Edge-vertex dominating sets and Edge-vertex domination polynomials of Stars

A. Vijayan and J. Sherin Beula

Department of Mathematics, Nesamony Memorial Christian College, Marthandam, Kanyakumari District, Tamil Nadu, South India.

ABSTRACT

Let \(G = (V, E) \) be a simple graph. A set \(S \subseteq E(G) \) is an Edge-Vertex dominating set of \(G \) (or simply an ev-Dominating set), if for all vertices \(v \in V(G) \), there exists an edge \(e \in S \) such that \(e \) dominates \(v \). Let \(S_n \) be the Star graph and let \(D_{ev}(S_n, i) \) denote the family of all Edge-Vertex dominating sets of \(S_n \) with cardinality \(i \). Let \(d_{ev}(S_n, i) = \left| D_{ev}(S_n, i) \right| \), be the number of Edge-Vertex dominating sets of \(S_n \) with cardinality \(i \). In this paper, we study the concept of Edge-Vertex domination polynomials of Star graph \(S_n \). The Edge-Vertex Domination polynomial of \(S_n \) is

\[
D_{ev}(S_n, x) = \sum_{i=1}^{n-1} d_{ev}(S_n, i)x^i.
\]

We obtain some properties of \(D_{ev}(S_n, x) \) and its coefficients. Also, we calculate the recursive formula to derive the Edge-Vertex Domination polynomials of Star graph \(S_n \).

1. Introduction

Let \(G = (V, E) \) be a simple graph of order \(|V| = n \). A set \(S \subseteq V(G) \) is a dominating set of \(G \), if every vertex in \(V \setminus S \) is adjacent to at least one vertex in \(S \). For any vertex \(v \in V \), the open neighbourhood of \(v \) is the set \(N(v) = \{ u \in V : uv \in E \} \) and the closed neighbourhood of \(v \) is the set \(N[v] = N(v) \cup \{ v \} \). For a set \(S \subseteq V \), the open neighbourhood of \(S \) is \(N(S) = \bigcup_{v \in S} N(v) \) and the closed neighbourhood of \(S \) is \(N[S] = N(S) \cup S \). For a set \(S \subseteq V \), the open neighbourhood of \(S \) is \(N(S) = \bigcup_{v \in S} N(v) \) and the closed neighbourhood of \(S \) is \(N[S] = N(S) \cup S \). Let \(S_n, n \geq 2 \) be the star with \(n \) vertices \(V(S_n) = \{1\} \) and \(E(S_n) = \{(1, 2), (1, 3), \ldots, (1, n)\} \).

Definition 1.1

For a graph \(G = (V, E) \), an edge \(e = uv \in E(G) \), ev-dominates a vertex \(w \in V(G) \) if

(i) \(u = w \) or \(v = w \) (\(w \) is incident to \(e \)) or
(ii) \(uw \) or \(vw \) is an edge in \(G \) (\(w \) is adjacent to \(u \) or \(v \)).

Definition 1.2

A set \(S \subseteq E(G) \) is an Edge-Vertex dominating set of \(G \) (or simply an ev-dominating set), if for all vertices \(v \in V(G) \), there exist an edge \(e \in S \) such that \(e \) dominates \(v \). The Edge-Vertex domination number of a graph \(G \) is defined as the minimum size of an Edge-Vertex dominating set of edges in \(G \) and it is denoted as \(\gamma_{ev}(G) \).

Definition 1.3

Let \(D_{ev}(S_n, i) \) be the family of Edge-Vertex dominating sets of a Star graph \(S_n \) with cardinality \(i \) and let \(d_{ev}(S_n, i) = |D_{ev}(S_n, i)| \) be the number of Edge-Vertex dominating sets of \(S_n \). We call the polynomial

\[
D_{ev}(S_n, x) = \sum_{i=1}^{n-1} d_{ev}(S_n, i)x^i,
\]

the Edge-Vertex domination polynomial of the graph \(S_n \).
As usual we use \(\lfloor x \rfloor \) for the largest integer less than or equal to \(x \) and \(\lceil x \rceil \) for the smallest integer greater than or equal to \(x \).

Also, we denote the set \(\{e_1, e_2, \ldots, e_n\} \) by \([e_n]\) and the set \(\{1, 2, \ldots, n\} \) by \([n]\), throughout this paper.

2. Edge-Vertex Dominating Sets of Stars

Let \(S_n \), \(n \geq 2 \) be a Star with \(n \) vertices \(V(S_n)=[n] \) and \(E(S_n) = \{e_1, e_2, \ldots, e_{n-1}\} \). Let \(D_{ev}(S_n, i) \) be the family of Edge-Vertex dominating sets of \(S_n \) with cardinality \(i \).

Lemma 2.1

The following results hold for all graph \(G \) with \(|V(G)| = n \) vertices and \(|E(G)| = n-1 \) edges.

(i) \(d_{ev}(G,n-1)=1 \),

(ii) \(d_{ev}(G,n-2)=n-1 \),

(iii) \(d_{ev}(G,i)=0 \) if \(i \geq n \),

(iv) \(d_{ev}(G,0)=0 \).

Proof:

Let \(G=(V,E) \) be a simple graph of order \(n \) and size \(n-1 \), then

(i) \(D_{ev}(G,n-1)=[G]=\{e_{n-1}\} \), therefore \(|D_{ev}(G,n-1)|=1 \). Therefore, \(d_{ev}(G,n-1)=1 \).

(ii) \(D_{ev}(G,n-2)=[G-\{e_i\} \): \(\forall e_i \in G \} \), therefore \(|D_{ev}(G,n-2)|=n-1 \). Therefore, \(d_{ev}(G,n-2)=n-1 \).

(iii) If \(i \geq n \), there does not exist \(H \subseteq G \) such that \(|E(H)|>|E(G)| \). Therefore, \(d_{ev}(G,i)=0 \).

(iv) For \(i=0 \) there does not exist \(H \subseteq G \) such that \(|E(H)|=0 \), \(\Phi \) is not a Edge-Vertex dominating set of \(G \). Therefore, \(d_{ev}(G,0)=0 \).

Lemma 2.2

For all \(n \in \mathbb{Z}^+ \), \(D_{ev}(S_n,i)=\Phi \) if and only if \(i \geq n \) or \(i<0 \).

Theorem 2.3

Let \(S_n \) be a Star with vertices \(n \geq 2 \), then

(i) \(d_{ev}(S_n,i)=\begin{pmatrix} n-1 \\ i \end{pmatrix} \) if \(i \leq n-1 \).

(ii) \(d_{ev}(S_n,i)=\begin{pmatrix} d_{ev}(S_{n-1},i)+1, & \text{if } i=1 \\ d_{ev}(S_{n-1},i)+d_{ev}(S_{n-1},i-1), & \text{if } 1 < i \leq n-1 \end{pmatrix} \)

Proof

(i) Let \(S_n \) be a star with \(n \) vertices and \(n-1 \) edges and let \(v \in V(S_n) \) be such that \(v \) is the centre of \(S_n \) and let the edges be \(\{e_1, e_2, \ldots, e_{n-1}\} \). Consider an edge \(e_i \). By the definition of Edge-Vertex domination, it covers all the vertices of \(S_n \). Similarly, any other edge of \(S_n \) covers all the vertices of \(S_n \). Therefore, the number of Edge-Vertex dominating sets of cardinality 1 is \(\begin{pmatrix} n-1 \\ 1 \end{pmatrix} \). Consider any two edges of \(S_n \). These edges cover all the remaining vertices of \(S_n \). Therefore, number of Edge-Vertex dominating sets of cardinality 2 is \(\begin{pmatrix} n-1 \\ 2 \end{pmatrix} \). By continuing, we get the number of Edge-Vertex dominating sets of cardinality \(i \) is \(\begin{pmatrix} n-1 \\ i \end{pmatrix} \) \(i \leq n-1 \). Therefore, \(d_{ev}(S_n,i)=\begin{pmatrix} n-1 \\ i \end{pmatrix} \) \(i \leq n-1 \).

From Table 1, we have \(d_{ev}(S_n,i)=d_{ev}(S_{n-1},i)+1 \cdot i=1 \). For \(1 < i \leq n-1 \), we have \(\begin{pmatrix} n-2 \\ i-1 \end{pmatrix} + \begin{pmatrix} n-2 \\ i \end{pmatrix} = \begin{pmatrix} n-1 \\ i \end{pmatrix} \).

Therefore, \(d_{ev}(S_n,i)=d_{ev}(S_{n-1},i)+d_{ev}(S_{n-1},i-1) \cdot 1 < i \leq n-1 \).

3. Edge-Vertex Domination Polynomials of Stars

In this section, we obtain the Edge-Vertex Domination polynomial \(D_{ev}(S_n,x) \) of the Star graph \(S_n \).
Theorem 3.1
\[D_{\nu}^n(S_n, x) = (1 + x)^{n-1} - 1. \]
\[\text{Proof:} \]
Let
\[D_{\nu}^n(S_n, x) = \sum_{i=1}^{n-1} d_{\nu}^i(S_n, i)x^i \]
\[= \sum_{i=1}^{n-1} \left(n-1 \right)^i, \text{by theorem 2.3 (i)}. \]
\[= \left(n-1 \right) \left(1 + \frac{1}{2} + \ldots + \frac{n-1}{n-1} \right) \]
\[= 1 + (n-1) + \left(n-1 \right)\left(1 + \frac{1}{2} + \ldots + \frac{n-1}{n-1} \right) \]
\[D_{\nu}^n(S_n, x) = (1 + x)^{n-1} - 1. \]

Theorem 3.2
\[D_{\nu}^n(S_n, x) = (1 + x)D_{\nu}^{n-2}(S_{n-1}, x) + x \] with \(D_{\nu}^n(S_2, x) = x \) for \(n \geq 3 \).
\[\text{Proof:} \]
\[D_{\nu}^n(S_n, x) = \sum_{i=1}^{n-1} d_{\nu}^i(S_n, i)x^i \]
\[= d_{\nu}^1(S_n, 1)x + \sum_{i=2}^{n-1} d_{\nu}^i(S_n, i)x^i \]
\[= (n-1) + \sum_{i=2}^{n-1} \left[d_{\nu}^i(S_{n-1}, i) + d_{\nu}^i(S_{n-1}, i - 1) \right]x^i \]
\[= (n-1) + \sum_{i=2}^{n-1} d_{\nu}^i(S_{n-1}, i)x^i + \sum_{i=2}^{n-1} d_{\nu}^i(S_{n-1}, i - 1)x^i \]
Consider,
\[\sum_{i=2}^{n-1} d_{\nu}^i(S_{n-1}, i)x^i = d_{\nu}^1(S_{n-1}, 2)x^2 + d_{\nu}^1(S_{n-1}, 3)x^3 + \ldots + d_{\nu}^1(S_{n-1}, n-1)x^{n-1} \]
\[= d_{\nu}^1(S_{n-1}, 1)x + d_{\nu}^1(S_{n-1}, 2)x^2 + \ldots + d_{\nu}^1(S_{n-1}, n-1)x^{n-1} - \]
\[d_{\nu}^1(S_{n-1}, 1)x \]
\[= \sum_{i=1}^{n-1} d_{\nu}^1(S_{n-1}, i)x^i - d_{\nu}^1(S_{n-1}, 1)x \]
\[= D_{\nu}^1(S_{n-1}, x) - \left(n-2 \right)x \]
\[= D_{\nu}^1(S_{n-1}, x) - (n-2)x \]
Consider,
\[\sum_{i=2}^{n-1} d_{\nu}^1(S_{n-1}, i - 1)x^i = x\sum_{i=2}^{n-1} d_{\nu}^1(S_{n-1}, i - 1)x^i \]
\[= x \left[d_{\nu}^1(S_{n-1}, 1)x + d_{\nu}^1(S_{n-1}, 2)x^2 + \ldots + d_{\nu}^1(S_{n-1}, n-2)x^{n-2} \right] \]
\[= x\sum_{i=1}^{n-2} d_{\nu}^1(S_{n-1}, i)x^i \]
\[= xD_{\nu}^1(S_{n-1}, x) \]
\[D_{\nu}^n(S_n, x) = (n-1)x + D_{\nu}^n(S_{n-1}, x) - (n-2)x + xD_{\nu}^n(S_{n-1}, x) \]
\[= nx + xD_{\nu}^n(S_{n-1}, x) - nx + 2x + xD_{\nu}^n(S_{n-1}, x) \]
\[= (1 + x)D_{\nu}^n(S_{n-1}, x) + x \]
Hence the theorem.
Example for Theorem 3.2
Let \(D_v(S_n, x) \) be the Edge-Vertex domination polynomial of Star graph \(S_n \). Then,

(i) \(D_v(S_3, x) = 2x + x^2 \)

(ii) \(D_v(S_4, x) = 3x + 3x^2 + x^3 \)

(iii) \(D_v(S_5, x) = 4x + 6x^2 + 4x^3 + x^4 \)

(iv) \(D_v(S_6, x) = 5x + 10x^2 + 10x^3 + 5x^4 + x^5 \).

Solution
From Theorem 3.3, \(D_v(S_n, x) = (1 + x)D_v(S_{n-1}, x) + x \) with \(D_v(S_2, x) = x \) for \(n \geq 3 \).

(i) For \(n = 3 \), \(D_v(S_3, x) = (1 + x)D_v(S_2, x) + x \)
 \(= (1 + x)x + x \)
 \(= 2x + x^2 \)

(ii) For \(n = 4 \), \(D_v(S_4, x) = (1 + x)D_v(S_3, x) + x \)
 \(= (1 + x)(2x + x^2) + x \)
 \(= 3x + 3x^2 + x^3 \)

(iii) For \(n = 5 \), \(D_v(S_5, x) = (1 + x)D_v(S_4, x) + x \)
 \(= (1 + x)(3x + 3x^2 + x^3) + x \)
 \(= 4x + 6x^2 + 4x^3 + x^4 \)

(iv) For \(n = 6 \), \(D_v(S_6, x) = (1 + x)D_v(S_5, x) + x \)
 \(= (1 + x)(4x + 6x^2 + 4x^3 + x^4) + x \)
 \(= 5x + 10x^2 + 10x^3 + 5x^4 + x^5 \).

We obtain \(d_v(S_n, i) \) for \(2 \leq n \leq 13 \) as shown in Table 1.

Table 1. \(d_v(S_n, i) \), the number of Edge-Vertex dominating set of \(S_n \) with cardinality \(i \).

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>15</td>
<td>20</td>
<td>15</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>21</td>
<td>35</td>
<td>35</td>
<td>21</td>
<td>7</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>28</td>
<td>56</td>
<td>70</td>
<td>56</td>
<td>28</td>
<td>8</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>36</td>
<td>84</td>
<td>126</td>
<td>126</td>
<td>84</td>
<td>36</td>
<td>9</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>45</td>
<td>120</td>
<td>210</td>
<td>252</td>
<td>210</td>
<td>120</td>
<td>45</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>55</td>
<td>165</td>
<td>330</td>
<td>462</td>
<td>462</td>
<td>330</td>
<td>165</td>
<td>55</td>
<td>11</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>66</td>
<td>220</td>
<td>495</td>
<td>792</td>
<td>924</td>
<td>792</td>
<td>495</td>
<td>220</td>
<td>66</td>
<td>12</td>
<td>1</td>
</tr>
</tbody>
</table>

In the following Theorem, we obtain some properties of \(d_v(S_n, i) \).

Theorem 3.3
The following properties hold for the coefficients of \(D_v(S_n, x) \) \(\forall n \in \mathbb{Z}^+, n \geq 4 \).

(i) \(d_v(S_n, 1) = n - 1 \).

(ii) \(d_v(S_n, n - 1) = 1 \).

(iii) \(d_v(S_n, n - 2) = n - 1 \).

(iv) \(d_v(S_n, i) = 0 \) if \(i \geq n \).

(v) \(\gamma_v(S_n) = 1 \).

(vi) \(d_v(S_n, i) = d_v(S_n, n - 1 - i), 1 \leq i \leq n - 2 \).
Therefore, the result is -1.

(iii) We prove this by the method of induction on “n”. If \(n = 4 \), L.H.S = \(d_v(S_4, 1) = 3 \) (from table 1). R.H.S = 4 - 1 = 3. Therefore, \(d_v(S_{j-1}, 1) = j - 2 \) is true. Now, we have to prove that the result is true for \(n = j \). \(d_v(S_j, 1) = d_v(S_{j-1}, j-1) + 1 = j - 2 + 1 \). Therefore, \(d_v(S_j, 1) = j - 1 \). Therefore, the result is true for \(n = j \). Hence, by the principle of induction, the result is true for all \(n, n \in \mathbb{Z}^+ \).

(ii) We prove this by the method of induction on ‘n’. If \(n = 4 \), L.H.S = \(d_v(S_4, 3) = 1 \) (from table 1). R.H.S = 1. Therefore, the result is true for \(n = 4 \). Assume that the result is true for all \(n < j \). Therefore, \(d_v(S_{j-1}, j - 2) = 1 \) is true. Now, we have to prove that the result is true for \(n = j \). \(d_v(S_j, j - 1) = d_v(S_{j-1}, j - 1) + d_v(S_{j-1}, j - 2) = 0 + 1 = 1 \). Therefore, the result is true for \(n = j \). Hence, by the principle of induction, the result is true for all \(n, n \in \mathbb{Z}^+ \).

(iii) We prove this by the method of induction on ‘n’. If \(n = 4 \), L.H.S = \(d_v(S_4, 2) = 3 \) (from table 1). R.H.S = 4 - 1 = 3. Therefore, the result is true for \(n = 4 \). Assume that the result is true for all \(n < j \). Therefore, \(d_v(S_{j-1}, j - 2) = 1 \) is true. Now, we have to prove that the result is true for \(n = j \). \(d_v(S_j, j - 2) = d_v(S_{j-1}, j - 2) + d_v(S_{j-1}, j - 3) \). Therefore, the result

\[
= 1 + j - 2
= j - 1
\]

is true for \(n = j \). Hence, by the principle of induction, the result is true for all \(n, n \in \mathbb{Z}^+ \).

(iv) From Table 1, we have \(d_v(S_n, i) = 0 \) if \(i \geq n \).

(v) Any edge of \(S_n \) is enough to cover all the vertices and edges of \(S_n \). Therefore, the minimum cardinality of the Edge-Vertex dominating set of \(S_n \) is 1. Therefore, \(\chi_v(S_n) = 1 \).

(vi) L.H.S =

\[
d_v(S_n) = \left(\frac{n-1}{i}\right)
\]

R.H.S =

\[
d_v(S_n, n-1-i) = \left(\frac{n-1}{n-1-i}\right)
\]

\[
= \frac{(n-1)!}{(n-1-i)! (n-1-i+1)!}
\]

\[
= \frac{(n-1)!}{(n-1-i)! i!}
\]

\[
= \left(\frac{n-1}{i}\right)
\]

Therefore, \(d_v(S_n, i) = d_v(S_n, n-1-i), 1 \leq i \leq n-2 \).

Theorem 3.4

The Edge-Vertex dominating roots of the Star graph \(S_n \) are

\[
cos \left(\frac{2(k+1)\pi}{n-1}\right) + i \sin \left(\frac{2(k+1)\pi}{n-1}\right), k = 0, \ldots, n-2
\]

Proof:

The Edge-Vertex domination polynomial of Star graph \(S_n \) is \(D_v(S_n, x) = (1 + x)^{n-1} - 1 \). To find the Edge-Vertex dominating roots, put \(D_v(S_n, x) = 0 \). Therefore, we get

\[
(1 + x)^{n-1} - 1 = 0
\]

\[
(1 + x)^{n-1} = 1
\]

\[
(1 + x) = (1)^{\frac{1}{n-1}}
\]

\[
= (\cos 2\pi + i \sin 2\pi)^{\frac{1}{n-1}}
\]

\[
= [\cos(2k\pi + 2\pi) + i \sin(2k\pi + 2\pi)]^{\frac{1}{n-1}}, \text{ where } k \text{ is an integer.}
\]
\[
= \left[\cos 2(k+1)\pi + i \sin 2(k+1)\pi \right]^{n-1},
\]

\[
k = 0,1,\ldots, n-2
\]

\[
(1 + x) = \cos \frac{2(k+1)\pi}{n-1} + i \sin \frac{2(k+1)\pi}{n-1},
\]

\[
k = 0,1,\ldots, n-2
\]

\[
x = \cos \frac{2(k+1)\pi}{n-1} + i \sin \frac{2(k+1)\pi}{n-1} - 1,
\]

\[
k = 0,1,\ldots, n-2
\]

Therefore, the Edge-Vertex dominating roots of the Star graph \(S_n \) are

\[
\cos \frac{2(k+1)\pi}{n-1} + i \sin \frac{2(k+1)\pi}{n-1}, k = 0,1,\ldots, n-2.
\]

Theorem 3.5

\[
\frac{d^n}{dx^n} D_{ev}(S_n, x) = (n-1)!.
\]

Proof:

The Edge-Vertex domination polynomial of Star graph \(S_n \) is \(D_{ev}(S_n, x) = (1+x)^{n-1} - 1 \).

Differentiating with respect to \(x \) we get,

\[
\frac{d}{dx} [D_{ev}(S_n, x)] = (n-1)(1+x)^{n-2}.
\]

Again differentiating with respect to \(x \) we get,

\[
\frac{d^2}{dx^2} [D_{ev}(S_n, x)] = (n-1)(n-2)(1+x)^{n-3}.
\]

Continuing this way we get \(n \)th derivative,

\[
\frac{d^n}{dx^n} [D_{ev}(S_n, x)] = (n-1)(n-2)...((n-1) - (n-2))(1+x)^{n-n}
\]

\[
= (n-1)(n-2)...(n-1-n+2)(1+x)^0
\]

\[
= (n-1)(n-2)...2.1
\]

\[
= (n-1)!
\]

Theorem 3.6

Let \(S_n \) be the Star graph with \(n \) vertices then. \(D_{ev}(S_n, -1) = -1 \).

Proof:

The Edge-Vertex domination polynomial of Star graph \(S_n \) is \(D_{ev}(S_n, x) = (1+x)^{n-1} - 1 \).

\[
D_{ev}(S_n, -1) = (1-1)^{n-1} - 1 = 0 - 1 = -1.
\]

4. Conclusion

In this paper we obtain the Edge-Vertex dominating sets and Edge-vertex domination polynomial of some specified graphs.

5. References

