Geodetic Dominating Sets and Geodetic Dominating Polynomials of Paths

A.Vijayan1 and N.Jaspin Beaula2

1Department of Mathematics, Nesamony Memorial Christian College, Marthandam, Tamil Nadu.
2Department of Mathematics, BWDA Polytechnic College, Vandalur, Tamil Nadu.

ARTICLE INFO

Article history:
Received: 26 April 2017;
Received in revised form: 29 May 2017;
Accepted: 9 June 2017;

Keywords
Geodetic dominating set,
Geodetic domination number,
Geodetic domination polynomial.

ABSTRACT

Let $G = (V,E)$ be a simple graph. A set $S \subseteq V$ is a dominating set of G if every vertex in $V \setminus S$ has at least one neighbor in S. Let $D_i(G)$ be the family of geodetic dominating sets of G of cardinality i. In this paper, we obtain a recursive formula for $d_i(G)$. Using the recursive formula, we construct the geodetic dominating polynomial of G and obtain some properties of this polynomial.

1. Introduction

For any graph G, the set of vertices is denoted by $V(G)$ and the edge set by $E(G)$. The order and size of G are denoted by p and q respectively. For a vertex $v \in V(G)$, the open neighborhood $N(v)$ is the set of all vertices adjacent to v, and $N[v] = N(v) \cup \{v\}$, is the closed neighborhood of v. The degree $d(v)$ of a vertex v is defined by $d(v) = |N(v)|$.

A subset S of vertices in a graph G is a geodetic set if every vertex not in S lies on a shortest path between two vertices from S. A subset D of the set of vertices G is called dominating set if every vertex not in D has at least one neighbour in D.

1.1 Geodetic dominating set

A set of vertices S in a graph G is a geodetic dominating set if S is both a geodetic set and a dominating set. The minimum cardinality of geodetic dominating set of G is its geodetic domination number, and is denoted by $\gamma(G)$. A geodetic dominating set of size $\gamma(G)$ is said to be a $\gamma(G)$-set.

2. Geodetic dominating sets of path

Let $D_i(P_n)$ be the family of geodetic dominating sets of P_n with cardinality i. We investigate the geodetic dominating sets of the path P_n. We need the following lemmas to prove our main results in this section.

Lemma 2.1

$$\gamma(P_n) = \left\lceil \frac{n + 2}{5} \right\rceil$$

By Lemma 2.1, and the definition of domination number, one has the following lemma:

Lemma 2.2

$$D_i(P_n) = \Phi \text{if and only if } i \geq n \text{ or } i < \left\lceil \frac{n + 2}{5} \right\rceil.$$ A simple path is a path in which all internal vertices have degree two.

Lemma 2.3

Let $P_n, n \geq 2$ be the path with $|V(P_n)| = n$

(i) If $D_i(P_{n,1}) = D_i(P_{n,3}) = \Phi$ then $D_i(P_{n,2}, i-1) = \Phi$.

(ii) If $D_i(P_{n,1}, i-1) = \Phi$ and $D_i(P_{n,3}, i-1) = \Phi$ then $D_i(P_{n,2}, i-1) = \Phi$.

(iii) If $D_i(P_{n,1}, i-1) = \Phi$ and $D_i(P_{n,3}, i-1) = \Phi$ then $D_i(P_{n,2}, i-1) = \Phi$.

Proof

(1) If $D_i(P_{n,1}, i-1) = \Phi$ and $D_i(P_{n,3}, i-1) = \Phi$ then $i - 1 < \left\lceil \frac{n + 1}{5} \right\rceil$ or $i - 1 > n - 1$ and...
Since, \(D(P_n, i - 1) = \Phi \), then we have,

(i) \(D(P_n, i - 1) = D(P_{n+1}, i - 1) = D(P_{n+2}, i - 1) = D(P_{n+3}, i - 1) = D(P_{n+4}, i - 1) = \Phi \) and \(D(P_{n+5}, i - 1) = \Phi \) if \(n = 5k + 3, i = k +1 \), for some positive integer \(k \).

(ii) \(D(P_{n+2}, i - 1) = D(P_{n+3}, i - 1) = D(P_{n+4}, i - 1) = \Phi \) and \(D(P_{n+5}, i - 1) = \Phi \) if \(i = n \).

(iii) \(D(P_{n+3}, i - 1) = \Phi \) and \(D(P_{n+4}, i - 1) = \Phi \) and \(D(P_{n+5}, i - 1) = \Phi \) if \(i = n - 3 \).

(iv) \(D(P_{n+5}, i - 1) = \Phi \) if \(i = n - 4 \).

Therefore, \(i - 1 < \left\lceil \frac{n + 1}{5} \right\rceil \) or \(i - 1 > n - 3 \).

Therefore, \(i - 1 < \left\lceil \frac{n + 1}{5} \right\rceil \) or \(i - 1 > n - 1 \).

Hence, the theorem.

Lemma 2.4

Let \(P_n \) be the path with \(|V(P_n)| = n \). Suppose that \(D_5(P_n, i) = \Phi \), then we have,

(i) \(D_5(P_{n+i+1}, i) = D_5(P_n, i) = D_5(P_{n+1}, i) = D_5(P_{n+2}, i) = D_5(P_{n+3}, i) = D_5(P_{n+4}, i) = D_5(P_{n+5}, i) = \Phi \) if \(n = 5k + 3, i = k +1 \), for some positive integer \(k \).

(ii) \(D_5(P_{n+2}, i) = D_5(P_{n+3}, i) = D_5(P_{n+4}, i) = D_5(P_{n+5}, i) = \Phi \) if \(i = n \).

(iii) \(D_5(P_{n+3}, i) = D_5(P_{n+4}, i) = D_5(P_{n+5}, i) = \Phi \) if \(i = n - 3 \).

(iv) \(D_5(P_{n+4}, i) = D_5(P_{n+5}, i) = \Phi \) if \(i = n - 4 \).

Therefore, \(D_5(P_n, i) = \Phi \) if \(i - 1 < \left\lceil \frac{n + 1}{5} \right\rceil \) or \(i - 1 > n - 3 \).

Proof

(i) Since, \(D_5(P_{n+i+1}, i) = D_5(P_n, i) = D_5(P_{n+1}, i) = D_5(P_{n+2}, i) = D_5(P_{n+3}, i) = D_5(P_{n+4}, i) = D_5(P_{n+5}, i) = \Phi \), by Lemma 2.2,

\[i - 1 > n - 3 \text{ or } i - 1 < \left\lceil \frac{n + 1}{5} \right\rceil. \]
\[i - 1 > n - 3 \text{ or } i - 1 < \left\lfloor \frac{n - 1}{5} \right\rfloor \] and
\[i - 1 > n - 4 \text{ or } i - 1 < \left\lfloor \frac{n - 2}{5} \right\rfloor \]

Therefore, \[i - 1 < \left\lfloor \frac{n - 2}{5} \right\rfloor \text{ or } i - 1 > n - 1 \]

If \[i - 1 > n - 1 \] then \[i > n \]

Therefore, \[D_E(P_n, i) = \Phi \] which is a contradiction.

Therefore, \[i - 1 < \left\lfloor \frac{n - 2}{5} \right\rfloor \]

Therefore, \[i < \left\lfloor \frac{n - 2}{5} \right\rfloor + 1 \] and since \[D_E(P_n, i) \neq \Phi \], we have \[\frac{n + 2}{5} \leq i < \left\lfloor \frac{n - 2}{5} \right\rfloor + 1 \] which implies that \[n = 5k + 3 \] and \[i = k + 1 \] for some \(k \in \mathbb{N} \).

Conversely assume \(n = 5k + 3 \) and \(i = k + 1 \) for some \(k \in \mathbb{N} \).

By Lemma 2.2,
\[\gamma_E(P_n) = \left\lfloor \frac{n + 2}{5} \right\rfloor \]

Therefore, \[D_E(P_{n-1}, i - 1) = D_E(P_{5k+3-1}, k) = \Phi, \]

since \(k < \left\lfloor \frac{5k + 3 + 2}{5} \right\rfloor = \left\lfloor \frac{5k + 5}{5} \right\rfloor \)

Similarly, \[D_E(P_{n-2}, i - 1) = \Phi \]; \[D_E(P_{n-3}, i - 1) = \Phi \] and \[D_E(P_{n-4}, i - 1) = \Phi \].

\(D_E(P_{n-5}, i - 1) = D_E(P_{5k+3-5}, k + 1 - 1) = D_E(P_{5k-2}, k), \)

since \(k \geq \left\lfloor \frac{5k - 2 + 2}{5} \right\rfloor = \left\lfloor \frac{5k}{5} \right\rfloor \)

Therefore, \[D_E(P_{n-5}, i - 1) \neq \Phi . \]

Hence, \[D_E(P_{n-1}, i - 1) = \Phi ; D_E(P_{n-2}, i - 1) = \Phi ; \]
\[D_E(P_{n-3}, i - 1) = \Phi ; D_E(P_{n-4}, i - 1) = \Phi \] and \[D_E(P_{n-5}, i - 1) \neq \Phi . \]

(ii) Since \[D_E(P_{n-2}, i - 1) = \Phi ; D_E(P_{n-3}, i - 1) = \Phi ; \]
\[D_E(P_{n-4}, i - 1) = \Phi \] and \[D_E(P_{n-5}, i - 1) = \Phi \]

By Lemma 2.2,
\[i - 1 > n - 2 \text{ or } i - 1 < \left\lfloor \frac{n}{5} \right\rfloor \]

If \[i - 1 < \left\lfloor \frac{n}{5} \right\rfloor \] then \[i - 1 < \left\lfloor \frac{n + 1}{5} \right\rfloor \]

Therefore, by lemma 2.2, \[D_E(P_{n-1}, i - 1) = \Phi , \] which is a contradiction.

So we have \[i - 1 > n - 2 \]

i.e., \[i > n - 1 \]

Therefore, \[i \geq n \]

Since, \[D_E(P_{n-1}, i - 1) \neq \Phi , \] then \[\left\lfloor \frac{n + 1}{5} \right\rfloor \leq i - 1 \leq n - 1 \]

Therefore, \[i \leq n \]

Hence, \[i = n \]

Conversely, if \(i = n \), then \[D_E(P_{n-2}, i - 1) = D_E(P_{n-2}, n - 1) = \Phi , \]
\[D_E(P_{n-3}, i - 1) = D_E(P_{n-3}, n - 1) = \Phi , \]
\[D_E(P_{n-4}, i - 1) = D_E(P_{n-4}, n - 1) = \Phi , \]
\[D_E(P_{n-5}, i - 1) = D_E(P_{n-5}, n - 1) = \Phi \] and \[D_E(P_{n-6}, i - 1) = D_E(P_{n-6}, n - 1) \neq \Phi . \]

Since, \[D_E(P_{n-1}, n - 1) = 1 \].

(iii) Since, \[D_E(P_{n-5}, i - 1) = \Phi , \] by Lemma 2.2,
\[i - 1 > n - 5 \text{ or } i - 1 < \left\lfloor \frac{n - 3}{5} \right\rfloor . \]
Since, $D(g(P_{n,2}, i - 1) \neq \Phi$, \(\left[\frac{n}{5}\right] \leq i \leq n - 2\)

i.e., $i - 1 < \left[\frac{n - 3}{5}\right]$ is not possible.

Therefore, $i - 1 > n - 5$
Therefore, $i - 1 \geq n - 4$
But $i - 1 \leq n - 4$
Therefore, $i = n - 3$

Conversely, suppose $i = n - 3$, then
$D(g(P_{n,1}, i - 1) = D(g(P_{n,1}, n - 4) \neq \Phi, D(g(P_{n,2}, i - 1) = D(g(P_{n,2}, n - 4) \neq \Phi, D(g(P_{n,3}, i - 1) = D(g(P_{n,3}, n - 4) \neq \Phi, D(g(P_{n,4}, i - 1) = D(g(P_{n,4}, n - 4) \neq \Phi, but $D(g(P_{n,5}, i - 1) = D(g(P_{n,5}, n - 4) = \Phi$.

By Lemma 2.2,
$D(g(P_{n,1}, i - 1) \neq \Phi, D(g(P_{n,2}, i - 1) \neq \Phi, D(g(P_{n,3}, i - 1) \neq \Phi, D(g(P_{n,4}, i - 1) \neq \Phi and $D(g(P_{n,5}, i - 1) = \Phi$.

(v) Since $D(g(P_{n,1}, i - 1) = \Phi$, by Lemma 2.2,

\[
i - 1 > n - 1 \text{ or } i - 1 < \left[\frac{n + 1}{5}\right]
\]

If $i - 1 > n - 1$ then $i - 1 > n - 2$, by Lemma 2.2,

$D(g(P_{n,2}, i - 1) = D(g(P_{n,3}, i - 1) = D(g(P_{n,4}, i - 1) = D(g(P_{n,5}, i - 1) = \Phi$ which is a contradiction.

Therefore, $i - 1 < \left[\frac{n + 1}{5}\right]

\[
i < \left[\frac{n + 1}{5}\right] + 1.
\]

But $i - 1 \geq \left[\frac{n}{5}\right]$, because $D(g(P_{n,2}, i - 1) \neq \Phi$

Therefore, $i - 1 \geq \left[\frac{n}{5}\right] + 1$

Hence, $\left[\frac{n}{5}\right] + 1 \leq i < \left[\frac{n + 1}{5}\right] + 1$

This holds only if $n = 5k$ and $i = 2k$ for some $k \in \mathbb{N}$.

Conversely, assume $n = 5k$ and $i = 2k$ for some $k \in \mathbb{N}$, then by Lemma 2.2,

$D(g(P_{n,1}, i - 1) = \Phi; D(g(P_{n,2}, i - 1) \neq \Phi; D(g(P_{n,3}, i - 1) \neq \Phi; D(g(P_{n,4}, i - 1) \neq \Phi; D(g(P_{n,5}, i - 1) \neq \Phi$.

Therefore, \(i - 1 \leq n - 3\) and hence \(\left[\frac{n + 1}{5}\right] + 1 \leq i \leq n - 4\)

Therefore, \(i - 1 \leq n - 3\) and \(\left[\frac{n + 1}{5}\right] \leq i \leq n - 2\),

\[
\left[\frac{n - 1}{5}\right] \leq i - 1 \leq n - 3; \left[\frac{n - 2}{5}\right] \leq i - 1 \leq n - 4 \text{ and } \left[\frac{n - 3}{5}\right] \leq i - 1 \leq n - 5.
\]

From these, we obtain that $D(g(P_{n,1}, i - 1) \neq \Phi; D(g(P_{n,2}, i - 1) \neq \Phi; D(g(P_{n,3}, i - 1) \neq \Phi; D(g(P_{n,4}, i - 1) \neq \Phi and $D(g(P_{n,5}, i - 1) \neq \Phi$.

47057
Lemma 2.5

For every \(n \geq 4 \) and \(i > \left\lceil \frac{n + 2}{5} \right\rceil \):

(i) If \(D_\emptyset(P_{n-2}, i - 1) = D_{\emptyset}(P_{n-3}, i - 1) = D_\emptyset(P_{n-4}, i - 1) = D_\emptyset(P_{n-5}, i - 1) = \emptyset \) and \(D_\emptyset(P_{n-1}, i - 1) \neq \emptyset \) then \(D_\emptyset(P_n, i) = D_\emptyset(P_n, n) = \{1, 2, 3, \ldots, n\} \).

(ii) If \(D_\emptyset(P_{n-2}, i - 1) = \emptyset \neq D_\emptyset(P_{n-1}, i - 1) \) then \(D_\emptyset(P_n, i) = \{\lceil n \rceil - \{x\}, x \in [n] \} \).

(iii) If \(D_\emptyset(P_{n-1}, i - 1) = \emptyset \neq D_\emptyset(P_{n-2}, i - 1) \neq \emptyset \) then \(D_\emptyset(P_n, i) \neq \emptyset \).

\[\text{Proof}\]

(i) We have \(D_\emptyset(P_{n-2}, i - 1) = D_\emptyset(P_{n-3}, i - 1) = D_\emptyset(P_{n-4}, i - 1) = D_\emptyset(P_{n-5}, i - 1) = \emptyset \) by Lemma 2.4(ii) we have \(i = n \), therefore, \(D_\emptyset(P_n, i) = D_\emptyset(P_n, n) = \{\{1, 2, 3, \ldots, n\}\} \).

(ii) If \(D_\emptyset(P_{n-3}, i - 1) = \emptyset \neq D_\emptyset(P_{n-1}, i - 1) \neq D_\emptyset(P_{n-2}, i - 1) \neq \emptyset \) by Lemma 2.4.

(iii) Suppose \(D_\emptyset(P_{n-1}, i - 1) \neq \emptyset \), \(D_\emptyset(P_{n-2}, i - 1) \neq \emptyset \), \(D_\emptyset(P_{n-3}, i - 1) \neq \emptyset \). Let \(x_1 \in D_\emptyset(P_n, i - 1) \), then \(n - 2 \) or \(n - 3 \) is \(\emptyset \).

If \(n - 2 \) or \(n - 3 \), then \(x_1 \in D_\emptyset(P_n, i) \).

Let \(x_2 \in D_\emptyset(P_{n-2}, i - 1) \), then \(n - 3 \) or \(n - 4 \) is in \(x_2 \).

If \(n - 3 \) or \(n - 4 \), then \(x_2 \in D_\emptyset(P_{n-3}, i - 1) \), then \(n - 4 \) or \(n - 5 \) is in \(x_2 \).

If \(n - 4 \) or \(n - 5 \), then \(x_3 \in D_\emptyset(P_{n-4}, i - 1) \), then \(n - 5 \) or \(n - 6 \) is in \(x_3 \).

If \(n - 5 \), then \(x_4 \in D_\emptyset(P_{n-5}, i - 1) \), then \(n - 6 \) is in \(x_4 \).

Thus, we have \(\{x_1, x_2, x_3, x_4\} \subseteq D_\emptyset(P_n, i) \).

So, \(D_\emptyset(P_n, i) \subseteq \{\{x_1, x_2, x_3, x_4\}\} \subseteq \{\{x_1, x_2, x_3\}\} \subseteq \{\{x_1, x_2\}\} \subseteq \{\{x_1\}\} \subseteq \emptyset \).

\[\text{III. Geodetic Domination Polynomial of Path } P_n \]

Let \(D_\emptyset(P_n, x) = \sum_{i=\lceil n/2 \rceil}^{n} d_\emptyset(P_n, i) x^i \) be the geodetic domination polynomial of a Path \(P_n \). In this section, we derive an expression for \(D_\emptyset(P_n, x) \).

Theorem 3.1

a) If \(D_\emptyset(P_n, i) \) is the family of geodetic dominating sets with cardinality \(i \) of \(P_n \), then
The following properties hold for the coefficient of D_g.

Theorem 2.

(i) $d_g(P_n, n) = 1$ for every $n \geq 2$.
(ii) $d_g(P_n, n-1) = n-2$ for every $n \geq 3$.
(iii) $d_g(P_n, n-2) = \frac{1}{2} [n^2 - 5n + 6]$ for every $n \geq 4$.
(iv) $d_g(P_n, n-3) = \frac{1}{6} (n^3 - 9n^2 + 26n - 36)$ for every $n \geq 5$.

We obtain $d_g(P_n, i)$ for $1 \leq n \leq 12$ as shown in the table

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d_g(P_n, i)$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

In the following theorem we obtain some properties of $d_g(P_n, i)$.

Theorem 3.

The following properties hold for the co-efficient of $D_g(P_n, x)$.

(i) $d_g(P_n, n) = |D_g(P_n, i)|$.
(ii) $d_g(P_n, n-1) = |D_g(P_{n-1}, i)|$.
(iii) $d_g(P_n, n-2) = \sum_{1 \leq i < n} d_g(P_n, i)$.
(iv) $d_g(P_n, n-3) = \sum_{1 \leq i < n} d_g(P_{n-3}, i)$.
(v) \(d_6(P_n, n-4) = \frac{1}{24} (n^4 - 14n^3 + 71 n^2 - 202n + 360) \).

Proof

(i) \(d_6(P_n, n) = \{[n]\} \), we have the result.

(ii) \(d_6(P_n, n-1) = n-2 \), for every \(n \geq 3 \).

Since \(D_6(P_n, n-1) = \{[n] - \{x\}, x \in [x]\} \), we have \(d_6(P_n, n-1) = n-2 \).

(iii) By induction on \(n \), the result is true for \(n = 4 \)

L.H.S = \(d_6(4, 2) = 1 \) (from table).

R.H.S = \(\frac{1}{2} (4^2 - 5(4) + 6) = 1 \)

Therefore, the result is true for \(n = 4 \).

Now, suppose that the result is true for all numbers less than \(n \), and we prove it for \(n \).

By theorem 3.1, we have,

\[d_6(P_n, n-2) = d_6(P_{n-1}, n-3) + d_6(P_{n-2}, n-3) + d_6(P_{n-3}, n-3) + d_6(P_{n-4}, n-3) + d_6(P_{n-5}, n-3) \]

\[= \frac{1}{2} \left[(n-1)^2 - 5(n-1) + 6 \right] + (n-2) - 2 + 1 \]

\[= \frac{1}{2} \left[n^2 - 2n + 1 - 5n + 5 + 6 + 2n - 6 \right] \]

\[= \frac{1}{2} \left[n^2 - 5n + 6 \right] \]

Hence, the result is true for all \(n \).

(v) By induction on \(n \), the result is true for \(n = 6 \).

L.H.S = \(d_6(6, 3) = 2 \) (from table)

R.H.S = \(\frac{1}{6} (6^3 - 9 \times 6^2 + 26 \times 6 - 36) \)

\[= 2 \]

Therefore, the result is true for all natural numbers less than \(n \).

By Theorem 3.1, we have,

\[d_6(P_n, n-3) = d_6(P_{n-1}, n-4) + d_6(P_{n-2}, n-4) + d_6(P_{n-3}, n-4) + d_6(P_{n-4}, n-4) + d_6(P_{n-5}, n-4) \]

\[= \frac{1}{6} \left[(n-3)^3 - 9(n-3)^2 + 26(n-3) - 36 \right] + \frac{1}{2} \left[(n-2)^2 - 5(n-2) + 6 \right] + (n-3)^2 - 2 + 1 \]

\[= \frac{1}{6} \left[n^3 - 3n^2 + 3n - 1 - 9(n^2 - 2n + 1) + 26n - 26 - 36 \right] + \frac{1}{2} \left[n^2 - 4n + 4 - 5n + 10 + 6 \right] + n-4 \]

\[= \frac{1}{6} \left[n^3 - 3n^2 + 3n - 1 - 9n^2 - 18n - 9 + 26n - 26 - 36 \right] + \frac{1}{2} \left[n^2 - 9n + 20 \right] + n-4 \]

\[= \frac{1}{6} \left[n^3 - 12n^2 + 47n - 72 - 3n^2 - 72n + 60 + 6n - 24 \right] \]

\[= \frac{1}{6} \left[n^3 - 9n^2 + 26n - 36 \right] \]

Hence, the result is true for all \(n \).

(vi) By induction on \(n \). Let \(n = 7 \).

L.H.S = \(d_6(P_7, 3) = 1 \) (from table)

R.H.S = \(\frac{1}{24} (74 - 14 \times 7^3 + 71 \times 7^2 - 202 \times 7 + 360) \)

\[= 1 \]

Therefore, the result is true for \(n = 1 \).

Now, suppose that the result is true for all natural numbers less than \(n \).

\[d_6(P_{n-4}, n-4) = d_6(P_{n-1}, n-5) + d_6(P_{n-2}, n-5) + d_6(P_{n-3}, n-5) + d_6(P_{n-4}, n-5) + d_6(P_{n-5}, n-5) \]

\[= \frac{1}{24} \left[(n-1)^3 - 14(n-1)^2 + 71(n-1) - 202(n-1) + 360 \right] + \]

\[
\frac{1}{6} \left[(n - 2)^2 - 9(n - 2)^2 + 26(n - 2) - 36 \right] + \\
\frac{1}{2} \left((n - 2)^3 - 5(n - 3) + 6 \right) + (n - 4) - 2 + 1 \\
= \frac{n^4 - 18n^3 + 119n^2 - 390n + 648}{24} + \frac{n^3 - 15n^2 + 74n - 132}{6} + \frac{n^2 - 11n + 30}{6} + n - 5 \\
= \frac{1}{2} \left[n^2 - 18n^3 + 119n^2 - 390n + 648 + 4n^3 - 60n^2 + 296n - 528 + 12n^2 - 132n + 460 + 24n - 120 \right] \\
= \frac{n^4 - 14n^3 + 7n^2 - 202n + 360}{24}
\]

Hence the result is true for all n.

Theorem 3.3

\[
\sum_{i=n}^{3n} d_g(P_i, n) = 5 \sum_{i=4}^{3n-5} d_g(P_i, n-1) \quad \text{for every} \quad n \geq 4.
\]

Proof

Proof by induction on n.

First suppose that n = 4. Then

\[
\sum_{i=4}^{12} d_g(P_i, 4) = 45 = 5 \sum_{i=4}^{7} d_g(4, 3).
\]

\[
\sum_{i=k}^{3k} d_g(P_i, k) = \sum_{i=k}^{3k} d_g(P_{i-1}, k-1) + \sum_{i=k}^{3k} d_g(P_{i-2}, k-1) + \sum_{i=k}^{3k} d_g(P_{i-3}, k-1) + \sum_{i=k}^{3k} d_g(P_{i-4}, k-1) + \sum_{i=k}^{3k} d_g(P_{i-5}, k-1).
\]

\[
= 5 \sum_{i=k-1}^{3k-1} d_g(P_{i-1}, k-2) + 5 \sum_{i=k-1}^{3k-2} d_g(P_{i-2}, k-2) + 5 \sum_{i=k-1}^{3k-3} d_g(P_{i-3}, k-2) + 5 \sum_{i=k-1}^{3k-4} d_g(P_{i-4}, k-2) + 5 \sum_{i=k-1}^{3k-5} d_g(P_{i-5}, k-2).
\]

\[
= 5 \sum_{i=k-1}^{3(k-5)} d_g(P_i, k-1).
\]

We have the result.

References

