Utilization of agro-industrial waste for polyhydroxyalkonates and exopolysaccharide production from *Bacillus* sp. 2-11

S. Jenny angel and R. Dhandapani

Department of Microbiology, Periyar University, Salem-636011.

ARTICLE INFO

Article history:
Received: 27 May 2016; Received in revised form: 25 June 2016; Accepted: 30 June 2016;

Keywords
Exopolysaccharide, Polyhydroxyalkonates, Biopolymer, Carbon Substrate, Sago waste.

ABSTRACT

Currently many bacteria have been exploited for production of biopolymers for various industrial applications. The need for biopolymers has been increasing constantly along with increase in human needs. In the present study two important biopolymers - edo polymer (PHA) and exopolymer (EPS) was extracted and characterized from the *Bacillus* sp. 2-11. The ability of *Bacillus* sp.2-11 to produce PHA was identified by simple and rapid Sudan black B staining method. Similarly the presence of exopolysaccharides was identified by Alcian Blue staining method. The ability of the organism to utilize cheap substrates as carbon source for polyhydroxyalkonates (PHA) and exopolysaccharide (EPS) production was determined. Rice bran, wheat bran, molasses and sago liquid wastes were supplemented as carbon substrate in nitrogen free production medium. The most suitable carbon source was sago liquid waste as it showed 42.15% and 50.80% PHA and EPS yield respectively. It was also observed that PHA yield was growth associated whereas EPS production was observed at the late exponential phase. Both FT-IR and GC-MS analysis confirmed the presence of PHA and EPS in *Bacillus* sp.2-11.

© 2016 Elixir All rights reserved.

Introduction

In recent years there is a continuous search for different biopolymers as they have wide range of applications in different sectors like packaging, building materials, consumer products and many more. The currently available biopolymers in market are polyglycolic acid (PGA), polyhydroxyalkonate (PHA) and polyactic acid (PLA). Others polymers such as exopolysaccharide, inorganic polyanhydrides, polyesters, and polyamides are also coming in the forefront [1, 2, 3]. The first biodegradable polymer identified was polyhydroxyalkonates, which was isolated from bacteria such as *Alcaligenes latus*, *Ralstonia eutropha*, Azotobacter beijerinckii etc.,. The main role of this intracellular polymer is that it can act as carbon and energy reserve material which was produced under nitrogen, phosphate, or oxygen limited conditions pha-6 [4, 5]. Under stress conditions energy from this reserve material is utilized for its metabolic activities. Depending upon certain growth conditions PHA is made of either short-chain length or medium-chain length or both forms.

Another important polymer other than intracellular polymers is extracellular polymers. Certain bacteria produce extracellular polymers known as exopolysaccharides (EPS) which are released outside the cell under stressed condition. These are mainly produced as a defense material against dessication, high salinity and toxic environment. Exopolysaccharides are high-molecular-weight polymers which are mainly composed of sugar residues. Both these polymers are identified as the potential biopolymers that could replace synthetic polymers due to its biodegradability and biocompatibility property. Numerous microorganisms such as *Azotobacter chroococcum* strain 6B, *Azotobacter beijerinckii* WDN-01, *Ralstonia eutropha* and *Bacillus* sp. can produce both PHAs and EPS [6, 7, 8].

The production of biodegradable polymers on a large scale is limited because of expensive raw materials, substrate composition, fermentation conditions and high recovery cost. According to Halami 2008 [9], about 50% of production cost is utilized for the cost of carbon source. Hence the ideal way to reduce the polymer production cost is to replace expensive carbon source with cheap raw materials. Currently a lot of research is going on using agro-industrial wastes such as palm oil, whey, corn and cassava residues, olive oil mill effluents, sugarcane molasses and paper mill waste as the carbon source rather than refined organic substrates [10]. An added advantage in utilizing waste raw materials as carbon source is recycling of agro-industrial wastes. Similarly the recycling of waste generated from biopolymer production is also economical due to its biodegradability [11, 12]. In the current study wheat bran, rice bran, molasses and sago liquid waste are used for production of both PHA and EPS from the same organism.

Materials and method

Source of bacterial strains and maintenance

The wild type bacterium *Bacillus* sp. 2-11 was procured from Fermentation laboratory of Periyar University, Salem in Tamil Nadu. The isolate was stored on Nutrient Agar medium (Himedia) slopes at 4º C and stock cultures were maintained at 20 ºC in 0.5% (v/v) glycerol broth.

Preliminary screening of PHA and EPS production

A rapid PHA detection method using Sudan Black B was followed as described by Yu-Hong Wei et al., 2011 [13]. A loopful of Bacillus sp. 2-11 was streaked on Nutrient agar supplemented with 1 % glucose and incubated at 37C for 24h. After incubation the plate was flooded with Sudan Black B and kept undistributed for 30 minutes.
The excess stain was removed and then rinsed with 96% ethanol [14]. Presence of acidic exopolysaccharide in Bacillus sp. 2-11 was determined by alcian blue staining. The 5-day-old plate was stained with alcian blue (1.0% (w/v) solution in 95% (v/v) ethanol) followed by carbol-fuchsin as a counterstain and observed under a phase-contrast microscope.

Preparation of solid substrate as carbon source

All the waste materials used in this study like rice bran, wheat bran, molasses and Sago liquid waste was initially processed before using as carbon substrate for production. Wheat bran and rice bran were purchased from the local market, Salem district of Tamil Nadu, India. It was then sun dried for 6-8 days. Sugar molasses was procured from Sugar refinery factory, Perambalur district of Tamil Nadu, India. The raw molasses was clarified in order to eliminate interference from solid residues as described by Roberta Fusconi-a et al. 2010 [15]. The raw molasses was diluted with distilled water (1:1) containing a NaH₂PO₄ (final concentration of 1.5 g/L), autoclaved at 120°C for 30 min and allowed to settle for 24 h. The liquid phase (clarified molasses) was then separated and diluted in distilled water. The pH was adjusted to 7.0 ± 0.2 and the media were autoclaved at 121°C for 15 min. The sago liquid waste was obtained from Sago manufacturing unit, Salem district of Tamil Nadu, India. The sago liquid waste was filtered with cheese cloth and autoclaved for 121°C for 20 min [16].

Utilization of waste as the sole carbon source

All the four substrates were added as the carbon source at the concentration of 2% to nitrogen free production medium comprising of KH₂PO₄ 13.3(g/L); MgSO₄ 1.3(g/L); Citric acid 1.7(g/L); trace element solution 10mL/L (FeSO₄·7H₂O 10(g/L); ZnSO₄·7H₂O 2.25(g/L); CuSO₄·5H₂O 1(g/L); MnSO₄·5H₂O 0.5(g/L); CaCl₂·2H₂O 2 (g/L); Na₂B₄O₇·10H₂O 0.23(g/L); (NH₄)₂MoO₄·0.1(g/L); HCl (10mL); pH of the medium was adjusted to 7.0 [17]. To the production medium 1% of 24h grown culture of Bacillus sp.2-11 was added and incubated at 37°C for 48-72 hours at 150 rpm in an orbital shaker.

Determination of bio mass:

To determine the bio mass content (DCW: dry cell weight) the cells were harvested by centrifugation 13,000 rpm for 15 minutes at 4°C. The pellets were re-suspended in distilled water, washed and centrifuged at 13,000 rpm. Pellets were collected aseptically and the dry weight of the pellet was measured.

Extraction and characterization of PHA

From the production medium after 72 h of incubation culture broth was withdrawn and centrifuged at 8000 rpm for 15 min. To the pellet 10 mL of sodium hypochlorite was added and incubated at 50°C for 1 h for lyses of cells. It was then centrifuged at 12000 rpm for 30 min and the pellet was washed with distilled water [18,19]. Cell lipids and other molecules were extracted from the lysed cells by addition of 5 mL of 96% ethanol and aceton. Later the pellet was dissolved in 10 mL chloroform and incubated overnight at 50°C and allowed to dry at room temperature.

The cellular PHA content was determined by gas chromatography–mass spectrometry which was carried out at The South India Textile Research Association, Coimbatore. The analysis was performed using a Trace GC–MS equipped with a Thermo GC – Trace ultra Ver: 5.0, Thermo MS DSQ II) column (DB 5 - MS Capillary standard non - polar column). The polymer was dissolved in 2 mL of chloroform and 2 mL of methanol and acidified with 3% (v/v) H₂SO₄ and heated at 100°C for 3.5 h for depolymerization and methanolysis of polyesters. The sample (1µl) in methanol was injected with helium (1mL min−1) as the carrier gas. The injector temperature was maintained at 70°C and the column temperature was increased from 260°C and held at the final temperature for 6 minutes. For quantitative analysis of PHA, cell culture was grown as described earlier and cell pellet was dried to estimate the dry cell weight (DCW) in units of g/L [20][21]. This was calculated to determine the cellular weight and accumulation other than PHAs. The percentage of intracellular PHA accumulation is estimated as the percentage composition of PHA present in the dry cell weight:

% PHA content recovered= Dry weight of extracted PHA (g/L)/Dry cell weight (DCW)(g/L) x 100

The PHA content was defined as the ratio of PHA to cell dry weight and expressed in percentage.

Extraction and characterization of exopolysaccharide

For EPS quantification liquid media was diluted to reduce the viscosity, the cells were harvested by centrifugation at 7000 rpm for 20 min. To the crude supernatant 3 volumes of ice cold ethanol was added and incubated overnight at 4°C [22]. After incubation, it was again centrifuged at 7000 rpm for 20 min. The pellet was again re-extracted with ethanol for effective extraction. The obtained pellet was dialyzed (cellulose dialysis tube, molecular weight cutoff 12,000–16,000) against distilled water for 48 h (water was changed three times each day) to eliminate residual sugars from the culture medium. Total carbohydrates were measured by the phenol-sulfuric acid method [23] in order to estimate the amounts of total, free and capsular EPS produced. The amount of EPS was expressed as g L−1 using glucose as standard. The bacterial exopolysaccharides was characterized using a Fourier transform infrared spectrophotometer [24, 25]. One part of extract was mixed with ninety nine parts of dried potassium bromide (KBr) separately and then compressed to prepare a salt disc of 3mm diameter. These discs were subjected to IR- spectra measurement in the frequency range of 400 and 4000 cm−1.
cardboard pulp waste [28] as carbon source. In the present study, the ability of the organism to utilize cheap substrates such as Rice bran, wheat bran, molasses and sago liquid waste as carbon source were assessed. These raw materials were selected based on its chemical composition and availability. Wheat and rice bran are almost equal in their chemical composition containing starch content of 34.0%, fibre 9.2%, crude protein 1.4%, free reducing sugar 1.9 % and starch content 33.5%, fibre 8.6%, Protein 1.7%, free reducing sugar 1.3 % respectively [25,26]. Sugarcane molasses contains high amount of carbon 54% and trace amount of vitamins such as thiamine, riboflavin, pyridoxine and niacinamide [27, 28]. Sago mills generate both solid and liquid waste during sago preparation from tapioca roots. This sago liquid waste also contains high starch content of 58.0% and lower amount of protein 23% and 11% of lipid [29, 30]. The pre-processed waste materials were added to the production medium as a sole source of carbon and nitrogen source was excluded to create nitrogen limited condition. The bacterial growth was assessed by estimating the dry cell weight (DCW) and PHA and EPS yield in percentage was also determined simultaneously (Fig 1).

As Bacillus is known for its metabolic versatility, it was able utilize all the four waste material as carbon source in nitrogen limited condition. Bacillus sp.2-11 produced maximum PHA and EPS yield of 42.15% and 50.80% respectively using sago liquid waste as carbon source. As maximum yield was observed with Sago liquid waste, it was considered as the optimum carbon source for both PHA and EPS production. This will help in utilizing the liquid waste from sago mill in a better way and also in reducing the polymer production cost. The relationship of the growth rate with the polymer production was also studied. The time course of growth with PHA accumulation revealed that maximum PHA accumulation was attained at the log phase of 2.93 ±g/L and biomass dry weight (DCW) of 6.95g/L and reduces as the growth reduces. This indicates that PHA accumulation is growth associated as reported by Roland Durner et al., 2000 [31]. Certain reports show that maximum PHA yield was reported in the late exponential phase [32]. The growth study with EPS shows that maximum EPS yield was observed in the late exponential phase of 3.17 ± 0.12 g/L and biomass of 6.24 g/L (Fig2) as reported by Sandrine et al, 2000 [33].

The EPS obtained by solvent extraction method from the isolate Bacillus sp. 2-11 was subjected to FT-IR analysis in the range 4000-400 cm. FTIR spectrum indicates the major functional groups and chemical bonds present in EPS. The IR spectra of EPS produced by the Bacillus 2-11 spp revealed two major peaks and few minor peaks (Fig 3). A major peak was observed at 3439.34 cm⁻¹ which is distinctive of OH band and indicates the presence of carboxylic acids. The adsorption peak at 1675.90cm⁻¹ shows the presence of carbonyl (C=O) stretching groups [34] that reveals the presence of polysaccharide.

As Bacillus is known for its metabolic versatility, it was able utilize all the four waste material as carbon source in nitrogen limited condition. Bacillus sp.2-11 produced maximum PHA and EPS yield of 42.15% and 50.80% respectively using sago liquid waste as carbon source. As maximum yield was observed with Sago liquid waste, it was considered as the optimum carbon source for both PHA and EPS production. This will help in utilizing the liquid waste from sago mill in a better way and also in reducing the polymer production cost. The relationship of the growth rate with the polymer production was also studied. The time course of growth with PHA accumulation revealed that maximum PHA accumulation was attained at the log phase of 2.93 ±g/L and biomass dry weight (DCW) of 6.95g/L and reduces as the growth reduces. This indicates that PHA accumulation is growth associated as reported by Roland Durner et al., 2000 [31]. Certain reports show that maximum PHA yield was reported in the late exponential phase [32]. The growth study with EPS shows that maximum EPS yield was observed in the late exponential phase of 3.17 ± 0.12 g/L and biomass of 6.24 g/L (Fig2) as reported by Sandrine et al, 2000 [33].

The EPS obtained by solvent extraction method from the isolate Bacillus sp. 2-11 was subjected to FT-IR analysis in the range 4000-400 cm. FTIR spectrum indicates the major functional groups and chemical bonds present in EPS. The IR spectra of EPS produced by the Bacillus 2-11 spp revealed two major peaks and few minor peaks (Fig 3). A major peak was observed at 3439.34 cm⁻¹ which is distinctive of OH band and indicates the presence of carboxylic acids. The adsorption peak at 1675.90cm⁻¹ shows the presence of carbonyl (C=O) stretching groups [34] that reveals the presence of polysaccharide.

![Graph showing production of PHA and EPS from different waste from Bacillus sp. 2-11](image)

Fig 3. The FT-IR spectrum of the EPS extracted from the isolate Bacillus sp. 2-11.

The GC-MS analysis of the extracted PHA showed a predominant peak with hexanal covering a maximum area of 62.73% and molecular weight 100 with retention time of 3.04 (Fig-4). A second major peak of 4-Methyl-3-(1-phenyl-3-methylenebutyloxy) pentanol molecular weight 262 covering an area of 18.13 with retention time of 3.31 was obtained and other minor components were also observed.

![GC-MS analysis of PHA extracted from the isolate Bacillus 2-11 sp.](image)

Fig 4. GC-MS analysis of PHA extracted from the isolate Bacillus 2-11 sp.

Many bacteria can produce PHA and EPS polymers both intracellularly and extracellularly using carbon substrate as energy source under nitrogen limited condition. Thus it is essential to understand the relation between endo-and exo-
polymers by the same microorganism. Sago liquid waste is the cheapest waste compared to other waste used in this study and utilization of agro-industrial waste will also favours in reducing the overall production cost.

References
1. Thi Hang Pham, I Jeremy S. Webb and Bernd H. A. Rehm. The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiology (2004), 150, 3405–3413
6. Prashant Shukla*, Nimesh Patel, Raja Mohan Rao, Jini Qiu, Qing YU, Biosynthesis of polyhydroxyalkanoates (PHAs) by Bacillus subtilis and Escherichia coli grown on cane molasses fortified with ethanol Brazilian Archives of Biology and Technology. vol.57 no.1 Curitiba Jan./Feb. 2014
7. Daniel Heinrich1, Mohamed H Madkour2, Mansour A Al-Ghamidi2, Ibraheem I Shabbaj2 and Alexander Steinbüchel. Large scale extraction of poly(3-hydroxybutyrate) from Ralstonia eutropha H16 using sodium hypochlorite AMB Express 2012, 2:59
8. Prashant Shukla*, Nimesh Patel, Raja Mohan Rao, Jini Qiu, Qing YU, Biosynthesis of polyhydroxyalkanoates (PHAs) by Bacillus subtilis and Escherichia coli grown on cane molasses fortified with ethanol Brazilian Archives of Biology and Technology. vol.57 no.1 Curitiba Jan./Feb. 2014
10. Eman Zakaria Gomaa Production of polyhydroxyalkanoates (PHAs) by Ralstonia eutropha H16 using sodium hypochlorite AMB Express 2012, 2:59

