Steady plane poiseuille flow of viscous incompressible fluid between two porous parallel plates through porous medium
Anand Swrup Sharma
Department of Applied Sciences, Ideal Institute of Technology, Ghaziabad.

ARTICLE INFO
Article history:
Received: 4 December 2014;
Received in revised form:
20 January 2015;
Accepted: 2 February 2015;

Keywords
Steady poiseuille flow,
Viscous parallel plates,
Incompressible fluid,
Porous medium.

Nomenclature:
\(u \) = Velocity component along \(x \)-axis
\(v \) = Velocity component along \(y \)-axis
\(t \) = the time
\(\rho \) = The density of fluid
\(P \) = the fluid pressure
\(K \) = the thermal conductivity of the fluid
\(\mu \) = Coefficient of viscosity
\(\nu \) = Kinematic viscosity
\(Q \) = the volumetric flow

Introduction:

Formulation of problem:
Let us consider two infinite porous plates AB & CD separated by a distance \(2h \). The fluid enters in y-direction. The velocity component along x-axis is a function of y only. The motion of incompressible fluid is in two dimension and is steady then
\[
u = u (y), \quad w = 0 \quad \text{and} \quad \frac{\partial}{\partial t} = 0
\]
The equation of continuity for incompressible fluid
\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0 \quad \text{Put } w = 0,
\]
\[
\frac{\partial u}{\partial x} = 0 \quad \& \quad \Rightarrow \frac{\partial v}{\partial y} = 0
\]
v is independent of \(y\) but motion along \(y\)-axis. So we can say \(v\) is constant velocity i.e. \(v = v_0\)

or The fluid enters the flow region through one plate at the same constant velocity \(v_0\)

Also Navier-Stoke's equations for incompressible fluid in the absence of body force when flow is steady
\[
v_0 \frac{du}{dy} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + \nu \left(\frac{d^2 u}{dy^2} + \frac{v u}{\nu} \right) \quad \text{............ (1)}
\]
\[
-\frac{1}{\rho} \frac{\partial p}{\partial y} = 0 \quad \text{............ (2)}
\]

Solution of the problem:

Equation (2) Shows that the pressure does not depend on \(y\) hence \(p\) is a function of \(x\) only and so (1) reduces to

\[
\frac{dp}{dx} = \rho \left[\nu \frac{d^2 u}{dy^2} + \frac{v u}{\nu} \right] \quad \text{Where } \frac{dp}{dx} = \text{Constant} = -P
\]

\[
\Rightarrow \frac{d^2 u}{dy^2} + \frac{v_0}{\nu} \frac{du}{dy} + \frac{u}{K} = \frac{P}{\rho \nu}
\]

\[
\Rightarrow \left(\frac{d^2}{dy^2} - \frac{v_0}{\nu} D + \frac{1}{K} \right) u = -\frac{P}{\rho \nu}
\]

A.E. \(m^2 - \frac{v_0}{\nu} m + \frac{1}{K} = 0\)

\[
\Rightarrow m = \frac{-\frac{v_0}{\nu} \pm \sqrt{\left(\frac{v_0}{\nu}\right)^2 - 4 \frac{1}{K}}}{2}
\]

Let \(\sqrt{\left(\frac{v_0}{2\nu}\right)^2 - \frac{1}{K}} = A \quad \& \quad \frac{1}{K} = B\)

\[
C.F. = e^{\frac{v_0}{2\nu} y} \left[C_1 \text{Cosh } Ay + C_2 \text{Sinh } Ay \right] \quad \text{P.I.} = -\frac{PK}{\mu}
\]

\[
u(y) = e^{\frac{v_0}{2\nu} y} \left[C_1 \text{Cosh } Ay + C_2 \text{Sinh } Ay \right] - \frac{PK}{\mu}
\]

using boundary conditions: \(u = 0\) at \(y = -h\) and \(u = U\) at \(y = h\)

\[
e^{-\frac{v_0}{2\nu} h} \left[C_1 \text{Cosh } Ah - C_2 \text{Sinh } Ah \right] - \frac{PK}{\mu} = 0 \quad \text{............ (3)}
\]

\[
U = e^{\frac{v_0}{2\nu} h} \left[C_1 \text{Cosh } Ah + C_2 \text{Sinh } Ah \right] - \frac{PK}{\mu} \quad \text{............ (4)}
\]

or \(\frac{PK}{\mu} e^{\frac{v_0}{2\nu} h} = C_1 \text{Cosh } Ah - C_2 \text{Sinh } Ah\)

\[
\left(U + \frac{PK}{\mu} \right) e^{-\frac{V_y h}{2v}} = C_1 \cosh(A h) + C_2 \sinh(A h)
\]

\[
C_1 = \frac{1}{2 \cosh(A h)} \left[\left(U + \frac{PK}{\mu} \right) e^{\frac{V_y h}{2v}} + \frac{PK}{\mu} e^{\frac{V_y h}{2v}} \right]
\]

\[
C_2 = \frac{1}{2 \sinh(A h)} \left[\left(U + \frac{PK}{\mu} \right) e^{\frac{V_y h}{2v}} - \frac{PK}{\mu} e^{\frac{V_y h}{2v}} \right]
\]

\[
u(y) = \frac{e^{2v y}}{2 \cosh(A h)} \left(U + \frac{PK}{\mu} \right) e^{-\frac{V_y h}{2v}} + \frac{PK}{\mu}
\]

\[
\nu(y) = \frac{e^{2v y}}{2 \sinh(A h)} \left(U + \frac{\rho K}{\mu} \right) e^{-\frac{V_y h}{2v}} - \frac{PK}{\mu}
\]

\[
u(y) = \frac{1}{\sinh(2 A h)} \left[\left(U + \frac{PK}{\mu} \right) e^{\frac{V_y (y-h)}{2v}} \sinh(A (y+h)) - \frac{PK}{\mu} e^{\frac{V_y (y+h)}{2v}} \sinh(A (y-h)) \right] - \frac{PK}{\mu}
\]

Plane Poiseuille flow: In this case both plates are at rest so \(U = 0 \)

\[
\therefore \nu(y) = \frac{1}{\sinh(2 A h)} \left[\frac{PK}{\mu} e^{\frac{V_y (y-h)}{2v}} \sinh(A (y+h)) - \frac{PK}{\mu} e^{\frac{V_y (y+h)}{2v}} \sinh(A (y-h)) \right] - \frac{PK}{\mu}
\]

Shearing stress at any point

\[
\sigma_{xy} = \mu \frac{du}{dy} = \frac{\mu PK}{\mu \sinh(2 A h)} \left[e^{\frac{V_y (y-h)}{2v}} \sinh(A (y+h)) + A e^{\frac{V_y (y-h)}{2v}} \cosh(A (y+h)) \right]
\]

\[
- \frac{V_y}{2v} e^{\frac{V_y (y+h)}{2v}} \sinh(A (y-h)) - Ae^{\frac{V_y (y+h)}{2v}} \cosh(A (y-h))
\]

\[
= \frac{PK}{\sinh(2 A h)} \left[\frac{V_y}{2v} \sinh(A (y+h)) - e^{\frac{V_y (y+h)}{2v}} \sinh(A (y-h)) \right] + A \left[\frac{V_y}{2v} \cosh(A (y+h)) - e^{\frac{V_y (y+h)}{2v}} \cosh(A (y-h)) \right]
\]

Skin friction at lower & upper plates

\[
\left(\sigma_{xy} \right)_{y=h} = \frac{PK}{\sinh(2 A h)} \left[\frac{V_y}{2v} \left\{ \sinh(2 A h) + A \left\{ \cosh(2 A h) - e^{\frac{V_y h}{2v}} \right\} \right\} \right]
\]

\[
\left(\sigma_{xy} \right)_{y=-h} = \frac{PK}{\sinh(2 A h)} \left[\frac{V_y}{2v} \sinh(2 A h) + ACosh(2 A h) - e^{\frac{V_y h}{2v}} \right]
\]

\[
\left(\sigma_{xy} \right)_{y=-h} = \frac{PK}{\sinh(2 A h)} \left[\frac{V_y}{2v} \sinh(2 A h) + A \left\{ e^{\frac{V_y h}{2v}} - \cosh(2 A h) \right\} \right]
\]

\[
\left(\sigma_{xy} \right)_{y=-h} = \frac{PK}{\sinh(2 A h)} \left[\frac{V_y}{2v} \sinh(2 A h) - ACosh(2 A h) + e^{\frac{V_y h}{2v}} \right]
\]
The average velocity distribution in poiseuille flow:

\[u_{av} = \frac{1}{2h} \int_{-h}^{h} u(y) dy \]

\[= \frac{PK}{2\mu h \operatorname{Sinh} 2Ah} \int_{-h}^{h} \left[e^{\frac{y}{2\nu}(y-h)} \operatorname{Sinh} A(y+h) - e^{\frac{-y}{2\nu}(y+h)} \operatorname{Sinh} A(y-h) - \operatorname{Sinh} 2Ah \right] dy \]

Now Let \[I_1 = \int_{-h}^{h} e^{\frac{y}{2\nu}(y-h)} \operatorname{Sinh} A(y+h) dy \]

\[= \frac{1}{2} \int_{-h}^{h} \left[e^{\frac{y}{2\nu}(y-h)+A(y+h)} - e^{\frac{y}{2\nu}(y-h)-A(y+h)} \right] dy \]

\[= \frac{K}{2} \left[\frac{\nu_0}{2\nu} - A \left(e^{2Ah} - e^{-\frac{\nu_0 h}{\nu}} \right) - \left(\frac{\nu_0}{2\nu} + A \right) \left(e^{-2Ah} - e^{-\frac{\nu_0 h}{\nu}} \right) \right] \]

\[= \frac{K}{2} \left[\frac{\nu_0}{2\nu} \left(e^{2Ah} - e^{-\frac{\nu_0 h}{\nu}} - e^{-2Ah} + e^{-\frac{\nu_0 h}{\nu}} \right) - A \left(e^{2Ah} - e^{-\frac{\nu_0 h}{\nu}} + e^{-2Ah} - e^{-\frac{\nu_0 h}{\nu}} \right) \right] \]

\[I_1 = K \left[\frac{\nu_0}{2\nu} \operatorname{Sinh} 2Ah - ACosh 2Ah + A e^{-\frac{\nu_0 h}{\nu}} \right] \]

\[I_2 = \int_{-h}^{h} e^{\frac{y}{2\nu}(y-h)} \operatorname{Sinh} A(y-h) dy = K \left[\frac{\nu_0}{2\nu} \operatorname{Sinh} 2Ah + ACosh 2Ah - A e^{-\frac{\nu_0 h}{\nu}} \right] \]

\[I_3 = \int_{-h}^{h} \operatorname{Sinh} 2Ah dy = 2h \operatorname{Sinh} 2Ah \]

\[\therefore u_{av} = \frac{PK}{2\mu h \operatorname{Sinh} 2Ah} \left[I_1 - I_2 - I_3 \right] \]

\[= \frac{PK}{2\mu h \operatorname{Sinh} 2Ah} \left[\frac{K\nu_0}{2\nu} \operatorname{Sinh} 2Ah - KA Cosh 2Ah + KA e^{-\frac{\nu_0 h}{\nu}} - \frac{K\nu_0}{2\nu} \operatorname{Sinh} 2Ah - K A Cosh 2Ah + KA e^{-\frac{\nu_0 h}{\nu}} - 2h \operatorname{Sinh} 2Ah \right] \]

\[u_{av} = \frac{PK}{\mu h \operatorname{Sinh} 2Ah} \left[AK \left(\operatorname{Cosh} \frac{\nu_0}{\nu} h - \operatorname{Cosh} 2Ah \right) - h \operatorname{Sinh} 2Ah \right] \quad \cdots \cdots \text{(10)} \]

The volumetric flow \(Q = 2h u_{av} \)

\[= \frac{2PK}{\mu \operatorname{Sinh} 2Ah} \left[AK \left(\operatorname{Cosh} \frac{\nu_0}{\nu} h - \operatorname{Cosh} 2Ah \right) - h \operatorname{Sinh} 2Ah \right] \quad \cdots \cdots \text{(11)} \]

The Drug coefficients: \(C_f \) & \(C'_f \) at \(y = h \) & \(y = -h \)

\[C_f = \frac{\sigma_{xy}}{2h^2 \nu^2} = \frac{1}{2} \frac{\rho(u_{av})^2}{PK} \left[\frac{\nu_0}{2\nu} \operatorname{Sinh} 2Ah + ACosh 2Ah - A e^{-\frac{\nu_0 h}{\nu}} \right] \quad \cdots \cdots \text{(12)} \]
\[C_f = \frac{1}{2} \rho u^2 h^2 \sinh 2Ah \left(\frac{\nu_0 \sin 2Ah - ACosh 2Ah + Ae^{-\frac{v_0}{2d}}}{PK} \right) \]

\[\frac{PK}{\mu \sinh 2Ah} \left\{ e^{\frac{\nu_0}{2d}(y-h)} \sinh A(y + h) - e^{\frac{\nu_0}{2d}(y+h)} \sinh A(y - h) - \sinh 2Ah \right\} = \frac{dy}{v_0} = \frac{dz}{0} \]

The stream line in the plane poiseuille flow:

\[\frac{PK}{\mu \sinh 2Ah} \left\{ e^{\frac{\nu_0}{2d}(y-h)} \sinh A(y + h) - e^{\frac{\nu_0}{2d}(y+h)} \sinh A(y - h) - \sinh 2Ah \right\} = \frac{dy}{v_0} = \frac{dz}{0} \]

Taking Ist two

\[\frac{v_0 \mu \sinh 2Ah}{PK} x = \int \left\{ e^{\frac{\nu_0}{2d}(y-h)} \sinh A(y + h) - e^{\frac{\nu_0}{2d}(y+h)} \sinh A(y - h) - \sinh 2Ah \right\} dy = C_1 \]

\[\begin{align*}
I_1 &= \frac{1}{2} \left[\left(\frac{v_0}{2d} + A \right) - \left(\frac{v_0}{2d} - A \right) \right] \\
&= K e^{\frac{\nu_0}{2d}(y-h)} \left[\frac{v_0}{2d} \sinh A(y + h) - ACosh A(y + h) \right] \\
I_2 &= \int e^{\frac{\nu_0}{2d}(y+h)} \sinh A(y - h) . \ dy = K e^{\frac{\nu_0}{2d}(y+h)} \left[\frac{v_0}{2d} \sinh A(y - h) - ACosh A(y - h) \right] \\
I_3 &= \int \sinh 2Ah . \ dy = y. \sinh 2Ah
\end{align*} \]

\[\therefore \text{Ist stream line}. \]

\[\frac{v_0 \mu \sinh 2Ah}{PK} x = \{ I_1 - I_2 - I_3 \} = C_1 \]

\[\frac{v_0 \mu \sinh 2Ah}{PK} x = K e^{\frac{\nu_0}{2d}(y-h)} \left\{ \frac{v_0}{2d} \sinh A(y + h) - ACosh A(y + h) \right\} \\
+ K e^{\frac{\nu_0}{2d}(y+h)} \left\{ \frac{v_0}{2d} \sinh A(y - h) - ACosh A(y - h) \right\} + y \sinh 2Ah = C_1 \ldots \ldots \ (14) \]

Second stream line

\[z = c_2 \ldots \ldots (15) \]

Clearly the curl \(\frac{q}{q} \neq 0 \) \quad \therefore \text{the fluid is Rotational}

Table for velocity:

\[P = 9, \mu = .5, \frac{v_0}{2d} = 2, k = \frac{1}{3}, A = \sqrt{\frac{v_0}{2d}^2 - \frac{1}{k}} = \sqrt{4 - 3} = 1 \text{ are same for all but } h \text{ change} \]

<table>
<thead>
<tr>
<th>h</th>
<th>y</th>
<th>0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>u(y)</td>
<td>0.804</td>
<td>0.818</td>
<td>0.587</td>
<td>0</td>
<td>-1.096</td>
<td>-2.912</td>
<td>-5.734</td>
</tr>
<tr>
<td>0.4</td>
<td>u(y)</td>
<td>1.423</td>
<td>1.524</td>
<td>1.34</td>
<td>0.94</td>
<td>0</td>
<td>-1.623</td>
<td>-4.21</td>
</tr>
<tr>
<td>0.5</td>
<td>u(y)</td>
<td>2.21</td>
<td>2.42</td>
<td>2.43</td>
<td>2.131</td>
<td>1.385</td>
<td>0</td>
<td>-2.29</td>
</tr>
<tr>
<td>0.6</td>
<td>u(y)</td>
<td>3.164</td>
<td>3.51</td>
<td>3.67</td>
<td>3.56</td>
<td>3.045</td>
<td>1.94</td>
<td>0</td>
</tr>
<tr>
<td>0.7</td>
<td>u(y)</td>
<td>4.282</td>
<td>4.778</td>
<td>5.122</td>
<td>5.226</td>
<td>4.969</td>
<td>4.181</td>
<td>2.63</td>
</tr>
</tbody>
</table>
Velocity Profile

Table for skin friction:

\[P = \frac{9}{2}, \mu = 0.5, \frac{v_0}{2u} = 2, k = \frac{1}{3}, A = \sqrt{\frac{v_0}{2u}} - \frac{1}{k} = \sqrt{4 - \frac{3}{k}} = 1 \] are same for all but \(h \) change

<table>
<thead>
<tr>
<th>(h)</th>
<th>(y)</th>
<th>0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>(\sigma)</td>
<td>0.532</td>
<td>-0.465</td>
<td>-1.936</td>
<td>-4.059</td>
<td>-7.076</td>
<td>-11.318</td>
<td>-17.229</td>
</tr>
<tr>
<td>0.4</td>
<td>(\sigma)</td>
<td>0.936</td>
<td>0.016</td>
<td>-1.356</td>
<td>-3.36</td>
<td>-6.21</td>
<td>-10.25</td>
<td>-15.89</td>
</tr>
<tr>
<td>0.5</td>
<td>(\sigma)</td>
<td>1.445</td>
<td>0.62</td>
<td>-0.632</td>
<td>-2.48</td>
<td>-5.14</td>
<td>-8.92</td>
<td>-14.24</td>
</tr>
<tr>
<td>0.6</td>
<td>(\sigma)</td>
<td>2.05</td>
<td>1.34</td>
<td>0.225</td>
<td>-1.44</td>
<td>-3.88</td>
<td>-7.37</td>
<td>-12.31</td>
</tr>
<tr>
<td>0.7</td>
<td>(\sigma)</td>
<td>2.75</td>
<td>2.163</td>
<td>1.21</td>
<td>-0.26</td>
<td>-2.45</td>
<td>-5.62</td>
<td>-10.14</td>
</tr>
</tbody>
</table>
Table for velocity: when y & A are vary and other are fixed

\[
\begin{align*}
\text{let } & P = 9, \quad \mu = .5, \quad \frac{v_0}{2v} = 6, \quad h = .5, \quad \text{& } \sqrt{\frac{v_0}{2v}} - \frac{1}{K} = A \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>A</th>
<th>y</th>
<th>0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>u(y)</td>
<td>4.08</td>
<td>6.09</td>
<td>8.43</td>
<td>10.31</td>
<td>9.44</td>
<td>0</td>
<td>-31.67</td>
</tr>
<tr>
<td>2</td>
<td>u(y)</td>
<td>3.11</td>
<td>4.5</td>
<td>6.07</td>
<td>7.29</td>
<td>6.6</td>
<td>0</td>
<td>-22.26</td>
</tr>
<tr>
<td>3</td>
<td>u(y)</td>
<td>2.19</td>
<td>3.03</td>
<td>3.93</td>
<td>4.59</td>
<td>4.09</td>
<td>0</td>
<td>-13.92</td>
</tr>
<tr>
<td>4</td>
<td>u(y)</td>
<td>1.51</td>
<td>1.984</td>
<td>2.464</td>
<td>2.78</td>
<td>2.43</td>
<td>0</td>
<td>-8.41</td>
</tr>
<tr>
<td>5</td>
<td>u(y)</td>
<td>1.05</td>
<td>1.31</td>
<td>1.56</td>
<td>1.69</td>
<td>1.45</td>
<td>0</td>
<td>-5.178</td>
</tr>
</tbody>
</table>
let $P = 9, \ \mu = 0.5, \ \frac{v_0}{2\nu} = 6, h = 0.5, \ \& \ \sqrt{\frac{v_0}{2\nu}} - \frac{1}{K} = A$

Table 4

<table>
<thead>
<tr>
<th>A</th>
<th>y</th>
<th>0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>σ_{xy}</td>
<td>8.83</td>
<td>11.18</td>
<td>11.62</td>
<td>5.44</td>
<td>-18.66</td>
<td>-86.39</td>
<td>-254.45</td>
</tr>
<tr>
<td>2</td>
<td>σ_{xy}</td>
<td>6.215</td>
<td>7.62</td>
<td>7.695</td>
<td>3.30</td>
<td>-13.27</td>
<td>-60.3</td>
<td>-180.99</td>
</tr>
<tr>
<td>3</td>
<td>σ_{xy}</td>
<td>3.855</td>
<td>4.496</td>
<td>4.328</td>
<td>1.56</td>
<td>-8.422</td>
<td>-37.26</td>
<td>-114</td>
</tr>
<tr>
<td>4</td>
<td>σ_{xy}</td>
<td>2.253</td>
<td>2.462</td>
<td>2.219</td>
<td>0.567</td>
<td>-5.134</td>
<td>-22.11</td>
<td>-70.05</td>
</tr>
<tr>
<td>5</td>
<td>σ_{xy}</td>
<td>1.285</td>
<td>1.3</td>
<td>1.08</td>
<td>0.107</td>
<td>-3.135</td>
<td>-13.24</td>
<td>-44</td>
</tr>
</tbody>
</table>
Conclusion and discussion:

In this paper, we have investigated the velocity by the graphs of table -1 of equation (5) between velocity and distance in porous medium. Velocity increases in the interval $0 \leq y \leq 1$ at $h = .3$, velocity decreases in the interval $1 \leq y \leq 3$ at $h = .3$, and velocity increases with negative sign at $h = .3$ in the interval $4 \leq y \leq .6$. Again velocity increases in the interval $0 \leq y \leq 1$, velocity decreases in the interval $2 \leq y \leq 4$, and increases with negative sign in the interval $5 \leq y \leq .6$ at $h = .4$. Velocity increases in the interval $0 \leq y \leq 2$, decreases in the interval $3 \leq y \leq 5$, and velocity is negative at $y = .6$ at the height $h = .5$. Again velocity increases at $h = .6$ in the interval $0 \leq y \leq 1$, and decreases in the interval $3 \leq y \leq .6$ at $h = .6$. Again the velocity increases in the interval $0 \leq y \leq .3$, and decreases in the interval $4 \leq y \leq .6$ at $h = .7$. The points with zero velocity are stagnation point. The value of velocity increases correspondingly in the interval $0 \leq y \leq .6$ when h increases.

Again from the table -3 the velocity decreases correspondingly in the interval $0 \leq y \leq .6$ when A increases from 1 to 5. Since the velocity is zero at $y = .5$ for all values of A, $y = .5$ is a stagnation point.

Again from the table -2 the value of skin friction increases correspondingly in the interval $0 \leq y \leq .2$ and the values of skin friction decreases with negative sign in the interval $3 \leq y \leq .6$ when h increases from .3 to .7.
Again from the table -4 it is clear that the skin friction decreases with positive sign in the interval \(0 \leq y \leq 3\) when \(A\) increases from 1 to 5 and decreases with negative sign correspondingly in the interval \(4 \leq y \leq 6\) when \(A\) increases from 1 to 5. Also we have investigated the shearing stress, the volumetric flow, drag coefficients and stream lines by equations (7), (9), (11), (12), (13), (14) and (15). The fluid is rotational.

References: