; Bohlen, 2002). The main or key concept of the 

FD method is that differential operators (spatial and temporal) 

are approximated on a discrete mesh. The approximate 

solution of the differential equation(s) is usually obtained at 

the mesh grid points. 
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ABSTRACT 

Seismic wave propagation through acoustic medium allows us to understand response 

through a fluid saturated medium. This interaction has been described by the acoustic 

wave equation. In this work, the acoustic wave equation was written in coupled form and 

was discretized using the staggered grid finite difference (SGFD) method, which 

provides improved accuracy and efficiency of the numerical modeling and are naturally 

centered at the same point in space and time. To truncate artificial reflections from our 

computational boundary, we have applied the perfectly matched layer (PML) absorbing 

boundary condition. Our results show seismic wave propagating through a homogeneous 

medium and the effect of PML was clearly observed. 
                                                                                                      © 2022 Elixir All rights reserved. 

 

Elixir Space Sci. 163 (2022) 56079-56084 

Space Science 
 

Available online at www.elixirpublishers.com (Elixir International Journal) 

 



Emmanuel Anthony et al./ Elixir Space Sci. 163 (2022) 56079-56084 56080 

There are different types of finite difference schemes 

classified based on the stability, accuracy, and nature of the 

problem. Two of such schemes are: 

1. Collocated Grid Finite difference method 

2. Staggered Grid Finite difference method 

In the collocated finite difference scheme, variables are 

defined at the same point on the grid, whereas in the 

staggered grid, variables are defined at different points on the 

grid ( half point), as shown in Figure 1. Staggered grids are 

used to improve the accuracy and efficiency of the numerical 

modeling. One of the features that makes the staggered grid 

finite difference scheme outstanding compared to the 

collocated scheme is its ability to center differential operators 

naturally in space and time (Sheen et al., 2006).      

 

(a)Collocated grid 
 

(b) Staggered grid 

Figure 1. Collocated and staggered finite difference. 

To discretize the spatial derivatives of the governing 

equations, the staggered grids are used for variables and 

approximated by discrete operators. 

If a spatial grid is defined by 

                                          
(3) 

The staggered grid finite-difference operators in the              

x-direction is written as 
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where M  is the length of the FD operator, cm is the finite 

difference coefficients and the maximum number depends on 

the integer m 

The staggered grid finite difference method is used in 

this work. Equation (1) is discretized using the staggered grid 

finite difference method and is given by 

 

 

    
        

  
     

  
   

  
 

 
  

  
 

   
  

 

 
  

  
 

   
    

 

 

  
 

  

 
    

 

 

  
 

   

  
   

  
 

   
   

  
 

  
  

   
        

      
    

  
   

  
 

   
   

  
 

  
  

   
        

      
  

           (5) 

The discretized form of the acoustic wave equation with 

the addition of the perfectly matched layer (PML) absorbing 

boundary condition in equation (7) is given by 
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4. Absorbing boundary condition (ABC) 

To simulate an unbounded medium, ABC is often used to 

truncate reflections from the computational domain as seen in 

Figure 2. The perfectly matched layer(PML) proposed by 

Berenger (1994) is used in this research work to truncate the 

artificial reflections. This is given by 
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where R is the reflection coefficient and L is the 

thickness of the PML 

 
Figure 2. Computational domain and PML
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The acoustic wave equation given in equation (1) is 

reformulated to include the perfectly matched layer (PML) 

boundary condition and is given by 
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5. Numerical Examples 

We considered a uniform homogeneous model of 

dimension 2000m x 2000m with grid spacing or size of 10m 

on both side, time step of 0.2 ms, velocity of 2000 m
2
s and 

density of 2000 kg/m
3
. Ricker wavelet is used as an explosive 

source with a dominant frequency of 10Hz. The source is 

located in the middle of the grid that is (x, z) = (1000m, 

1000m). Figure 3 shows the snapshot of the seismic wave 

propagation in the acoustic medium for the homogeneous 

model considered in this work without the perfectly matched 

layer (PML) absorbing boundary condition. We can see that 

at time 100ms seen in Figure 3a, the wave continue to move 

until it got to the computational boundary at time 320ms in 

Figure 3c. From time 350ms and more, we see strong 

reflections from our computational boundary. This is 

expected has no boundary condition has been applied to 

truncate this effect. Figure 4 show the results from the 

seismic simulation of acoustic medium with the incorporation 

of PML absorbing boundary condition. This shows the effect 

of PML on the computational boundary as the seismic wave 

propagate. As we can see the wave begins to propagation at 

time 100ms (Figure 4a) just like in the previous case. When 

the wave got to the computational boundary in Figure 4c, we 

can see that the wave is being absorbed. This is unlike the 

previous case when no absorbing boundary condition was 

added and we can see reflections from our computational 

boundary. The situation is different with the incorporation of 

PML, as the artificial reflections are being absorbed. Figure 5 

shows the shot gather for the acoustic wave medium with and 

without the incorporation of PML. We can also clearly see 

the waves getting absorbed in the computational boundary 

with the addition of PML. 

6. Conclusions 

The coupled form of the acoustic wave equation was 

considered in this work. This equa- tion was written was 

discretized using the staggered grid finite difference (SGFD) 

method, which provide improved accuracy and efficiency of 

the numerical modeling and are natu- rally centered at the 

same point in space and time. The perfectly matched layer 

(PML) absorbing boundary condition was applied to truncate 

artificial reflections from our com- putational boundary. The 

results obtained show seismic wave propagating through a 

homogeneous medium and the effect of PML was clearly 

observed. 
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(a) 100ms 

 
(b) 200ms 

 
(c) 320ms 

 
(d) 350ms 

 
(e) 400ms 

 
 

(f) 500ms 
 

Figure 3. Snapshots of the acoustic wave simulation without PML for a homogeneous model (a) 100ms, (b)200ms, (c)320ms 

(d) 350ms (e) 400 and (f) 500ms. 
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 (a)100ms 

 
(b) 200ms 

 
(c) 320ms 

 
(d) 350ms 

 
(e) 400ms 

 
 

(f) 500ms 
 

 

Figure 4. Snapshots of the acoustic wave simulation PML for a homogeneous model (a) 100ms, (b)200ms, (c)320ms (d) 

350ms (e) 400 and (f) 500ms. 
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Figure 5. Shot gather for the acoustic wave equation (a) Without PML and (b) With PML. 

 

 

 

References 

Anthony, E. and Vedanti, N. (2020). Simulation of seismic wave propagation in poroelastic media using vectorized Biot’s 

equations: An application to a CO2 sequestration monitoring case. Acta Geophys, 68:435–444. 

Berenger, J. (1994). A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 

114:185–200. 

 Bohlen, T. (2002). Parallel 3-d viscoelastic finite-difference seismic modelling. Computers and Geosciences, 28(8):887–899. 

Carcione, J. (1996a). Full frequency-range transient solution for p-wave in a fluid- saturated viscoacoustic porous medium. 

Geohysical Prospecting, 44:99–129. 

Carcione, J. (1996b). Wave propagation in anisotropic, saturated porous media: Plane- wave theory and numerical simulation. J. 

acoust. Soc. Am, 99:2655–2666. 

Dai, N., Vafidis, A., and R., K. E. (1995). Wave propagation in heterogeneous, porous media: A velocity-stress, finite-difference 

method. Geophysics, 60(2):327 – 340. 

Itz´a,  R.,  Iturrar´an-Viveros,  U.,  and  Parra,  J. O. (2016).    Optimal implicit  2-d  finite differences to model wave propagation 

in poroelastic media. Geophysical Journal In- ternational, 206(2):1111–1125. 

Morency, C. T. J. (2008). Spectral-element simulations of wave propagation in porous media. Geophys. J. Int, 175:301–345. 

O’Brien, G. S. (2010). 3d rotated and standard staggered finite-difference solutions to biot’s poroelastic wave equations: Stability 

condition and dispersion analysis. Geo- physics, 75(4):T111–T119. 

Ozdenvar, T. and McMechan, G. (1997). Algorithms for staggered-grid computations for poroelastic, elastic, acoustic, and scalar 

wave equations. Geophys. Prospect, 45:403–420. 

Roberts, A. P. and Garboczi, E. J. (2002). Computation of the linear elastic properties of random porous materials with a wide 

variety of microstructure. Proceedings of the Royal Society of London, 458:1033–1054. 

Sheen, D.-H., Tuncay, K., Baag, C.-E., and Peter, J. O. (2006). Parallel implementa tion of a velocity-stress staggered-grid finite-

difference method for 2-d poroelastic wave propagation. Computers and Geosciences, 32:1182–1191. 

Virieux, J. (1984). Sh-wave propagation in heterogeneous media: velocity-stress finite- difference method. Geophysics, 

49(11):1933–1942. 

Virieux, J. (1986). P-sv wave propagation in heterogeneous media: Velocity-stress finite- difference method. Geophysics, 

51(4):889–901. 

Wenzlau, F. and Muller, T. M. (2009). Finite-difference modeling of wave propagation and diffusion in poroelastic media. 

Geophysics, 74(4):T55–T66. 

Zhu, X. and McMechan, G. (1991). Finite difference modeling of the seismic response of fluid saturated, porous, elastic solid 

using biot theory. Geophysics, 56(3):328–339. 

 
 (a)100ms 

 
(b) 200ms 


