Non-wandering Sets in Topological Dynamical Systems
P. A. A. Mensah¹, W. Obeng-Denteh¹, C. A. Okpoti² and I. Issaka¹

¹Department of Mathematics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
²Department of Mathematics, University of Education, Winneba, Ghana.

ARTICLE INFO
Article history:
Received: 31 October 2018;
Received in revised form: 25 November 2018;
Accepted: 5 December 2018;

Keywords
Non-wandering Set,
Logistic function,
Fixed points,
Control parameter

1.0 Introduction
A discrete-time dynamical system (X,T) is a continuous map T on a non-empty topological space X [10][8]. This dynamics is obtained by iterating the map T. The discrete logistic function operates within a range by a control parameter. This function changes in state as the parameter is being altered. If we are to take the set of points in the given space X and upon operation by iterating with an initial point, it comes close or exactly back to the points in the set where there is a change which is either, stationary (fixed points), cycles (periodic) or chaos. This state (set) is what we termed as the non-wandering set.

2.0 Preliminaries
Definition 2.1: DISCRETE-TIME DYNAMICAL SYSTEM (See [6],[8]): Let be a non-empty topological space and T be a continuous map. A discrete-time dynamical system (X,T) is defined as; $T:X \rightarrow X$, where the dynamics are obtained by iterating the map T, hence, a dynamical system (X,T) induces an action on X by $\theta = x$ and $T^n(x) = x$ for all $n \in \mathbb{Z}$.

Illustration 2.2: (see[1]) Let f be a continuous function on X such that $x \in X$ i.e. $f:X \rightarrow X$, then $\{\ldots,f^{-2}(x),f^{-1}(x),f^{0}(x),f^{1}(x),f^{2}(x),\ldots\}$ are the orbit sequence of x which are bi infinite sequence and form the discrete-time of the solution [1].

But since we are interested in the set type, we let f be a function from the Z of discrete-time to the state space X, with parameter and initial point x, then the orbit relation is defined as,

$$\theta f = \bigcup_{n=1}^{\infty} f^n \quad (1.0)$$

Hence, the following is the set of the relation but not a sequence; $\vartheta f(x) = \{f^0(x),f^1(x),f^2(x),\ldots\}$ made up of the states and the initial point x in time [9].

2.3 Non-wandering Set: It is the set of points in the phase space for which all points beginning from a point of this set come arbitrarily close and arbitrarily often to any point of the set. In [3], the following shows the types and the existence of non-wandering set:
1. fixed points (stationary)
2. periodic solutions (limit cycles)
3. quasi-periodic orbits
4. chaotic orbits

2.4 Logistic Function: The logistic function is a difference equation which is non-linear system. It is a function that transform into different state or phenomenon depending on changes of the parameter α.

Definition 2.5: if x_n is a state with discrete-time n, then the function is defined as;

$$x_{n+1} = \alpha x_n(1 - x_n) \quad (1.1)$$

where $n \in \mathbb{N}$ and for $X_n \in [0, 1]$ and $\alpha \in [1, 4]$

2.6 Using the logistic function to illustrate the fixed points and the periodic solutions as the types of the non-wandering set

2.6.1 fixed points (stationary) (see [2],[9])
If a point $x \in X$, its orbit or trajectory is; $\vartheta(x) = \bigcup_{n=1}^{\infty} X^n \quad (1.2)$

Hence, a point x is said to be fixed or stationary if $\vartheta(x) = x \quad (1.3)$

That is $f(X_n) = x_n \quad (1.4)$

Also for the logistic, let $f: X_n \rightarrow X_n$ be defined as;

© 2018 Elixir All rights reserved
Theorem 2.7: A non-wandering set is a fixed point (stationary) if a point x in a space X comes arbitrarily back to the starting point after iterating it for a number of times. That is if $n \in \mathbb{N}$ and $x \in X$ then $\partial f^n(x) = \{x\}$, is a stationary non-wandering set.

Proof: To show that a stationary (fixed point) is a non-wandering set, we take equations (1.4) and (1.5) and Let $n = 0$. Then equations (1.4) and (1.5) become:

$$\begin{align*}
f(x_0) &= x_0 \\
f(x_0) &= \alpha x_0 (1 - x_0)
\end{align*}$$

Equating, Eqn (1.6) to Eqn (1.7)

$$\alpha x_0 (1 - x_0) = x_0$$

Algebraically, $x_0 = 0$ and $x_0 = \frac{\alpha - 1}{\alpha}$ tends to be the solutions for this logistic function.

Illustration 2.8: Taking $x_0 = 0$ and $x_0 = \frac{\alpha - 1}{\alpha}$ to show the existence of the stationary non-wandering set.

At $x_0 = 0$, Trivial
At $x_0 = \frac{\alpha - 1}{\alpha}$,

Let $\lim_{x_0 \to \frac{\alpha - 1}{\alpha}} f(X_0) = \lim_{x_0 \to \frac{\alpha - 1}{\alpha}} [\alpha x_0 (1 - x_0)]$

$= \alpha \lim_{x_0 \to \frac{\alpha - 1}{\alpha}} [x_0 (1 - x_0)]$

$= \alpha \left[\frac{\alpha - 1}{\alpha} \left(1 - \frac{\alpha - 1}{\alpha} \right) \right]$

$= \alpha \left[\frac{\alpha - 1}{\alpha} - \frac{\alpha - 1}{\alpha} \right]$

Clearly, if $x = \{0\} \in X$ and $x = \{\frac{\alpha - 1}{\alpha}\} \in X$, where $X \in [0, 1]$ and $\alpha \in [1, 4]$, a discrete value for α gives a point x in the space X, by iterating comes back to that same x in the space X, hence a non-wandering set.

Example 2.9: Given $f(x_0) = \alpha x_0 (1 - x_0)$. Then at $\alpha = [1,4]$, and $X \ni \{x_0 = \frac{\alpha - 1}{\alpha}\}$. Then a non-wandering set is stationary or fixed point if:

$f\left(x_0 = \frac{\alpha - 1}{\alpha}\right) = \left(x_0 = \frac{\alpha - 1}{\alpha}\right) \in X$

Solution: Let $\alpha = 2$, implies $\left\{(x_0 = 2(1 - \frac{1}{2}))\right\} n = N$

Then $f(x_0) = 2 x_0 (1 - x_0)$, implies that at $x_0 = \frac{1}{2}$

$$\begin{align*}
f\left(\frac{1}{2}\right) &= 2 \left(\frac{1}{2}\right) \left(1 - \frac{1}{2}\right) = \frac{1}{2} = f\left(f\left(\frac{1}{2}\right)\right) = \frac{1}{2}
\end{align*}$$

Then $f\left(\frac{1}{2}\right) = \left\{\frac{1}{2}\right\} \in X$

Let $\alpha = 3$, implies $\left\{(x_0 = 3(1 - \frac{2}{3}) \right\}$

Then $f(x_0) = 3 x_0 (1 - x_0)$, implies that at $x_0 = \frac{2}{3}$

$$\begin{align*}
f\left(\frac{2}{3}\right) &= 3 \left(\frac{2}{3}\right) \left(1 - \frac{2}{3}\right) = \frac{2}{3} = f\left(f\left(\frac{2}{3}\right)\right) = \frac{2}{3}
\end{align*}$$

Then $f\left(\frac{2}{3}\right) = \left\{\frac{2}{3}\right\} \in X$

Let $\alpha = 4$, implies $\left\{(x_0 = 4(1 - \frac{3}{4}) \right\}$

Then $f(x_0) = 4 x_0 (1 - x_0)$, implies that at $x_0 = \frac{3}{4}$

$$\begin{align*}
f\left(\frac{3}{4}\right) &= 4 \left(\frac{3}{4}\right) \left(1 - \frac{3}{4}\right) = \frac{3}{4} = f\left(f\left(\frac{3}{4}\right)\right) = \frac{3}{4}
\end{align*}$$

Then $f\left(\frac{3}{4}\right) = \left\{\frac{3}{4}\right\} \in X$

Let $\alpha = 1$, implies $\left\{(x_0 = 1 - \frac{1}{1} = 0\right\}$

Then $f(x_0) = x_0 (1 - x_0)$, implies that at $x_0 = 0$

$\therefore f(0) = \{0\} \in X$

Thus, for discrete α value within $[1, 4]$ all $X \ni \{x_0 = \frac{\alpha - 1}{\alpha}\}$ tends to be a fixed point irrespective of the number of iteration, therefore forming their own constant orbit $\partial f^n(x) = \{x\}$ where change in this parameter affect the $X \ni \{x_0 = \frac{\alpha - 1}{\alpha}\}$ and the behavior making it stable or unstable. □

Theorem 2.10: A non-wandering set can be either stable or unstable. Let $X_n \in [0, 1]$ and α be a parameter of the system. Then a change in α of the system can change the stability of a non-wandering set.
Proof: let \(\alpha \in [0, 1] \) and \(X \ni \{ \alpha \} \) where \(\alpha \) is the parameter and define the logistic, let \(f: X_n \rightarrow X_n \) as:
\[
f(X_n) = \alpha X_n (1 - X_n).
\]
Then for stable non-wandering set, the fixed point must be stable or attracting that is \(|f'(x_0)| < 1 \) that is absolute derivative of the function is less than one [6], where \(f'(x_0) = \alpha - 2\alpha x_0 \)
\[
|f'(x_0)| = |\alpha - 2\alpha x_0| < 1, \\
-1 < \alpha - 2\alpha x_0 < 1 \\
-1 < \alpha - 2\alpha x_0 < 1 \\
\alpha < \frac{1}{\alpha} - 1 \quad \alpha < \frac{1}{\alpha} - 1 \\
\alpha < \frac{1}{\alpha} - 1 \quad \alpha < \frac{1}{\alpha} - 1
\]
Thus \(\alpha \in (1, 3) \) is where the function is asymptotically stable. That is attracting fixed point where there is convergence and stability of the state. Hence the non-wandering set is stable at \(\alpha \in (1, 3) \) and attracting since it is true for the fixed point/stationary point. □

Also, for unstable non-wandering set, the fixed point/stationary point must be unstable as the control parameter is altered, at a repelling fixed point. And in [6] the way to this is \(|f'(x_0)| > 1 \quad f'(x_0) = \alpha - 2\alpha x_0 \)
\[
|f'(x_0)| = |\alpha - 2\alpha x_0| > 1, \\
\alpha - 2\alpha x_0 > 1 \quad \alpha - 2\alpha x_0 < -1 \\
\alpha - 2\alpha \left(\frac{\alpha - 1}{\alpha} \right) > 1 \quad \alpha - 2\alpha \left(\frac{\alpha - 1}{\alpha} \right) < -1 \\
\alpha < 1 \quad \alpha > 3 \\
\alpha < 1 \quad \alpha > 3 \\
\therefore \{ \alpha < 1 \} \text{ or } \{ \alpha > 3 \}
\]
Thus, for unstable non-wandering set \(\alpha < 1 \) or \(\alpha > 3 \).

References