(1,2)*-FG-Closed and (1,2)*-FG-Open Maps in Fuzzy Bitopological Spaces

P.Saravanaperumal and S.Murugesan

1Department of Mathematics, SriVidya College of Engineering and Technology, Virudhunagar-626 005, India.
2Department of Mathematics, Sri.S.R.Naidu Memorial College, Sattur-626 203, India.

ARTICLE INFO

Article history:
Received: 9 August 2015;
Received in revised form: 04 October 2015;
Accepted: 09 October 2015;

Keywords
(1,2)*-fg-closed and (1,2)*-fg-open maps in fuzzy bitopological spaces,
(1,2)*-fg-open maps,
(1,2)*-fg-closed maps,
(1,2)*-fg*-open maps,
(1,2)*-fg*-closed maps,
(1,2)*-fg*-homeomorphisms.

1. Introduction
Malghan [2] introduced the concept of generalized closed maps in topological spaces. Devi [1] introduced and studied sg-closed maps and gs-closed maps. Recently, Sheik John [6] defined ω-closed maps and studied some of their properties. In this paper, we introduce (1,2)*-fg-closed maps, (1,2)*-fg-open maps, (1,2)*-fg*-closed maps and (1,2)*-fg*-open maps in fuzzy bitopological spaces and obtain certain characterizations of these classes of maps. In last section, we introduce (1,2)*-fg*-homeomorphisms and prove that the set of all (1,2)*-fg*-homeomorphisms forms a group under the operation composition of functions.

1.2 Preliminaries

Definition 1.2.1
A map \(f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is called
(i) \((1,2)*\)-g-closed [5] if \(f(V) \) is \((1,2)*\)-g-closed in \(Y \), for every \(\tau_{1,2}\)-closed set \(V \) of \(X \).
(ii) \((1,2)*\)-sg-closed [4] if \(f(V) \) is \((1,2)*\)-sg-closed in \(Y \), for every \(\tau_{1,2}\)-closed set \(V \) of \(X \).
(iii) \((1,2)*\)-gs-closed [4] if \(f(V) \) is \((1,2)*\)-gs-closed in \(Y \), for every \(\tau_{1,2}\)-closed set \(V \) of \(X \).
(iv) \((1,2)*\)-ψ-closed [3] if \(f(V) \) is \((1,2)*\)-ψ-closed in \(Y \), for every \(\tau_{1,2}\)-closed set \(V \) of \(X \).

We introduce the following definitions

Definition 1.2.2
A map \(f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is called
(i) \((1,2)*\)-fg-closed if \(f(V) \) is \((1,2)*\)-fg-closed in \(Y \), for every \(\tau_{1,2}\)-closed set \(V \) of \(X \).
(ii) \((1,2)*\)-fgs-closed if \(f(V) \) is \((1,2)*\)-fgs-closed in \(Y \), for every \(\tau_{1,2}\)-closed set \(V \) of \(X \).
(iii) \((1,2)*\)-fψ-closed if \(f(V) \) is \((1,2)*\)-fψ-closed in \(Y \), for every \(\tau_{1,2}\)-closed set \(V \) of \(X \).

1.3 (1,2)*-fg-CLOSED MAPS

Definition 1.3.1
A map \(f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is said to be \((1,2)*\)-fg-closed if the image of every \(\tau_{1,2}\)-closed set in \(X \) is \((1,2)*\)-fg-closed in \(Y \).

Proposition 1.3.2
For any \(A \subseteq X \),
(i) \((1,2)*\)-g-cl(A) is the smallest \((1,2)*\)-fg-closed set containing \(A \).
(ii) \(A \) is \((1,2)*\)-fg-closed if and only if \((1,2)*\)-g-cl(A) = A.

Proposition 1.3.3
For any two subsets \(A \) and \(B \) of \(X \),
(i) If \(A \subseteq B \), then \((1,2)*\)-g-cl(A) \(\subseteq \) \((1,2)*\)-g-cl(B).
(ii) \((1,2)*\)-g-cl(A \(\cap \) B) \(\subseteq \) \((1,2)*\)-g-cl(A) \(\cap \) \((1,2)*\)-g-cl(B).

Proposition 1.3.4
A map \(f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is \((1,2)*\)-fg-closed if and only if \((1,2)*\)-g-cl(f(A)) \(\leq \) \(f(\tau_{1,2}\)-cl(A)) for every subset \(A \) of \(X \).

Proof
Suppose that \(f \) is \((1,2)*\)-fg-closed and \(A \subseteq X \). Then \(\tau_{1,2}\)-cl(A) is \(\tau_{1,2}\)-closed in \(X \) and so \(f(\tau_{1,2}\)-cl(A)) is \((1,2)*\)-fg-closed in \(Y \). We have \(f(A) \leq f(\tau_{1,2}\)-cl(A)) and by Propositions 1.3.2 and 1.3.3, \((1,2)*\)-g-cl(f(A)) \(\leq \) \((1,2)*\)-g-cl(f(\tau_{1,2}\)-cl(A))) = f(\tau_{1,2}\)-cl(A)). Conversely, let...
A be any \(\tau_{1,2} \)-closed set in \(X \). Then \(A = \tau_{1,2}\text{-cl}(A) \) and so \(f(A) = f(\tau_{1,2}\text{-cl}(A)) \geq (1,2)^{\ast}\text{-g-cl}(f(A)) \), by hypothesis. We have \(f(A) \leq (1,2)^{\ast}\text{-g-cl}(a) \). Therefore \(f(A) = (1,2)^{\ast}\text{-g-cl}(f(A)) \). That is \(f(A) \) is \((1,2)^{\ast}\text{-fg-closed} \) by Proposition 1.3.2 and hence \(f \) is \((1,2)^{\ast}\text{-g-closed} \).

Proposition 1.3.5

Let \(f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) be a map such that \((1,2)^{\ast}\text{-g-cl}(f(A)) \leq f(\tau_{1,2}\text{-cl}(A))\) for every subset \(A \subset X \). Then the image \(f(A) \) of a \(\tau_{1,2} \)-closed set \(A \) in \(X \) is \((1,2)^{\ast}\text{-fg-closed}\) in \(Y \).

Proof

Let \(A \) be a \(\tau_{1,2} \)-closed set in \(X \). Then by hypothesis \((1,2)^{\ast}\text{-g-cl}(f(A)) \leq f(\tau_{1,2}\text{-cl}(A)) \) and so \((1,2)^{\ast}\text{-g-cl}(f(A)) \). Therefore \(f(A) \) is \((1,2)^{\ast}\text{-fg-closed}\) in \(Y \).

Theorem 1.3.6

A map \(f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) is \((1,2)^{\ast}\text{-fg-closed}\) if and only if for each subset \(S \subset Y \) and each \(\tau_{1,2}\)-open set \(U \subset Y \) containing \(f^{-1}(S) \) there is an \((1,2)^{\ast}\text{-fg-open set V of Y such that S} \leq V \text{ and } f^{-1}(V) \leq U \).

Proof

Suppose \(f \) is \((1,2)^{\ast}\text{-fg-closed}\). Let \(S \subset Y \) and \(U \subset Y \) be an \(\tau_{1,2}\)-open set of \(X \) such that \(f^{-1}(S) \subset U \). Then \(V = (U) \) is an \((1,2)^{\ast}\text{-fg}\) open set containing \(S \) such that \(f^{-1}(V) \subset U \).

For the converse, let \(U \) be a \(\tau_{1,2} \)-closed set of \(X \). Then \(f^{-1}(U) \) is \((1,2)^{\ast}\text{-fg-closed} \) if and only if for each subset \(S \subset Y \) and each \(\tau_{1,2}\)-open set \(U \subset Y \) containing \(f^{-1}(S) \) there is an \((1,2)^{\ast}\text{-fg-open set V of Y such that S} \leq V \text{ and } f^{-1}(V) \leq U \).

Example 1.3.8

Let \((X, \tau_1, \tau_2) \) be a fuzzy bitopological space where \(X = \{ a, b, c \} \).

\[
\tau_1 = 0, 1, \lambda = \frac{1}{a + b + c}, \quad \mu = \frac{1}{a + b + c} \quad \text{and} \quad \tau_2 = \{ 0, 1 \}.
\]

\(\tau_{12} \)-closed are \(0, 1, \lambda' = \frac{0}{a + b + c}, \mu = \frac{1}{a + b + c} \). Then \((1,2)^{\ast}\text{-fg-closed are} \)

\[
0, 1, \lambda' = \frac{0}{a + b + c}, \mu = \frac{1}{a + b + c} \quad \text{where} \quad 0 \leq \alpha_1, \alpha_2, \alpha_3 \leq 1, \alpha_3 \neq 0.
\]

\(\sigma_1 = 0, 1, \lambda = \frac{0}{a + b + c} \quad \text{and} \quad \sigma_2 = \{ 1, 0 \} \).

\(\sigma_{12} \)-closed are \(0, 1, \lambda' = \frac{0}{a + b + c}, \mu = \frac{1}{a + b + c} \). Then \((1,2)^{\ast}\text{-fg closed are} \)

\[
0, 1, \lambda' = \frac{0}{a + b + c}, \mu = \frac{1}{a + b + c} \quad \text{where} \quad 0 \leq \alpha_1, \alpha_2, \alpha_3 \leq 1.
\]

Let \(f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) be the identity map. Then \(f \) is an \((1,2)^{\ast}\text{-fg-closed map} \).

Let \((Z, \eta_1, \eta_2) \) be a fuzzy bitopological space where \(Z = \{ a, b, c \} \).

\(\eta_1 = 0, 1, \lambda = \frac{0.5}{a + b + c} \quad \text{and} \quad \eta_2 = \{ 1, 0 \} \).

\(\eta_{12} \)-closed are \(0, 1, \lambda' = \frac{0}{a + b + c}, \mu = \frac{1}{a + b + c} \). Then \((1,2)^{\ast}\text{-fg closed are} \)

\[
0, 1, \lambda' = \frac{0}{a + b + c}, \mu = \frac{1}{a + b + c} \quad \text{where} \quad 0 \leq \alpha_1, \alpha_2, \alpha_3 \leq 1, \alpha_3 \neq 0.
\]
Let \(g : (Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2) \) be the identity map. Then both \(f \) and \(g \) are \((1,2)^*\)-fg-closed maps but their composition \(g \circ f \) is not \((1,2)^*\)-fg-closed. Since for the \(\tau_{12} \) closed set
\[
\begin{align*}
0 + \frac{1}{a} + \frac{0}{b} + \frac{0}{c} = 0 + \frac{1}{a} + \frac{0}{b} + \frac{0}{c}
\end{align*}
\]
which is not and \((1,2)^*\)-fg-closed set in \(Z \).

Corollary 1.3.9

Let \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) be \((1,2)^*\)-fg-closed and \(g : (Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2) \) be \((1,2)^*\)-fg-closed and \((1,2)^*\)-fg-irresolute, then their composition \(g \circ f \) is \((1,2)^*\)-fg-closed.

Proposition 1.3.10

Let \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) and \(g : (Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2) \) be \((1,2)^*\)-fg-closed maps where \(Y \) is a \((1,2)^*\)-g-space. Then their composition \(g \circ f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is \((1,2)^*\)-fg-closed.

Proof

Let \(\tau_{12} \)-closed set \(A \) be \((1,2)^*\)-fg-closed in \(X \). Then by hypothesis \(f(A) \) is \((1,2)^*\)-fg-closed in \(Y \). Since \(g \) is \((1,2)^*\)-fg-closed and \((1,2)^*\)-fg-irresolute by Proposition 1.3.5, \(g(f(A)) = (g \circ f)(A) \) is \((1,2)^*\)-fg-closed in \(Z \) and therefore \(g \circ f \) is \((1,2)^*\)-fg-closed.

Proposition 1.3.11

If \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is \((1,2)^*\)-fg-closed, \(g : (Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2) \) is \((1,2)^*\)-fg-closed (resp. \((1,2)^*\)-fg-closed, \((1,2)^*\)-fg-closed, \((1,2)^*\)-fg-closed) and \(Y \) be a \((1,2)^*\)-g-space, then their composition \(g \circ f : (X, \tau_1, \tau_2) \rightarrow (Z, \eta_1, \eta_2) \) is \((1,2)^*\)-fg-closed (resp. \((1,2)^*\)-fg-closed, \((1,2)^*\)-fg-closed, \((1,2)^*\)-fg-closed and \((1,2)^*\)-fg-closed).

Proof

Similar to Proposition 1.3.10.

Proposition 1.3.12

Let \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) be a \((1,2)^*\)-fuzzy closed map and \(g : (Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2) \) be \((1,2)^*\)-fg-closed map, then their composition \(g \circ f : (X, \tau_1, \tau_2) \rightarrow (Z, \eta_1, \eta_2) \) is \((1,2)^*\)-fg-closed.

Proof

Similar to Proposition 1.3.10.

Remark 1.3.13

If \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is an \((1,2)^*\)-fg-closed and \(g : (Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2) \) is \((1,2)^*\)-fuzzy closed, then their composition need not be an \((1,2)^*\)-fg-closed map as seen from the following example.

Example 1.3.14

Let \((X, \tau_1, \tau_2) \) be a fuzzy bitopological space where \(X = \{a, b, c\} \).

\[
\begin{align*}
\tau_1 &= 0,1, \lambda = \frac{1}{a} + \frac{0}{b} + \frac{0}{c}, \\
\mu &= \frac{0}{a} + \frac{1}{b} + \frac{1}{c} \\
\tau_{12} &= \{0,1\}
\end{align*}
\]

\(\sigma_1 \)-closed are
\[
\begin{align*}
0,1, \lambda' = \frac{0}{a} + \frac{1}{b} + \frac{1}{c}, \\
\mu' = \frac{0}{a} + \frac{1}{b} + \frac{1}{c} \\
\text{Then, } (1,2)^*-\text{fg closed are}
\end{align*}
\]

\[
\begin{align*}
0,1, \lambda' = \frac{0}{a} + \frac{1}{b} + \frac{0}{c}, \\
\mu' = \frac{0}{a} + \frac{1}{b} + \frac{1}{c}, \\
\text{where } 0 \leq \alpha_1, \alpha_2, \alpha_3 \leq 1, \alpha_2 \neq 0.
\end{align*}
\]

Let \((Y, \sigma_1, \sigma_2) \) be a fuzzy bitopological space where \(Y = \{a, b, c\} \).

\[
\begin{align*}
\sigma_1 &= 0,1, \lambda = \frac{1}{a} + \frac{0}{b} + \frac{0}{c}, \\
\mu &= \frac{0}{a} + \frac{1}{b} + \frac{1}{c} \\
\sigma_{12} &= \{0,1\} \\
\text{Then, } (1,2)^*-\text{fg closed are}
\end{align*}
\]

\[
\begin{align*}
0,1, \lambda' = \frac{0}{a} + \frac{1}{b} + \frac{1}{c}, \\
\mu' = \frac{0}{a} + \frac{1}{b} + \frac{1}{c} \\
\text{where } 0 \leq \alpha_1, \alpha_2, \alpha_3 \leq 1.
\end{align*}
\]

Let \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) be the identity map. Then \(f \) is an \((1,2)^*\)-fg-closed map.

Let \((Z, \eta_1, \eta_2) \) be a fuzzy bitopological space where \(Z = \{a, b, c\} \).

\[
\begin{align*}
\eta_1 &= 0,1, \lambda = \frac{1}{a} + \frac{0}{b} + \frac{1}{c}, \\
\mu &= \frac{0}{a} + \frac{1}{b} + \frac{1}{c} \\
\eta_2 &= \{0,1\}.
\end{align*}
\]
Let \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) and \(g : (Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2) \) be two maps such that their composition \(g \circ f : (X, \tau_1, \tau_2) \rightarrow (Z, \eta_1, \eta_2) \) is an \((1,2)^*\)-fuzzy closed map. Then the following statements are true.

(i) If \(f \) is \((1,2)^*\)-fuzzy continuous and surjective, then \(g \) is \((1,2)^*\)-fuzzy closed.

(ii) If \(g \) is \((1,2)^*\)-irresolute and injective, then \(f \) is \((1,2)^*\)-fuzzy closed.

(iii) If \(f \) is \((1,2)^*\)-fuzzy continuous, surjective, and \((X, \tau) \) is a \((1,2)^*\)-\(T_\alpha\)-space, then \(g \) is \((1,2)^*\)-fuzzy closed.

(iv) If \(g \) is strongly \((1,2)^*\)-fuzzy continuous and injective, then \(f \) is \((1,2)^*\)-fuzzy closed.

Proof

(i) Let \(A \) be a \(\sigma_1, \sigma_2\)-closed set of \(Y \). Since \(f \) is \((1,2)^*\)-fuzzy continuous, \(f^1(A) \) is \(\tau_1, \tau_2\)-closed in \(X \) and since \(g \circ f \) is \((1,2)^*\)-fuzzy closed, \((g \circ f)(A) \) is \((1,2)^*\)-fuzzy closed in \(Z \). That is \(g(A) \) is \((1,2)^*\)-fuzzy closed in \(Z \), since \(f \) is surjective. Therefore \(g \) is \((1,2)^*\)-fuzzy closed map.

(ii) Let \(B \) be a \(\tau_1, \tau_2\)-closed set of \(X \). Since \(g \circ f \) is \((1,2)^*\)-fuzzy closed, \((g \circ f)(B) \) is \((1,2)^*\)-fuzzy closed in \(Z \). Since \(g \) is \((1,2)^*\)-irresolute, \(f^1((g \circ f)(B)) \) is \((1,2)^*\)-fuzzy closed in \(Y \). That is \(f(B) \) is \((1,2)^*\)-fuzzy closed in \(Y \), since \(g \) is injective. Thus \(f \) is \((1,2)^*\)-fuzzy closed.

(iii) Let \(C \) be a \(\sigma_1, \sigma_2\)-closed set of \(Y \). Since \(f \) is \((1,2)^*\)-fuzzy continuous, \(f^1(C) \) is \((1,2)^*\)-fuzzy closed in \(X \). Since \(X \) is a \((1,2)^*\)-\(T_\alpha\)-space, \(f^1(C) \) is \(\tau_1, \tau_2\)-closed in \(X \) and so as in (i), \(g \) is \((1,2)^*\)-fuzzy closed map.

(iv) Let \(D \) be a \(\tau_1, \tau_2\)-closed set of \(X \). Since \(g \circ f \) is \((1,2)^*\)-fuzzy closed, \((g \circ f)(D) \) is \((1,2)^*\)-fuzzy closed in \(Z \). Since \(g \) is strongly \((1,2)^*\)-fuzzy continuous, \((g \circ f)(D) \) is \(\sigma_1, \sigma_2\)-closed in \(Y \). That is \(f(D) \) is \(\sigma_1, \sigma_2\)-closed in \(Y \), since \(g \) is injective. Therefore \(f \) is \((1,2)^*\)-fuzzy closed map.

In the next theorem we show that \((1,2)^*\)-fuzzy normality is preserved under \((1,2)^*\)-fuzzy continuous, \((1,2)^*\)-fuzzy closed maps.

Theorem 1.3.15

A set \(A \) of \(X \) is \((1,2)^*\)-fuzzy-open if and only if \(F \subseteq \tau_{1,2}\)-int\((A) \) whenever \(F \) is \((1,2)^*\)-fuzzy closed and \(F \subseteq A \).

Theorem 1.3.16

A set \(A \) of \(X \) is \((1,2)^*\)-fuzzy normal if and only if \(F \subseteq \tau_{1,2}\)-int\((A) \) whenever \(F \) is \((1,2)^*\)-fuzzy closed and \(F \subseteq A \).

Theorem 1.3.17

If \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is a \((1,2)^*\)-fuzzy continuous, \((1,2)^*\)-fuzzy closed map from a \((1,2)^*\)-fuzzy normal space \(X \) onto a space \(Y \), then \(Y \) is \((1,2)^*\)-fuzzy normal.

Proof

Let \(A \) and \(B \) be two disjoint \(\sigma_1, \sigma_2\)-closed subsets of \(Y \). Since \(f \) is \((1,2)^*\)-fuzzy continuous, \(f^1(A) \) and \(f^1(B) \) are disjoint \(\tau_{1,2}\)-closed sets of \(X \). Since \(X \) is \((1,2)^*\)-fuzzy normal, there exist disjoint \(\tau_{1,2}\)-open sets \(U \) and \(V \) of \(X \) such that \(f^1(A) \subseteq U \) and \(f^1(B) \subseteq V \). Since \(f \) is \((1,2)^*\)-fuzzy closed, by Theorem 1.3.6, there exist disjoint \((1,2)^*\)-fuzzy open sets \(G \) and \(H \) in \(Y \) such that \(A \subseteq G, B \subseteq H, f^1(G) \subseteq U \) and \(f^1(H) \subseteq V \). Since \(U \) and \(V \) are disjoint, \(\sigma_1, \sigma_2\)-int\((G) \) and \(\sigma_1, \sigma_2\)-int\((H) \) are disjoint \(\sigma_1, \sigma_2\)-open sets in \(Y \). Since \(A \) is \(\sigma_1, \sigma_2\)-closed, \(A \) is \((1,2)^*\)-fuzzy closed and therefore we have by Theorem 1.3.16, \(A \subseteq \sigma_1, \sigma_2\)-int\((G) \). Similarly \(B \subseteq \sigma_1, \sigma_2\)-int\((H) \) and hence \(Y \) is \((1,2)^*\)-fuzzy normal.

Definition 1.3.18

A map \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is said to be an \((1,2)^*\)-fuzzy-open map if the image \(f(A) \) is \((1,2)^*\)-fuzzy-open in \(Y \) for each \(\tau_{1,2}\)-open set \(A \) in \(X \).
Proof
(i) \Rightarrow (ii). Suppose f is (1,2)*-fg-open. Let $A \subseteq X$. Then $\tau_{1,2}$-int(A) is $\tau_{1,2}$-open in X and so $f(\tau_{1,2}$-int$(A))$ is (1,2)*-fg-open in Y. We have $f(\tau_{1,2}$-int$(A)) \subseteq f(A)$. Therefore by Proposition 1.3.2, $f(\tau_{1,2}$-int$(A)) \subseteq (1,2)*$-g-int$(f(A))$.

(ii) \Rightarrow (iii). Suppose (ii) holds. Let $x \in X$ and U be an arbitrary $\tau_{1,2}$-neighborhood of x in X. Then there exists an $\tau_{1,2}$-open set G such that $x \in G \subseteq U$. By assumption, $f(G) = f(\tau_{1,2}$-int$(G)) \subseteq (1,2)*$-g-int$(f(G))$. This implies $f(G) = (1,2)*$-g-int$(f(G))$. By Proposition 1.3.2, we have $f(G)$ is (1,2)*-fg-open in Y. Further, $f(x) \in f(G) \subseteq f(U)$ and so (iii) holds, by taking $W = f(G)$.

(iii) \Rightarrow (i). Suppose (iii) holds. Let U be any $\tau_{1,2}$-open set in X, $x \in U$ and $f(x) = y$. Then $y \in f(U)$ and for each $y \in f(U)$, by assumption there exists an (1,2)*-g-neighborhood W_y of y in Y such that $W_y \subseteq f(U)$. Since W_y is an (1,2)*-g-neighborhood of y, there exists an (1,2)*-fg-open set V_y in Y such that $y \in V_y \subseteq W_y$. Therefore, $f(U) = \bigcup \{V_y : y \in f(U)\}$ is an (1,2)*-fg-open set in Y. Thus f is an (1,2)*-fg-open map.

Theorem 1.3.21

A map $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is (1,2)*-fg-open if and only if for any subset S of Y and for any $\tau_{1,2}$-closed set F containing $f^{-1}(S)$, there exists an (1,2)*-fg-closed set K of Y containing S such that $f^{-1}(K) \subseteq F$.

Proof

Similar to Theorem 1.3.6.

Corollary 1.3.22

A map $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is (1,2)*-fg-open if and only if $f^{-1}((1,2)*$-g-cl$(B)) \subseteq \tau_{1,2}$-cl$(f^{-1}(B))$ for each subset B of Y.

Proof

Suppose that f is (1,2)*-fg-open. Then for any $B \subseteq Y$, $f^{-1}(B) \subseteq \tau_{1,2}$-cl$(f^{-1}(B))$. By Theorem 1.3.21, there exists an (1,2)*-fg-closed set K of Y such that $B \subseteq K$ and $f^{-1}(K) \subseteq \tau_{1,2}$-cl$(f^{-1}(B))$. Therefore, $f^{-1}((1,2)*$-g-cl$(B)) \subseteq f^{-1}(K) \subseteq f^{-1}(\tau_{1,2}$-cl$(f^{-1}(B)))$, since K is an (1,2)*-fg-closed set in Y.

Conversely, let S be any subset of Y and F be any $\tau_{1,2}$-closed set containing $f^{-1}(S)$. Put $K = (1,2)*$-g-cl(S). Then K is an (1,2)*-fg-closed set and $S \subseteq K$. By assumption, $f^{-1}(K) = f^{-1}((1,2)*$-g-cl$(S)) \subseteq \tau_{1,2}$-cl$(f^{-1}(S)) \subseteq F$ and therefore by Theorem 1.3.21, f is (1,2)*-fg-open.

Finally in this section, we define another new class of maps called (1,2)*-fg*-closed maps which are stronger than (1,2)*-fg-closed maps.

Definition 1.3.23

A map $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be (1,2)*-fg*-closed if the image $f(A)$ is (1,2)*-fg-closed in Y for every (1,2)*-fg-closed set A in X.

Remark 1.3.24

Since every $\tau_{1,2}$-closed set is an (1,2)*-fg-closed set we have (1,2)*-fg*-closed map is an (1,2)*-fg-closed map. The converse is not true in general as seen from the following example.

Example 1.3.25

Let (Y, σ_1, σ_2) be a fuzzy bitopological space where $Y = \{a, b, c\}$.

$$\sigma_1 = 0,1, \lambda = \frac{1}{a} + \frac{0}{b} + \frac{0}{c}$$

and $\sigma_2 = [0,1]$.

σ_{12}-closed are

\[0,1, \lambda' = \frac{0}{a} + \frac{1}{b} + \frac{1}{c} \]

Then (1,2)*-fg closed are

\[0,1, \lambda' = \frac{0}{a} + \frac{1}{b} + \frac{1}{c} \] where $0 \leq \alpha_1, \alpha_2, \alpha_3 \leq 1$.

Let (Z, η_1, η_2) be a fuzzy bitopological space where $Z = \{a, b, c\}$.

$$\eta_1 = 0,1, \lambda = \frac{0.5}{a} + \frac{0}{b} + \frac{0}{c}$$

and $\eta_2 = [0,1]$.

η_{12}-closed are

\[0,1, \lambda' = \frac{0}{a} + \frac{0.5}{b} + \frac{1}{c} \]

Then (1,2)*-fg closed are

\[0,1, \lambda' = \frac{0}{a} + \frac{0.5}{b} + \frac{1}{c} \] where $0 \leq \alpha_1, \alpha_2, \alpha_3 \leq 1, \alpha_3 \neq 0$.

Let $g : (Y, \sigma_1, \sigma_2) \to (Z, \eta_1, \eta_2)$ be the identity map. Then g is (1,2)*-fg closed map but not (1,2)*-fg*-closed map.

Since

\[\frac{1}{a} + \frac{0}{b} + \frac{0}{c} \]

is (1,2)*-fg-closed set in X, but its image under g is

\[\frac{1}{a} + \frac{0}{b} + \frac{0}{c} \]

which is not (1,2)*-fg-closed set in Z.

Proposition 1.3.26

A map $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is (1,2)*-fg*-closed if and only if $(1,2)*$-g-cl$(f(A)) \subseteq f(1,2)*$-g-cl(A) for every subset A of X.

Proof

Similar to Proposition 1.3.4.
Analogous to $(1,2)^*fg^*$-closed map we can also define $(1,2)^*fg^*$-open map.

Proposition 1.3.27

For any bijection $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$, the following statements are equivalent:

(i) f is $(1,2)^*fg^*$-irresolute.

(ii) f is $(1,2)^*fg^*$-open.

(iii) f is $(1,2)^*fg^*$-closed map.

Proof

Similar to Proposition 1.3.19.

Proposition 1.3.28

If $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(1,2)^*fg^*$-irresolute and $(1,2)^*fg^*$-closed, then it is an $(1,2)^*fg^*$-closed map.

Proof

The proof follows from Proposition 1.3.7.

1.4. $(1,2)^*fg^*$-Homeomorphisms

The notion of $(1,2)^*fg^*$-homeomorphisms plays a very important role in fuzzy bitopological spaces. By definition, an $(1,2)^*fg^*$-homeomorphism between two fuzzy bitopological spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) is a bijective map $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ when f and f^{-1} are $(1,2)^*fg^*$-continuous.

We introduce the following definition:

Definition 1.4.1

A bijection $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be

(i) $(1,2)^*fg^*$-homeomorphism if f is both $(1,2)^*fg^*$-continuous and $(1,2)^*fg^*$-open.

(ii) $(1,2)^*fg^*$-homeomorphism if both f and f^{-1} are $(1,2)^*fg^*$-irresolute.

We denote the family of all $(1,2)^*fg^*$-homeomorphisms of a fuzzy bitopological space (X, τ_1, τ_2) onto itself by $(1,2)^*fg^*h(X)$.

Theorem 1.4.2

Let $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a bijective $(1,2)^*fg^*$-continuous map. Then the following are equivalent:

(i) f is an $(1,2)^*fg^*$-open map.

(ii) f is an $(1,2)^*fg^*$-homeomorphism.

(iii) f is an $(1,2)^*fg^*$-closed map.

Proof

Follows from Proposition 1.3.19.

Proposition 1.4.3

If $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ and $g : (Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2)$ are $(1,2)^*fg^*$-homeomorphisms, then their composition $g \circ f : (X, \tau_1, \tau_2) \rightarrow (Z, \eta_1, \eta_2)$ is also $(1,2)^*fg^*$-homeomorphism.

Proof

Let U be $(1,2)^*fg^*$-open set in (Z, η_1, η_2). Now, $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U)) = f^{-1}(V)$, where $V = g^{-1}(U)$. By hypothesis, V is $(1,2)^*fg^*$-open in Y and so again by hypothesis, $f^{-1}(V)$ is $(1,2)^*fg^*$-open in X. Therefore, $g \circ f$ is $(1,2)^*fg^*$-irresolute.

Also, for an $(1,2)^*fg^*$-closed set G in X, we have $(g \circ f)(G) = g(f(G)) = g(W)$, where $W = f(G)$. By hypothesis $f(G)$ is $(1,2)^*fg^*$-open in Y and so again by hypothesis, $g(f(G))$ is $(1,2)^*fg^*$-open in Z. That is $(g \circ f)(G)$ is $(1,2)^*fg^*$-open in Z and therefore $(g \circ f)^{-1}$ is $(1,2)^*fg^*$-irresolute. Hence $g \circ f$ is a $(1,2)^*fg^*$-homeomorphism.

Theorem 1.4.4

The set $(1,2)^*fg^*$-h(X) is a group under the operation of composition of maps.

Proof

Define a binary operation $\ast : (1,2)^*fg^*$-h$(X) \times (1,2)^*fg^*$-h$(X) \rightarrow (1,2)^*fg^*$-h$(X)$ by $f \ast g = g \circ f$ for all $f, g \in (1,2)^*fg^*$-h(X) and o is the usual operation of composition of maps. Then by Proposition 1.3.1, $g \circ f \in (1,2)^*fg^*$-h$(X)$. We know that the composition of maps is associative and the identity map $I : (X, \tau_1, \tau_2) \rightarrow (X, \tau_1, \tau_2)$ belonging to $(1,2)^*fg^*$-h(X) serves as the identity element. If $f \in (1,2)^*fg^*$-h(X), then $f^{-1} \in (1,2)^*fg^*$-h(X) such that $f \circ f^{-1} = f^{-1} \circ f = I$ and so inverse exists for each element of $(1,2)^*fg^*$-h(X). Therefore, $(1,2)^*fg^*$-h(X) is a group under the operation of composition of maps.

Theorem 1.4.5

Let $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be an $(1,2)^*fg^*$-homeomorphism. Then f induces an $(1,2)^*fg^*$-homeomorphism from the group $(1,2)^*fg^*$-h(X) onto the group $(1,2)^*fg^*$-h(Y).

Proof

Using the map f, we define a map $\theta : (1,2)^*fg^*$-h$(X) \rightarrow (1,2)^*fg^*$-h$(X)$ by $\theta(h) = f \circ h \circ f^{-1}$ for every $h \in (1,2)^*fg^*$-h(X). Then θ is a bijection. Further, for all $h_1, h_2 \in (1,2)^*fg^*$-h(X), we have $\theta(h_1 \circ h_2) = \theta(h_1) \circ \theta(h_2) = (f \circ h_1 \circ f^{-1}) \circ (f \circ h_2 \circ f^{-1}) = \theta(h_1 \circ h_2)$.

Therefore, θ is a $(1,2)^*fg^*$-homeomorphism and so it is an $(1,2)^*fg^*$-isomorphism induced by f.

Theorem 1.4.6

$(1,2)^*fg^*$-homeomorphism is an equivalence relation in the collection of all bitopological spaces.

Proof

Reflexivity and symmetry are immediate and transitivity follows from Proposition 1.4.3.

Acknowledgment

The authors would like to thank the reviewers for their valuable comments and helpful suggestions for improvement of the original manuscript.

References

