MK-Theorem1: FOR all X Belongs to Z for all X Belongs to Z.

1) \(X = X \)

2) IF X IS EVEN NUMBER THEN X=0

3) IF X IS ODD NUMBER THEN X=1

Mohamaed Abdul Hameed Jassim Ai-Kufi

Department of Mathematics, University of Kufa, 31001 Al-Najaf,Iraq.

Article history:
Received: 4 December 2018;
Received in revised form: 26 January 2019;
Accepted: 6 February 2019;

Keywords
Odd Numbers,
Even Numbers.

Abstract
In this short search, we will prove the mathematical fact that all the even integers are equals that equal to zero. And all the odd integers are equals that equal to One, Through simple numerical proof as we shall see below.
Thus the rest of all negative even integers.
2.-We will prove that all odd numbers are equal to one.

• $1=3$
Proof/
\[1 = 1 + 1 - 1 \]
\[= 1 + 1 - \sqrt{-1} \]
\[= 1 + 1 - (-1) \]
\[= 1 + 1 + 1 \]
\[= 3 \]

• $1=5$
Proof/
\[1 = 1 + 1 - 1 + 1 - 1 \]
\[= 1 + 1 - \sqrt{-1} + 1 - \sqrt{-1} \]
\[= 1 + 1 - (-1) \]
\[= 1 + 1 - (-1) + 1 \]
\[= 1 + 1 + 1 + 1 \]
\[= 5 \]

• $1=11$
Proof/
\[1 = 1 + 1 - 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 \]
\[= 1 + 1 - \sqrt{-1} + 1 - \sqrt{-1} + 1 - \sqrt{-1} + 1 - \sqrt{-1} \]
\[= 1 + 1 - (-1) \]
\[= 1 + 1 - (-1) + 1 + 1 \]
\[= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 \]
\[= 11 \]
Thus for all positive odd numbers.

In the same way we prove that one is equal to negative odd numbers and we will suffice with one example:

• $1=-7$
Proof/
\[1 = 1 - 1 + 1 + 1 - 1 + 1 \]
\[= 1 + 1 - \sqrt{-1} + 1 + \sqrt{-1} \]
\[= 1 + 1 - (-1) \]
\[= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 \]
\[= -7 \]

Conclusion:
All integers are divided into only two equivalent class as it in follow:
\[
\text{[even numbers]} = 0 \\
\text{[odd numbers]} = 1
\]