Minimal Total Dominating Color Transversal Set of Generalised Petersen Graph \(P(n, 1) \)

D.K.Thakkar\(^1\) and A.B.Kothiya\(^2\)

\(^1\)Department of Mathematics, Saurashtra University, Rajkot.
\(^2\)G.K.Bharad Institute of Engineering, Kasturbadham, Rajkot.

Abstract

Total Dominating Color Transversal Set of a graph is a Total Dominating Set which is also Transversal of some \(\chi \) - Partition of vertices of \(G \). Here \(\chi \) is the Chromatic number of the graph \(G \). A Total Dominating Color Transversal Set of a graph \(G \) is called Minimal Total Dominating Color Transversal Set of the graph if no proper subset of it is a Total Dominating Color Transversal Set of \(G \). In this paper, we determine a necessary and sufficient condition under which a Total Dominating Color Transversal Set becomes Minimal. We also obtain Minimal Total Dominating Color Transversal set of Generalised Petersen graph \(P(n, 1) \).

Keywords

Total Dominating Color Transversal Set, Minimal Total Dominating Color Transversal Set, \(\chi \)- Partition of a graph.

1. Introduction

We begin with simple, finite, connected and undirected graph without isolated vertices. We know that proper coloring of vertices of graph \(G \) partitions the vertex set \(V \) of \(G \) into equivalence classes (also called the color classes of \(G \)). Using minimum number of colors to properly color all the vertices of \(G \) yields \(\chi \)- equivalence classes. Transversal of a \(\chi \)- Partition of \(G \) is a collection of vertices of \(G \) that meets all the color classes of the \(\chi \)- Partition. That is, if \(T \) is a subset of \(V \) (the vertex set of \(G \)) and \(\{V_1, V_2, \ldots, V_{\chi}\} \) is a \(\chi \)- Partition of \(G \) then \(T \) is called a Transversal of this \(\chi \)- Partition if \(T \cap V_i \neq \emptyset \) \(\forall \ i \in \{1, 2, \ldots, \chi\} \). Total Dominating Color Transversal Set of graph \(G \) is a Total Dominating Set with the extra property that it is also Transversal of some such \(\chi \)- Partition of \(G \).

We first mention definitions.

2. Definitions

Definition 2.1[4]: (Total Dominating Set) Let \(G = (V, E) \) be a graph. Then a subset \(S \) of \(V \) (the vertex set of \(G \)) is said to be a Total Dominating Set of \(G \) if for each \(v \in V \), \(v \) is adjacent to some vertex in \(S \).

Definition 2.2[4]: (Minimum Total Dominating Set/Total Domination number) Let \(G = (V, E) \) be a graph. Then a Total dominating set \(S \) is said to be a Minimum Total Dominating set of \(G \) if \(|S| = \min \{|D| : D \text{ is a Total Dominating set of } G\} \). Here \(S \) is called \(Y_t \)-set and its cardinality, denoted by \(Y_t(G) \) or just by \(Y_t \), is called the Total Domination number of \(G \).

Definition 2.3[1]: (\(\chi \)-partition of a graph) Proper coloring of vertices of a graph \(G \), by using minimum number of colors, yields minimum number of independent subsets of vertex set of \(G \) called equivalence classes (also called color classes of \(G \)). Such a partition of a vertex set of \(G \) is called a \(\chi \)- Partition of the graph \(G \).

Definition 2.4[1]: (Transversal of a \(\chi \)-Partition of a graph) Let \(G = (V, E) \) be a graph with \(\chi \)- Partition \(\{V_1, V_2, \ldots, V_{\chi}\} \). Then a set \(S \subseteq V \) is called a Transversal of this \(\chi \)- Partition if \(S \cap V_i \neq \emptyset \ \forall \ i \in \{1, 2, \ldots, \chi\} \). Total Dominating Color Transversal Set of the graph \(G \) is a Total Dominating Set of \(G \). Hence any Total Dominating Set of \(G \) will be \(\chi \)- Partition of \(G \).

Definition 2.5[1]: (Total Dominating Color Transversal Set) Let \(G = (V, E) \) be a graph. Then a Total Dominating Set \(S \) of \(G \) is called a Total Dominating Color Transversal Set of \(G \) if no proper subset of \(S \) is a Total Dominating Color Transversal Set of \(G \).

Definition 2.6[1]: (Minimal Total Dominating Color Transversal Set) Let \(G = (V, E) \) be a graph and \(S \subseteq V \) be a Total Dominating Transversal Set of \(G \). Then \(S \) is called Minimal Total Dominating Color Transversal Set of \(G \) if it is Transversal of at least one \(\chi \)- Partition of \(G \).

Definition 2.7[5]: (Generalised Petersen Graph) Let \(n, k \) be the positive integers such that \(n \geq 3 \) and \(1 \leq k \leq \lfloor \frac{n}{2} \rfloor \). The generalised Petersen graph \(P(n, k) \) is the graph whose vertex set is \(\{a_i, b_i / 1 \leq i \leq n\} \) and whose edge set is \(\{a_i, b_{i+1}, \{a_i, a_{i+k}\}, \{b_i, b_{i+k}\} / 1 \leq i \leq n \} \) where \(a_{i+k} = a_i \) and \(b_{i+k} = b_i \) for every \(c \geq 1 \).

3. Main results

First we state the following theorem taken from [1].

Theorem 3.1 [1]: If \(G \) is a graph with \(\chi(G) = 2 \) then \(Y_{tud}(G) = Y_t(G) \).

Remark 3.2: Let \(G \) be a graph with \(\chi(G) = 2 \). Then any Total Dominating Set of \(G \) will be a Transversal of every \(\chi \)-Partition of \(G \). Hence any Total Dominating Set of \(G \) will be Total Dominating Color Transversal Set of \(G \).
We now state necessary and sufficient condition under which Total Dominating Color Transversal Set of a graph is Minimal.

Theorem 3.3: A Total Dominating Color Transversal Set D of a graph $G = (V, E)$ is Minimal iff for every $u \in D$ at least one of the following conditions hold:

1. There exists $v \in V \setminus \{u\}$ such that $N(v) \cap D = \{u\}$.
2. For every χ Partition $\{V_1, V_2, V_3, \ldots, V_\chi\}$ there exists V_i such that $V_i \cap D = \{u\}$ or ϕ.

Proof: Let D be a Total Dominating Color Transversal Set of a graph G. First assume that D is a Minimal Total Dominating Color Transversal Set of G. Then for every $u \in D$, $D \setminus \{u\}$ is not a Total Dominating Color Transversal Set of G. Then $D \setminus \{u\}$ is not a Total Dominating Set of G or $D \setminus \{u\}$ is not a transversal for every χ Partition of G.

Case (i): $D \setminus \{u\}$ is not a Total Dominating of G.

In such case there exists $v \in V$ such that it is not adjacent to any vertex of $D \setminus \{u\}$. Note that $v \neq u$ as if $v = u$ then u is an isolate of D which is not possible as D is a Total Dominating Set of G. Hence we are left with two possibilities viz., (a) $v \in V \setminus D$ or (b) $v \in D \setminus \{u\}$.

(a) $v \in V \setminus D$. v is not adjacent to any of $D \setminus \{u\}$. $v \in V \setminus D$ and D is a Total Dominating set together implies that v is adjacent to u only. Hence $N(v) \cap D = \{u\}$.

(b) $v \in D \setminus \{u\}$. v is not adjacent to any of $D \setminus \{u\}$ implies that v is an isolate of $D \setminus \{u\}$. As D is a Total Dominating set, v is adjacent to u only in D. Hence $N(v) \cap D = \{u\}$.

Case (ii): $D \setminus \{u\}$ is not a transversal of every χ Partition $\{V_1, V_2, V_3, \ldots, V_\chi\}$ of G.

In such case $D \setminus \{u\} \cap V_i = \phi$ for some $i \in \{1, 2, \ldots, n\}$. Hence $D \cap V_i = \phi$ or $\{u\}$ for some $i \in \{1, 2, \ldots, n\}$.

Conversely it is easy to prove the above results assuming (II) is true.

Consider χ Partition $\{V_1, V_2, V_3, \ldots, V_\chi\}$ of G such that $D \setminus \{u\}$ and D are transversals of it. Then $D \setminus \{u\} \cap V_i \neq \phi$ and $D \cap V_i \neq \phi$ for every $i \in \{1, 2, \ldots, n\}$. This means that $D \cap V_i \neq \phi \cap \{u\}$. Therefore condition (II) also fails to hold. Hence both the conditions fails to hold, which is a contradiction.

Hence D is a Minimal Total Dominating Color Transversal Set of G.

Hence the theorem.

Now we obtain the Minimal Total Dominating Color Transversal Set of very Interesting and Special Graph called Generalised Petersen Graph $P(n, 1)$.

Generalised Petersen Graph $P(n, 1)$

![Figure 1](Image)

![Proposition 3.4 - $\chi(P(n, 1)) = 2$ if n is even $= 3$ if n is odd.](Image)

Proof: Consider the above drawn Generalised Petersen Graph $P(n, 1)$. In our proof color pair (i, j) assigned to vertex pair (u, v) will mean colors i and j are assigned to u and v respectively.

Case 1: n is even

Assign color pair $(1, 2)$ to each pairs $(u_1, v_1), (u_3, v_3), \ldots, (u_{n-1}, v_{n-1})$ and color pair $(2, 1)$ to $(u_2, v_2), (u_4, v_4), \ldots, (u_n, v_n)$.

Therefore in this case $\chi(P(n, 1)) = 2$.

Case 2: n is odd

In this case $P(n, 1)$ contains odd cycle. So at least three colors are required to color it. We prove that exactly three colors are required to properly color $P(n, 1)$.

Divide then vertices pairs (u_i, v_i) into groups of three pairs are $\{(u_1, v_1), (u_2, v_2), (u_3, v_3),\ldots, (u_{n-1}, v_{n-1})\}$.

In this case $\chi(P(n, 1)) = 3$.
When n is odd

$$D = \{u_1, u_2, u_3\} \text{ with } |D| = 3, \text{ (mod } 3)$$

$$\{u_1, u_2, v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}, v_{11} \} \text{ with } |D| = \frac{2n + 1}{3}, n \equiv 1 \text{ (mod } 3)$$

$$\{u_1, u_2, v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}, v_{11} \} \text{ with } |D| = \frac{2n + 2}{3}, n \equiv 2 \text{ (mod } 3)$$

Proof: Consider the Generalized Petersen Graph drawn in Figure 1.

Divide the vertices into groups of three pairs as (u_1, u_2, u_3), (u_4, u_5, u_6), ... where the last group may have one, two or three pairs.

Case 1: n is even

We know by Proposition 3.4 that $P(n, 1)$ is bipartite. So obviously any Total Dominating Set of $P(n, 1)$ is a Total Dominating Color Transversal Set of $P(n, 1)$.

Sub Case 1(a): $n \equiv 0 \text{ (mod } 3)$

By above Result 3.5, the number of groups of three pairs will be even. From each odd group of three pairs select first two u_i's and from each even group of three pairs select first two v_i's. The resultant set $D = \{u_1, u_2, u_3\}$ is a Minimal Total Dominating Color Transversal Set of $P(n, 1)$ with $|D| = \frac{2n}{3}$.

Sub Case 1(b): $n \equiv 1 \text{ (mod } 3)$

In this case $n \geq 4$.

Note that as $n - 1 \equiv 0 \text{ (mod } 3)$ and $n - 1$ is odd, by Result 3.5, the number of groups of three pairs will be odd and last group will have just one pair (u_n). From each odd group of three pairs select first two u_i's and from each even group of three pairs select first two v_i's.

Case 2: n is odd

Sub Case 2(a): $n \equiv 0 \text{ (mod } 3)$

In this case $n \geq 3$.

For $n = 3$

$$D = \{u_1, u_2, u_3\} \text{ is a Minimal Total Dominating Color Transversal Set of } P(n, 1) \text{ with proper } 3 - \text{ coloring is shown in Figure 2.}$$

For $n > 3$ (That is in this case $n \geq 9$)

By Result 3.5, number of groups of three pairs will be odd. Select the vertices as in Sub Case 1(a), we get a Minimal Total Dominating Color Transversal Set of $P(n, 1)$ with $|D| = \frac{2n}{3}$.

Sub Case 2(b): $n \equiv 1 \text{ (mod } 3)$

In this case $n \geq 7$.

Here as $n - 1 \equiv 0 \text{ (mod } 3)$ and as $n - 1$ is even by Result 3.5, the number of groups of three pairs will be even. From each odd group of three pairs select first two u_i's and from each even group of three pairs select first two v_i's. The last group, which is an odd group, will have (u_n). From this group select v_n.

The resultant set $D = \{u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8, v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}, v_{11}, v_{12}, v_{13}, \}$ is a Minimal Total Dominating Color Transversal Set of $P(n, 1)$ with $|D| = 2(n - 1) + 1 = \frac{2n + 1}{3}$.

Sub Case 2(c): $n \equiv 2 \text{ (mod } 3)$

In this case $n \geq 5$.

Here as $n - 2 \equiv 0 \text{ (mod } 3)$ and $n - 2$ is odd by Result 3.5, the number of groups of three pairs will be odd. Select first two u_i's and from each even group of three pairs select first two v_i's. From the last group, which is an even group, will have (u_n). Select $v_{n - 1}$ and v_n from it. The resultant set $D = \{u_1, u_2, u_3, \}$ is a Minimal Total Dominating Color Transversal Set of $P(n, 1)$ with $|D| = 2(n - 2) + 2 = \frac{2n + 2}{3}$ with proper $3 - \text{ coloring of } P(n, 1)$ is same as follows:

$$D = \{u_1, u_2, u_3\}$$

Case 2: n is odd

Sub Case 2(a): $n \equiv 0 \text{ (mod } 3)$

In this case $n \geq 3$.

For $n = 3$

$$D = \{u_1, u_2, u_3\} \text{ is a Minimal Total Dominating Color Transversal Set of } P(n, 1) \text{ with proper } 3 - \text{ coloring is shown in Figure 2.}$$

For $n > 3$ (That is in this case $n \geq 9$)

By Result 3.5, number of groups of three pairs will be odd. Select the vertices as in Sub Case 1(a), we get a Minimal Total Dominating Color Transversal Set of $P(n, 1)$ with $|D| = \frac{2n}{3}$.

Sub Case 2(b): $n \equiv 1 \text{ (mod } 3)$

In this case $n \geq 7$.

Here as $n - 1 \equiv 0 \text{ (mod } 3)$ and as $n - 1$ is even by Result 3.5, the number of groups of three pairs will be even. From each odd group of three pairs select first two u_i's and from each even group of three pairs select first two v_i's. The last group, which is an odd group, will have (u_n). From this group select v_n.

The resultant set $D = \{u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8, v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}, v_{11} \} \text{ is a Minimal Total Dominating Color Transversal Set of } P(n, 1) \text{ with } |D| = 2(n - 1) + 1 = \frac{2n + 1}{3}$.

Sub Case 2(c): $n \equiv 2 \text{ (mod } 3)$

In this case $n \geq 5$.

Here as $n - 2 \equiv 0 \text{ (mod } 3)$ and $n - 2$ is odd by Result 3.5, the number of groups of three pairs will be odd. Select first two u_i's and from each even group of three pairs select first two v_i's. From the last group, which is an even group, will have (u_n). Select $v_{n - 1}$ and v_n from it. The resultant set $D = \{u_1, u_2, u_3\} \text{ is a Minimal Total Dominating Color Transversal Set of } P(n, 1) \text{ with } |D| = 2(n - 2) + 2 = \frac{2n + 2}{3}$.

In this case $n \geq 7$.

Here as $n - 1 \equiv 0 \text{ (mod } 3)$ and as $n - 1$ is even by Result 3.5, the number of groups of three pairs will be even. From each odd group of three pairs select first two u_i's and from each even group of three pairs select first two v_i's. The last group, which is an odd group, will have (u_n). From this group select v_n.

The resultant set $D = \{u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8, v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}, v_{11} \} \text{ is a Minimal Total Dominating Color Transversal Set of } P(n, 1) \text{ with } |D| = 2(n - 1) + 1 = \frac{2n + 1}{3}$.

Sub Case 2(c): $n \equiv 2 \text{ (mod } 3)$

In this case $n \geq 5$.
4. Concluding Remarks

Minimal Total Dominating Color Transversal Set of Generalised Petersen graph $P(n, 1)$ is in fact Minimal Total Dominating Set of the graph. This set for Generalised Petersen Graph $P(n, k)$ ($k > 2$) is still to be obtained and it becomes an open problem.

5. References