The Split Majority Domatic Number of a Graph

J.Joseline Manora¹ and S.Veeramanikandan²
Department of Mathematics, T.B.M.L. College, Porayar-609 307, India.

ABSTRACT
Let \(G = (V, E) \) be any simple finite graph. A subset \(D \) of \(V(G) \) is said to be Split Majority Dominating set of \(G \) if \(|N[D]| \geq \left\lceil \frac{|E|}{2} \right\rceil \) and the induced subgraph \(\langle V - D \rangle \) is disconnected. A split majority dominating set \(D \) is said to be minimal if there exists a vertex \(v \) of \(V \) such that \(D - \{v\} \) is not a split majority dominating set of \(G \). The Split Majority Domatic Number denoted by \(d_{sm}(G) \) is the maximum number of disjoint minimal split majority dominating sets obtained for a graph \(G \). In this article, we have initiated the study of this concept.

Keywords
Set, Split Majority Dominating set.

Introduction
Let \(G = (V, E) \) be any simple finite graph with \(|V(G)| = p \) and \(|E(G)| = q \). With usual notations, the degree of a vertex \(v \), the maximum and the minimum degree of a graph \(G \) are denoted by \(d(v), \Delta(G) \) and \(\delta(G) \) respectively.

A set \(D \subseteq V(G) \) is said to be a dominating set [2] of \(G \) if for every vertex \(v \) in \(V-D \) there exists at least one vertex \(u \) in \(D \) such that \(u \) and \(v \) are adjacent in \(G \). A Dominating set \(D \) is said to be minimal if for some vertex \(v \) of \(G \), \(D - \{v\} \) is not a dominating set. The minimum cardinality of a minimal dominating set is called the domination number of \(G \) and it is denoted by \(\gamma(G) \).

A set \(D \subseteq V(G) \) is said to be a majority dominating set [3] of \(G \) if \(\frac{|N[D]|}{2} \geq \left\lceil \frac{q}{2} \right\rceil \). A majority Dominating set \(D \) is said to be minimal if for some vertex \(v \) of \(G \), \(D - \{v\} \) is not a majority dominating set. The minimum cardinality of a minimal majority dominating set is called the ma-jority domination number of \(G \) and it is denoted by \(M(G) \). This parameter was defined by Swaminathan and Joseline Manora.

A Dominating set \(D \subseteq V(G) \) is said to be a split dominating set[8] if the induced subgraph \(\langle V - D \rangle \) is disconnected. With usual inferences, the minimum cardinality of minimal split dominating set is denoted by \(s(G) \). This parameter was introduced by Kulli and Janakiram.

A subset \(D \) of \(V(G) \) is said to be Split Majority Dominating set[5] of \(G \) if \(|N[D]| \geq \left\lceil \frac{q}{2} \right\rceil \) and the induced subgraph \(\langle V - D \rangle \) is disconnected. As usual, the minimum cardinality of minimal split majority dominating set is called split majority domination number of a graph denoted by \(\gamma_{sm}(G) \). This parameter was defined and studied by Joseline Manora and Veeramanikandan.

A partition \(\Delta \) of its vertex set \(V(G) \) is called a domatic partition of \(G \) if each class of \(\Delta \) is a dominating set in \(G \). The maximum number of classes of a domatic partition of \(G \) is called the domatic number of \(G \) and is denoted by \(d(G) \). The domatic number was introduced by Cockayne and Hedetniemi. In a similar fashion, a majority domatic partition of a graph \(G \) was introduced and each class of it is a dominating set in \(G \). The maximum number of classes of a majority domatic partition of \(G \) is called the majority domatic number [4] and is denoted by \(d_{M}(G) \). This parameter was introduced by Swaminathan and Joseline Manora.

2 Split Majority Domatic Number of a Graph
In this section, we define Split Majority Domatic Number of a graph \(G \) and this number \(d_{sm}(G) \) is determined for some families of graphs.

Definition 2.1
Let \(D \) be the family of all disjoint minimal split majority dominating sets of \(G \). The split majority domatic number of a graph \(G \) is defined to be the maximum number of disjoint minimal split majority dominating sets of \(G \) and is denoted by \(d_{sm}(G) \).

Remark 2.2
In this article, we consider only the family of disjoint minimal split majority dominating sets of \(G \) rather than the partition of vertices of \(G \). The reason is that there are some vertices that are not the elements of any minimal split majority dominating set \(D \) of \(G \) since the definition of split majority dominating set is violated when these vertices are included in any set \(D \).
2.1 $d_{sm}(G)$ for some families of graphs

1. For $G = K_p$, a totally disconnected graph.
\[
d_{sm}(K_p) = \begin{cases}
1 & \text{if } p \text{ is odd} \\
2 & \text{if } p \text{ is even}
\end{cases}
\]

2. If G is a star $K_{1,p-1}$, $p \geq 3$. Then $d_{sm}(G) = 1$.

3. Suppose G being double star $D_{r,s}$, $p = r + s + 2$. Then $d_{sm}(G) = 2$.

4. For $G = \zeta_p$, $p \geq 3$. Then $d_{sm}(G) = 3$.

5. If G is a complete bipartite graph $K_{m,n}$, $m \leq n$, $d_{sm}(G) = 2$.

6. Let G be a Petersen graph. Then $d_{sm}(G) = 2$.

7. Suppose G is a fan F_p, $p \geq 4$. Then $d_{sm}(G) = 1$.

3 Main Results on $d_{sm}(G)$

Theorem 3.1

If G has a full degree vertex, $d_{sm}(G) = 1$.

Proof

Suppose G has a full degree vertex v. If v is a cut vertex then $D = \{v\}$ is a split majority dominating set of G. Assume that there exists another split majority dominating set S of G. Then S must contain v. If not, $(V - S)$ is connected, a contradiction. Therefore $d_{sm}(G) = 1$. If v is not a cut vertex, and v is in every split majority dominating set of G. Applying the same argument as above, we get a contradiction. Therefore $d_{sm}(G) = 1$.

Theorem 3.2

If every vertex of a graph is such that $d(v) > \left\lceil \frac{p}{2} \right\rceil$ then $d_{sm}(G) = 1$.

Proof

Suppose $\delta(G) > \left\lceil \frac{p}{2} \right\rceil$. Then every vertex is a majority dominating vertex. Let D be a minimum split majority dominating set of G. Then $\gamma_{sm}(G) \geq \delta(G)$. That is $|D| > \left\lceil \frac{p}{2} \right\rceil$. This implies that D contains at least one vertex more than $\left\lceil \frac{p}{2} \right\rceil$ vertices. Then $|V - D| < \left\lceil \frac{p}{2} \right\rceil$, implying that $V - D$ is not a majority dominating set. Therefore there exists only one split majority dominating set of G and hence $d_{sm}(G) = 1$.

Theorem 3.3

For any graph G, $1 \leq d_{sm}(G) \leq \left\lceil \frac{p}{2} \right\rceil + 1$.

Proof

If G has a full degree vertex then the lower bound is attained. When $\delta(G) = \left\lceil \frac{p}{2} \right\rceil$ then $d_{sm}(G) = 1$. Consider a minimally connected graph G, namely a tree T. If T has exactly two end vertices then it is a path P_p. When $p \leq 6$, then every intermediate vertex is a split majority dominating set of G. Therefore $d_{sm}(G) = 4 \leq \left\lceil \frac{p}{2} \right\rceil + 1$. Suppose $p > 7$. Then $\gamma_{sm}(G) \geq 2$ but $d_{sm}(G) < \left\lceil \frac{p}{2} \right\rceil$ then only intermediate vertices constitute split majority dominating sets of G and $d_{sm}(G) < \left\lceil \frac{p}{2} \right\rceil$. Thus $1 \leq d_{sm}(G) \leq \left\lceil \frac{p}{2} \right\rceil + 1$.

Proposition 3.4

If G is any graph with $\text{diam}(G) = 2$ then $d_{sm}(G) = 1$.

Proof

Suppose G is a graph with $\text{diam}(G) = 2$. Let v be the center of the graph G. If D is the minimal split majority dominating set of a graph G and containing the vertex v then no other minimal split majority dominating set is obtained without v. Therefore there exists only one split majority dominating set of G. Thus $d_{sm}(G) = 1$.

Proposition 3.5

For a tree T with $\text{diam}(T) = 3$, $d_{sm}(G) = 2$.

Proof

Suppose T is a tree with $\text{diam}(T) = 3$. Since every tree has at least two end vertices. If $\text{diam}(T) = 3$ then T is a double star $D_{r,s}$ or P_4 or pendants adjacent to intermediate vertices. If T is $D_{r,s}$ or P_4, $d_{sm}(G) = 2$. If pendants are adjacent to intermediate vertices, $d_{sm}(G) = 2$.

Theorem 3.6

Let $G = P_p$ be a path on p vertices, $p > 4$, $d_{sm}(P_p) = \frac{p}{\gamma_{sm}(G)}$ if and only if $p = 8, 10, 15, 20, 25$.
Proof
Let $P_p = \{u_1, u_2, \ldots, u_p\}$ be a path on p vertices and $\gamma_{\text{sm}}(P_p) = \left\lfloor \frac{p}{6} \right\rfloor$.

Suppose $p = 8, 10, 15, 20, 25$. Then $\gamma_{\text{sm}}(G) = 2, 2, 3, 4, 5$. It is clear that $\gamma_{\text{sm}}(G)$ divides p. When $p = 8$, $d_{\text{sm}}(P_8) = 4$. When $p = 6k + 2$, $\gamma_{\text{sm}}(G) = 4$ if $k = 1$. Hence $d_{\text{sm}}(P_8) = 4 = \frac{p}{\gamma_{\text{sm}}(G)}$. Therefore the split majority domatic partition of P_k is $\{\{u_1, u_2\}, \{u_3, u_4\}, \{u_5, u_6\}, \{u_7, u_8\}\}$.

Let $p = 10, 15, 20, 25$. Then $d_{\text{sm}}(P_p) = 5$.

When $p = 10$, (i.e.) $p = 6k + 4$, then $\frac{p}{\gamma_{\text{sm}}(G)} = 5$ if $k = 1$.

When $p = 15$, (i.e.) $p = 6k + 3$, then $\frac{p}{\gamma_{\text{sm}}(G)} = 5$ if $k = 2$.

When $p = 20$, (i.e.) $p = 6k + 2$, then $\frac{p}{\gamma_{\text{sm}}(G)} = 5$ if $k = 3$.

When $p = 25$, (i.e.) $p = 6k + 1$, then $\frac{p}{\gamma_{\text{sm}}(G)} = 5$ if $k = 4$.

Therefore the split majority domatic partition of P_p are

$D_1 = \{u_1, u_2, \ldots, u_{(\gamma_{\text{sm}}(G) - 1)}\} \bigcup \{u_{(\gamma_{\text{sm}}(G) - 1)} + 1\}$

$D_2 = \{u_2, u_7, \ldots, u_{(\gamma_{\text{sm}}(G) - 1)}\} \bigcup \{u_{(\gamma_{\text{sm}}(G) - 1)} + 2\}$

$D_3 = \{u_3, u_8, \ldots, u_{(\gamma_{\text{sm}}(G) - 1)}\} \bigcup \{u_{(\gamma_{\text{sm}}(G) - 1)} + 3\}$

$D_4 = \{u_4, u_9, \ldots, u_{(\gamma_{\text{sm}}(G) - 1)}\} \bigcup \{u_{(\gamma_{\text{sm}}(G) - 1)} + 4\}$

$D_5 = \{u_5, u_{10}, \ldots, u_{(\gamma_{\text{sm}}(G) - 1)}\} \bigcup \{u_{(\gamma_{\text{sm}}(G) - 1)} + 5\}$

In all cases, $\frac{p}{\gamma_{\text{sm}}(G)} = 5 = d_{\text{sm}}(P_p)$ if $p = 8, 10, 15, 20, 25$.

Conversely let $d_{\text{sm}}(P_p) = \frac{p}{\gamma_{\text{sm}}(G)}$. Suppose $p \equiv 0 \pmod{6}$. Then $d_{\text{sm}}(P_p) = 5$. But $d_{\text{sm}}(P_p) = \frac{p}{\gamma_{\text{sm}}(G)}$ implies that $d_{\text{sm}}(P_p) = 6$ which is a contradiction. Hence $p \not\equiv 0 \pmod{6}$.

Suppose $p \equiv 1, 2, 3, 4, 5 \pmod{6}$. Let $p = 6k + 1, 1 \leq l \leq 5$. Then $\gamma_{\text{sm}}(G) = \left\lfloor \frac{p}{6} \right\rfloor = k + 1$ and $\frac{p}{\gamma_{\text{sm}}(G)} = \frac{6k + 1}{k + 1} = m$ (say), $m \neq 0$. It implies that $k = \frac{m - 1}{6 - m}$.

Take $l = 1$. Then $m = 2, 3, 4, 5$. $k = \frac{m - 1}{6 - m}$. Then

$$k = \begin{cases}
\frac{1}{4} & \text{if } m = 2 \\
\frac{2}{3} & \text{if } m = 3 \\
\frac{1}{2} & \text{if } m = 4 \\
\frac{3}{2} & \text{if } m = 5.
\end{cases}$$

Hence $k = 4$ is an integer if $l = 1$. Therefore for $k = 4$ and $l = 1$ implies $p = 6k + 1 = 25$. In a similar way, take $l = 2$. Then $m = 3, 4, 5$. $k = \frac{m - 1}{6 - m} = 1$ is an integer if $m = 4$ and $k = 3$ if $m = 5$. Therefore for $k = 1$ and $l = 2$ implies $p = 6k + 1 = 8$ and for $k = 3$ and $l = 2$ implies $p = 6k + 1 = 20$.

Take $l = 3$. Then $m = 4, 5$. $k = \frac{m - 1}{6 - m} = 2$ is an integer if $m = 5$. For $k = 2$ and $l = 3$ implies $p = 6k + 1 = 15$.

Take $l = 4$. Then $m = 5$. $k = \frac{m - 1}{6 - m} = 1$ is an integer if $m = 5$. For $k = 1$ and $l = 4$ implies $p = 6k + 1 = 10$.

Take $l = 5$. Then $m = 5$. Then there is no integer value for k. Hence, $p = 8, 10, 15, 20, 25$ if $d_{\text{sm}}(P_p) = \frac{p}{\gamma_{\text{sm}}(G)}$.

Theorem 3.7
Let $G = C_p$ be a cycle on p vertices, $p > 4$. Then $d_{\text{sm}}(C_p) = \frac{p}{\gamma_{\text{sm}}(G)}$ if and only if $p = 8, 10, 15, 20, 25$, or $p \equiv 0 \pmod{6}$.
Proof

Let $C_p = \{u_1, u_2, \ldots, u_p\}$ be a cycle on p vertices. Then $\gamma_{sm}(C_p) = \left\lceil \frac{p}{6} \right\rceil$. Suppose $p = 8, 10, 15, 20, 25$, then $\gamma_{sm}(G) = 2, 3, 4, 5$ and suppose $p \equiv 0 \pmod{6}$, then $\gamma_{sm}(C_p) = \frac{6k}{6} = k$. It is clear that $\gamma_{sm}(G)$ divides p. When $p = 8$, $d_{sm}(P_8) = 4$. When $p = 6k + 2$, then $\frac{p}{\gamma_{sm}(G)} = 4$.

If $k = 1$. Hence $d_{sm}(C_8) = 4 = \frac{p}{\gamma_{sm}(G)}$. Therefore a split majority domatic partition of C_8 is

$\{\{u_1, u_2\}, \{u_3, u_6\}, \{u_4, u_5\}, \{u_7, u_8\}\}.$

Let $p = 10, 15, 20, 25$. Then $d_{sm}(C_p) = 5$.

When $p = 10$ (i.e.) $p = 6k + 4$, then $\frac{p}{\gamma_{sm}(G)} = 5$ if $k = 1$.

When $p = 15$, (i.e.) $p = 6k + 3$, then $\frac{p}{\gamma_{sm}(G)} = 5$ if $k = 2$.

When $p = 20$, (i.e.) $p = 6k + 2$, then $\frac{p}{\gamma_{sm}(G)} = 5$ if $k = 3$.

When $p = 25$, (i.e.) $p = 6k + 1$, then $\frac{p}{\gamma_{sm}(G)} = 5$ if $k = 4$. Therefore the split majority domatic partitions of $V(C_p)$ are

$D_1 = \left\{u_1, u_6, \ldots, u_{\frac{p}{\gamma_{sm}(G)} - 1}\right\}$, $D_2 = \left\{u_2, u_7, \ldots, u_{\frac{p}{\gamma_{sm}(G)} - 1}\right\}$

$D_3 = \left\{u_3, u_8, \ldots, u_{\frac{p}{\gamma_{sm}(G)} - 1}\right\}$, $D_4 = \left\{u_4, u_9, \ldots, u_{\frac{p}{\gamma_{sm}(G)} - 1}\right\}$

$D_5 = \left\{u_5, u_{10}, \ldots, u_{\frac{p}{\gamma_{sm}(G)} - 1}\right\}$.

In all cases, $\frac{p}{\gamma_{sm}(G)} = 5 = d_{sm}(C_p)$ if $p = 8, 10, 15, 20, 25$. Let $p = 6k$. Then $\frac{p}{\gamma_{sm}(G)} = 6$, since $\gamma_{sm}(G) = \frac{p}{6} = k$. Therefore $\{D_1, D_2, D_3, D_4, D_5, D_6\}$ are the split majority domatic partitions of $V(G)$ and hence $\gamma_{sm}(G) = 6 = d_{sm}(C_p)$ if $p \equiv 0 \pmod{6}$.

Conversely, let $d_{sm}(C_p) = 5$, then $p = \gamma_{sm}(G)$. Therefore $p = d_{sm}(C_p) \left\lceil \frac{p}{6} \right\rceil$ (i.e.) $\frac{p}{6}$ divides p. If $p \equiv 0 \pmod{6}$, then $p = 6k$ and $\left\lceil \frac{p}{6} \right\rceil = k$. Thus $\frac{p}{6}$ divides p. Suppose $p = 6k + 1$, $i \leq l \leq 5$. Applying the same argument in the converse part of the theorem, we obtain the values as $p = 8, 10, 15, 20, 25$.

Next, We discuss the split majority domatic number for complement of a graph G and Nordhaus-Gauddum type results.

Proposition 3.8

If G has a full degree vertex and all other vertices are of degree less than $\left\lceil \frac{p}{2} \right\rceil$, then $d_{sm}(\overline{G}) = p - 1$.

Proof

Suppose G has a full degree vertex and all other vertices are of degree less than $\left\lceil \frac{p}{2} \right\rceil$. Then G has an isolate and all other vertices are of degree greater than or equal to $\left\lceil \frac{p - 2}{2} \right\rceil$.

Then every vertex except the isolate constitutes a majority dominating set of \overline{G}. Since \overline{G} has an isolate v, every majority dominating set of \overline{G} is split majority dominating set of \overline{G}. Thus $d_{sm} = p - 1$.

Theorem 3.9

For any graph G, $d_{sm}(G) + d_{sm}(\overline{G}) \leq p + 2$ and $d_{sm}(G), d_{sm}(\overline{G}) \leq 2p$.

Proof

If G has a full degree vertex v, then $d_{sm}(G) = 1$ and \overline{G} has an isolate v. Suppose $\delta(G) \geq \left\lceil \frac{p}{2} \right\rceil - 1$. Then there exists atleast one vertex v in \overline{G} such that $d(v) < \left\lceil \frac{p}{2} \right\rceil - 1$. In this case, there exists a minimal split majority dominating set of \overline{G} with cardinality greater than or equal to two. Therefore $d_{sm}(\overline{G}) \leq p - 1$ and $d_{sm}(G) + d_{sm}(\overline{G}) \leq p$. Suppose G is a complete bipartite graph with $m = n$. Then \overline{G} has two components and each vertex v of \overline{G} constitutes a split majority dominating set of \overline{G}. Therefore $d_{sm}(\overline{G}) = p$ and $d_{sm}(G) = 2$. In this case, $d_{sm}(\overline{G}) + d_{sm}(G) \leq p + 2$. We prove the another result in the similar fashion.
References