1. Introduction

A new class of generalized open sets called b-open sets in topological spaces was defined by Andrijevic [2]. The class of all b open sets generates the same topology as the class of all pre-open sets. In 1986, Maki [11] introduced the concept of generalized Λ sets and defined the associated closure operators by using the work of Levine [8] and Dunham [5]. Caldas and Dontchev [3] introduced Λ-sets, V_α-sets and $g\Lambda$-sets and gV_α-sets. Ganster and et al. [6] introduced the notion of pre Λ-sets and pre V-sets and obtained new topologies via these sets. M.E. Abd El-Monsef et al. [1] defined $b\Lambda$-sets and bV-sets on a topological space and proved that it forms a topology. In 1963 Levine [9] introduced the concept of a simple extension of a topology τ as $\tau(B) = (B \cap O) \cup O \setminus O \in \tau$ and $B \not\in \tau$. Sr. I. Arockiarani and F. Nirmala Irudayam [12] introduced the concept of π-genb-open sets in extended topological spaces. Caldas and Jafari[4] introduced the notions of $\pi gb\Lambda$-sets and πgbV-sets on a topological space and proved that it forms a topology. In 1986, Maki [11] introduced the concept of a simple extension of a topology τ as $\tau(B) = (B \cap O) \cup O \setminus O \in \tau$ and $B \not\in \tau$. Sr. I. Arockiarani and F. Nirmala Irudayam [13] coined the idea of $\pi gb\Lambda$, πgbV sets in simple extended topological spaces.

2. Preliminaries

All through the paper the space X is a SETS in which no separation axioms are assumed unless and otherwise stated.

Definition 2.1

A subset A of a topological space (X, τ) is said to be,

(i) b-open set[2], if $A \subseteq cl(int(A)) \cup int(cl(A)) \subseteq A$.

(ii) a generalized closed (briefly g-closed) [7] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open.

(iii) a generalized b-closed (briefly bg-closed) [6] if $bcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open.

(iv) gb-closed[15] if $bcl(A) \subseteq A$ whenever $A \subseteq U$ and U is π-open in (X, τ). By $\pi gbc(X, \tau)$ we mean the family of all gb-closed subsets of the space (X, τ).

Definition 2.2[12]: A subset A of a topological space (X, τ) is said to be,

(i) b-open set if $A \subseteq cl'(int(A)) \cup int(cl'(A)) \subseteq A$.

(ii) a generalized’ closed (briefly g’-closed) if $cl'(A) \subseteq U$ whenever $A \subseteq U$ and U is open.

(iii) a generalized b-closed (briefly bg’-closed) if $bcl'(A) \subseteq U$ whenever $A \subseteq U$ and U is open.

(iv) gb’-closed[14] if $bcl'(A) \subseteq A$ whenever $A \subseteq U$ and U is π-open in (X, τ). By $\pi gbc' (X, \tau)$ we mean the family of all gb’-closed subsets of the space (X, τ).

Definition 2.3[10]: Let S be a subset of a topological space (X, τ) we define the sets $\Omega gb(S)$ and $\Omega gb(S)$ as follows,

$\Omega gb(S) = \cap \{G | G \subseteq \pi gbO(X, \tau) \}$ and $\Omega gb(S) = \cup \{F | F \in \pi gbc(X, \tau) \}$

Definition 2.4[14]: A function $f: (X, \tau') \rightarrow (Y, \sigma')$ is called

(i) π'-irresolute if $f^{-1}(V)$ is π'-closed in (X, τ') for every π'-closed set V of (Y, σ').

(ii) b'-irresolute if for each b'-open set V in (Y, σ'), $f^{-1}(V)$ is b'-open in (X, τ').

(iii) b'-continuous if for each open set V in (Y, σ), $f^{-1}(V)$ is b'-open in (X, τ').

3. Ωgb-KERNEL

Definition 3.1: Let (X, τ) be a topological space, $A \subseteq X$. Then Ωgb-kernel of A is defined by Ωgb-Kernel$(A) = \cap \{G | G \subseteq \Omega gbO(X, \tau) \}$ and $A \subseteq G$.

Definition 3.2: A point $x \in \Omega gb$-kernel of A if for every Ωgb-open set U containing x, $A \cap U \neq \phi$.

Let (X, τ') be a topological space and A, B be subsets of X. Let $x, y \in X$ then we have the following lemmas.

Lemma 3.3: $A \subseteq \Omega gb$-kernel(A)

© 2017 Elixir All rights reserved.

Keywords

Kernel, Separation axiom.
Proof: Let \(x \in \Omega_\beta^s \setminus \ker(A) \) then there exists \(V \in \Omega_\beta^s \setminus \ker(A) \) such that \(x \in V \). Hence \(x \notin A \).

Lemma 3.4: If \(A \subset B \), then \(\Omega_\beta^s \setminus \ker(A) \subset \Omega_\beta^s \setminus \ker(B) \).

Proof: Let \(x \notin \Omega_\beta^s \setminus \ker(B) \). Then there exists \(G \in \Omega_\beta^s \setminus \ker(B) \) such that \(B \cap G \) and \(x \notin G \). Since \(A \subset B \), \(A \cap G \) and hence \(x \notin \Omega_\beta^s \setminus \ker(A) \).

Lemma 3.5: \(\Omega_\beta^s \setminus \ker(A) = \Omega_\beta^s \setminus \ker(B) \).

Proof: Let \(x \in \Omega_\beta^s \setminus \ker(B) \). Then there exists \(G \in \Omega_\beta^s \setminus \ker(B) \) for every \(\Omega_\beta^s \setminus \ker(A) \). \(x \notin \Omega_\beta^s \setminus \ker(A) \).

Lemma 3.6: \(\forall \Omega_\beta^s \setminus \ker(A) \).

Proof: Let \(y \notin \Omega_\beta^s \setminus \ker(A) \) there exists a \(\Omega_\beta^s \)-open set \(V \supseteq \{ x \} \) such that \(y \notin V \). Then \(\forall \Omega_\beta^s \setminus \ker(A) \).

Definition 4.1: \((X, t^*) \) is \(\Omega_\beta^s \)-T_1 if for each pair of distinct points \(x, y \) of \(X \), there exists a \(\Omega_\beta^s \)-open set containing one of the points but not the other.

Theorem 4.2: \((X, t^*) \) is \(\Omega_\beta^s \)-T_0 iff for each pair of distinct points \(x, y \in X \), \(\Omega_\beta^s \)-open set containing one of the points but not the other, say \(x \in V \) and \(y \notin V \). Then \(V \) is \(\Omega_\beta^s \)-open set containing \(x \) but not \(y \). But \(\Omega_\beta^s \)-open set containing \(y \) is the smallest \(\Omega_\beta^s \)-open set containing \(y \). Therefore \(\Omega_\beta^s \)-open set containing \(y \) is \(V \). Hence \(x \notin \Omega_\beta^s \)-open set.

Definition 4.3: \((X, t^*) \) is \(\Omega_\beta^s \)-T_1 for every \(\Omega_\beta^s \)-open set \(U \) in \(X \) such that \(x \in U \) and \(y \notin U \).

Theorem 4.5: In a space \((X, t^*) \), the following are equivalent

1. \((X, t^*) \) is \(\Omega_\beta^s \)-T_1
2. \(\forall \Omega_\beta^s \)-open set containing \(x \) in \(X \).
3. \(\forall \Omega_\beta^s \)-open set containing \(x \) in \(X \).

Proof: Let \(x \in X \). Then there exists a \(\Omega_\beta^s \)-open set \(V \) such that \(x \in V \) and \(y \notin V \). If \(x \in \Omega_\beta^s \setminus \ker(A) \) then \(x \in \Omega_\beta^s \)-open set containing \(x \). \(x \in \Omega_\beta^s \)-open set containing \(y \). Therefore \(\forall \Omega_\beta^s \)-open set containing \(y \) is \(V \). Hence \(x \notin \Omega_\beta^s \)-open set containing \(y \). Therefore \(\forall \Omega_\beta^s \)-open set containing \(x \) but not \(y \). Similarly, there exists an \(\Omega_\beta^s \)-open set \(U \) in \(X \) such that \(x \in U \) but \(y \notin U \).

Theorem 4.6: A space \((X, t^*) \) is \(\Omega_\beta^s \)-T_1 if and only if for every \(\Omega_\beta^s \)-open set \(U \) containing \(x \), \(\forall \Omega_\beta^s \)-open set containing \(x \).

Definition 4.7: \((X, t^*) \) is \(\Omega_\beta^s \)-T_2 if and only if for every \(\Omega_\beta^s \)-open set \(U \) containing \(x \) but not \(y \). Similarly, there exists an \(\Omega_\beta^s \)-open set \(V \) containing \(y \) but not \(x \).

Remark 4.8: Every \(\Omega_\beta^s \)-open set is \(\Omega_\beta^s \)-open set. But the converse need not be true. For example, let \(X = \{ a, b, c \} \) and \(\tau = \{ \{ a, b, c \} \} \) and \(B = \{ \{ a, b \} \} \). Then \((X, \tau) \) is \(\Omega_\beta^s \)-open set space but not \(\Omega_\beta^s \)-Ti space.

Theorem 4.9: For a topological space \((X, \tau) \), the following are equivalent:

1. \((X, \tau) \) is \(\Omega_\beta^s \)-T_1
2. \(\forall \Omega_\beta^s \)-open set containing \(x \) in \(X \).
3. \(\forall \Omega_\beta^s \)-open set containing \(x \) in \(X \).

Proof: Let \(x \in X \). Then for each \(y \notin X \), there is a \(\Omega_\beta^s \)-open set \(U \) containing \(x \) such that \(y \notin \Omega_\beta^s \)-open set containing \(x \).

Theorem 4.10: Every \(\Omega_\beta^s \)-open set is \(\Omega_\beta^s \)-open set.

5. \(\Omega_\beta^s \)-Continuous and \(\Omega_\beta^s \)-Irresolute Functions

Definition 5.1: A function \(f : (X, t^*) \to (Y, s^*) \) is called \(\Omega_\beta^s \)-continuous if every \(f^{-1}(V) \) is \(\Omega_\beta^s \)-closed in \((X, t^*) \) for every closed set \(V \in (Y, s^*) \).

Definition 5.2: A function \(f : (X, t^*) \to (Y, s^*) \) is called \(\Omega_\beta^s \)-irresolute if \(f^{-1}(V) \) is \(\Omega_\beta^s \)-closed in \((X, t^*) \) for every closed set \(V \in (Y, s^*) \).
Definition 5.3: A function $f: X \to Y$ is said to be pre b^*-closed if $f(U)$ is b^*-closed in Y for each b^*-closed set in X.

Remark 5.4: Composition of two Ω_{gb}^+-continuous functions need not be Ω_{gb}^+-continuous.

Example 5.5: Let $X=\{a,b,c\}, \tau =\{X, \emptyset, \{a\}, \{a,c\}\}$ and $B=\{c\}, \tau' =\{X, \emptyset, \{a\}, \{a,c\}\}$. $\sigma =\{X, \emptyset, \{a\}, \{a,b\}\}$ and $B'=\{b\}$, $\sigma' =\{X, \Phi, \{a\}, \{a,b\}\}$. $\eta =\{X, \emptyset, \{a\}, \{a\}\}$ and $B'=\{b\}$, $\eta' =\{X, \Phi, \{a\}, \{a\}\}$. Define $f(X, \tau) \to (X, \sigma)$ by $f(a)=a$, $f(b)=b\cup(c(f(b')))$, $f(c)=b$. Define $g(X, \sigma) \to (X, \eta)$ by $g(a)=a$, $g(b)=b$, $g(c)=c$. Then f and g are Ω_{gb}^+-continuous but gof is not Ω_{gb}^+-continuous.

Proposition 5.6: Let $f(X, \tau) \to (Y, \sigma)$ be π^*-irresolute and pre b^*-closed. Then $f(A)$ is Ω_{gb}^*-closed in Y for every Ω_{gb}^*-closed set A of X.

Proof: Let A be Ω_{gb}^*-closed in X. Let $f(A) \subseteq V$ be π^*-open in Y. Then $A \subseteq f^{-1}(V)$ and A is Ω_{gb}^*-closed in X implies $b^*cl(A) \subseteq f^{-1}(V)$. Hence $f(bcl(A)) \subseteq V$. Since f is pre b^*-closed, $b^*cl(f(A)) \subseteq b^*cl(f(bcl(A))) = f(bcl(A)) \subseteq V$. Hence $f(A)$ is Ω_{gb}^*-closed in Y.

Definition 5.7: A topological space X is a Ω_{gb}^*-space if every Ω_{gb}^*-closed set is closed.

Proposition 5.8: Every Ω_{gb}^*-space is Ω_{gb}^*-T$_{1/2}$ space.

Theorem 5.9: Let $f(X, \tau) \to (Y, \sigma)$ be a function.

(1) If f is Ω_{gb}^*-irresolute and X is Ω_{gb}^*-T$_{1/2}$ space, then f is b^*-irresolute.

(2) If f is Ω_{gb}^*-continuous and X is Ω_{gb}^*-T$_{1/2}$ space, then f is b^*-continuous.

Proof: (1) Let V be b^*-closed in Y. Since f is Ω_{gb}^*-irresolute, $f^{-1}(V)$ is Ω_{gb}^*-closed in X. Since X is Ω_{gb}^*-T$_{1/2}$ space, $f^{-1}(V)$ is b^*-closed in X. Hence f is b^*-irresolute.

(2) Let V be b^*-closed in Y. Since f is Ω_{gb}^*-continuous, $f^{-1}(V)$ is Ω_{gb}^*-closed in X. By assumption, it is b^*-closed. Hence f is b^*-continuous.

Definition 5.10: A function $f: (X, \tau) \to (Y, \sigma)$ is π^*-open map if $f(U)$ is π^*-open in Y for every π^*-open in X.

Theorem 5.11: If the bijective $f: (X, \tau) \to (Y, \sigma)$ is b^*-irresolute and π^*-open map, then f is Ω_{gb}^*-irresolute.

Proof: Let V be Ω_{gb}^*-closed in Y. Let $f^{-1}(V) \subseteq U$ where U is π^*-open in X. Hence $V \subseteq f(U)$ and $f(U)$ is π^*-open implies $b^*cl(U) \subseteq f(U)$. Since f is b^*-irresolute, $(f^{-1}(b^*cl(U)))$ is b^*-closed. Hence $b^*cl(f^{-1}(V)) \subseteq b^*cl(f^{-1}(b^*cl(U))) = f^{-1}(b^*cl(U)) \subseteq U$. Therefore f is Ω_{gb}^*-irresolute.

Theorem 5.12: If $f:X \to Y$ is π^*-open, b^*-irresolute, pre b^*-closed surjective function. If X is Ω_{gb}^*-T$_{1/2}$ space, then Y is Ω_{gb}^*-T$_{1/2}$ space.

Proof: Let F be a Ω_{gb}^*-closed set in Y. Let $f^{-1}(F) \subseteq U$ where U is π^*-open in X. Then $F \subseteq f(U)$ and F is a Ω_{gb}^*-closed set in Y implies $b^*cl(F) \subseteq f(U)$. Since f is b^*-irresolute, $b^*cl(f^{-1}(F)) \subseteq b^*cl(f^{-1}(b^*cl(F))) = f^{-1}(b^*cl(F)) \subseteq U$. Therefore $f^{-1}(F)$ is Ω_{gb}^*-closed in X. Since X is Ω_{gb}^*-T$_{1/2}$ space, $f^{-1}(F)$ is b^*-closed in X. Since f is pre b^*-closed, $f(f^{-1}(F)) = F$ is b^*-closed in Y. Hence Y is Ω_{gb}^*-T$_{1/2}$ space.

References