A survey of natural radioactivity level in selected rock samples from Bukit bunuh, lenggong, Malaysia

Zulhilmi, W.M1, Iskandar, S.M1, Azhar, A.R1, Saidin Mokhtar2 and Naimah, N.Y1
1School of Physics, USM, Penang, Malaysia.
2Centre for Global Archaeological Research, USM, Penang, Malaysia.

ABSTRACT
Radiation that coming from the natural radionuclides such as 226Ra (238U), 228Ra (232Th) and 40K can cause health risks if exposed for longer terms. The activity and radiological effect parameters of these natural radionuclides were determined in rock samples from Bukit Bunuh. The results of measurements showed that the average activity concentration of 226Ra varied from 22.5 to 42.3 Bq kg$^{-1}$, for 228Ra, it varied from 1.2 to 3.5 Bq kg$^{-1}$ and for 40K, it varied from 274.3 to 438.2 Bq kg$^{-1}$. Based on the available data, the radiation hazard parameter is calculated. The external gamma dose rate calculated from the concentration of the three radionuclides ranged from 29.8 to 38.7 nGy h$^{-1}$. Three calculated parameters from the activity concentration values, i.e. the radium equivalent activity (Ra$_{eq}$) range between 59.3 and 78.6 Bq kg$^{-1}$ (mean 68.1 Bq kg$^{-1}$), the representative level index (I_R) range between 0.46 and 0.59 (mean 0.50) and the external hazard index (H_{ex}) range between 0.17 and 0.21 (mean 0.20). This is well below the recommended value of 370 Bq kg$^{-1}$ (for Ra$_{eq}$) and unity (for H_{ex}). The annual effective dose rate of the areas was determined to be between 0.037 and 0.048 mSv y$^{-1}$. The results show that there are no significant health hazards to humans.

© 2014 Elixir All rights reserved.

Introduction
Since the exposure of human beings to ionisation radiation from natural sources is a continuing, these studies are very important for human. It also can be a baseline for natural background. Radiation exposure received by the individuals from the primordial sources in the environment is known to constitute about 85% of natural background radiation, the remaining 15% being from cosmic rays [1]. The high activity concentrations of natural radionuclides have been observed in igneous rock and phosphate rock. Many exposures to natural radiation sources are modified by human activities. The activities such as phosphate fertiliser production and minerals mining causing enhanced natural radiation exposures. For that reason, processing some of natural resources can cause increasing of activity concentration of radionuclides in the environment. This increment is a potential risk with respect to exposure of external radiation for humans [2].

Bukit Bunuh was discovered by the USM’s team of archaeologist led by Associate Professor Dr. Mokhtar Saidin during the field survey to find the archaeology site in year 2000. Bukit Bunuh is situated in Lenggong valley, north of Kota Tampan, Perak. It is located in the longitude of 10° 058.5 East and latitude 5° 4.5 North. The highest point is over 180 meters above sea level. When the site covering more than 4 km2 was first surveyed in the 80s, the surface was bare but a return survey in 2001 saw thousands of rocks of many types such as suevite, quartzite, quartz, and metamorphic rocks brought to the surface by agricultural activities [3].

Naturally, most of uranium presents as U-238 and thorium presents as Th-232. Both of them are less soluble compare to their decay daughter products such as Ra-226 for U-238 andRa-228 for Th-232. Potassium (K), uranium (U) and thorium (Th) are three most abundant, naturally occurring radioactive elements. Potassium is a major constituent of most rocks whereas uranium and thorium are present in trace amounts, either as mobile or immobile elements.

Materials and Methods
All 10 rock samples (granite) were getting from the Centre for Global Archaeological Research USM. Figure 1 shows a map of sampling points in the study area and Table 1 shows the coordinates of the sampling points obtained by using global positioning system, Garmin GPSmap 76CSx. The area was chosen because of its potential of having a uranium deposit. This area also sits in the granitic region. Granitic rock usually has some amount of uranium deposit. All rock samples were oven dried at 60°C until it reached a constant weight and eventually crushed and packed. The samples were weighed (after correction were ~100 g) and stored for at least three weeks to allow for secular equilibrium between 226Ra, 228Ra and its decay products before gamma spectroscopy measurements were made. The period is also long enough to ensure equilibrium 226Ra and its decay product in the 232Th series.

![Figure 1. Maps of sampling points](image)
Gamma spectrometry measurements of 226Ra, 228Ra and 40K activities in rock samples were made using a portable Amptek GAMMA-RAD5 76 × 76mm, coupled to a DppMCA (Version 1.0.0.5) through a photomultiplier tube, preamplifier and amplifier. The high sensitivity NaI(Tl) detector connected to a 76mm, coupled to a DppMCA (Version 1.0.0.5) through a photomultiplier tube, preamplifier and amplifier. The detector was shielded by 50 mm thick lead bricks. The detector has a resolution of 6.7% full-width at half-maximum of 137Cs energy of 661.6 keV. This was good enough to distinguish the gamma ray energies of interest in the present study.

The choice of radionuclides to be detected as a reference were made based on the fact that the NaI(Tl) detector used in the study had a modest energy resolution [4]. The activity concentration of 214Bi (determined from its 609.31 keV gamma ray peak) was chosen to provide an estimate of 228Ra (U series) in rock samples. The radionuclide 228Ac (determined from its 911.2 keV gamma ray peak) was chosen as an indicator of 228Ra (Th series) because the secular equilibrium was achieved between the daughter nuclides and their parent nuclides. 40K was determined by measuring the 1460.83 keV gamma rays emitted during the decay of 40K. The sample was placed symmetrically on top of the detector and measured for a counting period of 6 h [5]. Measurement of each rock sample was repeated three times and the mean net area (net count rate) was determined. Calculation of the activity concentration is based on the method that had been implemented by N. Füsun Çam et al. [6].

The activity concentrations of 232U and 232Th series and 40K were used to calculate the external gamma dose rate, D in nGy h$^{-1}$. The following equation was used to calculate the external gamma dose rate [7].

$$D \text{[nGy h}^{-1}] = 0.461C_{Ra} + 0.623C_{Th} + 0.0414C_{K}$$

where D is the absorbed dose rate, C_{Ra}, C_{Th}, and C_{K} the activity concentrations for uranium, thorium and potassium, respectively, in Bq kg$^{-1}$.

Radium equivalent activity (Ra eq) is a sum of activities of 226Ra, 228Th and 40K radionuclides based on assumption that 1 Bq kg$^{-1}$ of 226Ra, 0.7 Bq kg$^{-1}$ of 232Th and 13 Bq kg$^{-1}$ of 40K produce the same gamma ray dose [8]. The equation is defined as below:

$$Ra_{eq} = C_{Ra} + 1.43C_{Th} + 0.077C_{K}$$

where C_{Ra}, C_{Th} and C_{K} have the same meaning as (1). The representative level index, I_{rep} is defined by the following formula [9].

$$I_{rep} = \frac{C_{Ra}}{150} + \frac{C_{Th}}{100} + \frac{C_{K}}{1500}$$

External hazard index due to the emitted gamma rays of the samples and determined using the following equation.

$$H_{ex} = \frac{C_{Ra}}{370} + \frac{C_{Th}}{259} + \frac{C_{K}}{4810}$$

The calculated average external hazard index was found to be less unity.

Annual effective dose (mSv year$^{-1}$) is calculated from the following equation.

$$AED = D\text{nGy/h} \times 8760\text{h/year} \times 0.2 \times 0.7\text{[Sv/Gy]} \times 10^{-6}$$

Discussion

Generally, all rock samples are granite rock. The presence of natural radionuclides in rock usually because of bedrock geology. To evaluate the geological background, the activity concentrations of each rock samples are measured and tabulated in Table 2. Activity concentration of three radionuclides which are 226Ra, 228Ra and 40K have been analysed using gamma energy 609.3, 911.07 and 1460.75 keV respectively. Activity concentration of 226Ra, 228Ra and 40K in rock samples were calculated in Bq/kg. It is also to note that the 609.3 keV is the gamma line of 214Bi and the 911.07 keV is the gamma line of 228Ac. At secular equilibrium, the 214Bi is equivalent to the activity concentration of 226Ra and the 228Ac is equivalent to 228Ra.

Table 2 lists the activity concentrations of 226Ra, 228Ra and 40K measured in rock samples. The activity concentration of 226Ra is in the range of 24.1-43.2 Bq/kg. Overall, most of rock samples give a lower activity concentration of 226Ra if compare with other listed regions around the world. The mean value of activity concentration of 226Ra is still in the range that had been appointed by UNSCEAR. This result also shows potential uranium deposits in this area.

Similarly with 228Ra, the activity concentration in this rock sample is in the range of 1.2 – 3.5 Bq/kg. The pattern of activity concentration of 228Ra is quite same between rock samples. Rock sample G shows a higher activity concentration of 228Ra compare to other sample rocks.

Unlike 226Ra and 228Ra, the activity concentration of 40K shows the highest values at all sampling points. The highest value of activity concentration of 40K at rock sample A, with the value of 438.2 Bq/kg. Meanwhile, the rock sample B give the lowest activity concentration for 40K, with the value of 274.3 Bq/kg. Generally, the activity concentration of 40K does not give effect on the concentration of uranium in rock, since 40K does not belong to any uranium or thorium series. 40K usually exists naturally and it can be raised by the anthropogenic activities such as agriculture. Most of Bukit Bunuh area had been planted with oil palm and rubber tree. Fertilizer application that had a high potassium content in that area maybe can cause the activity concentration of rock sample is higher.

The activity concentrations of 226Ra, 228Ra and 40K in rock samples from studying area were compared with similar investigations in other countries. Table 3 shows a comparison of the activity concentration with other studies. Nagdya (2003) studied radioactive disequilibrium in the different rock types in Wadi Wizr, the Eastern Desert of Egypt and the concentration of 238Ra, 232Ra and 40K in the rocks are ranged from 36 to 661 Bq/kg, from 0.9 to 13.8 Bq/kg and from 11.8 to 248 Bq/kg, respectively [10].
Table 1. Sampling location and coordinates of the area

<table>
<thead>
<tr>
<th>Sample code</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>N05° 4’ 13.10” E100° 58’ 34.66”</td>
</tr>
<tr>
<td>B</td>
<td>N05° 4’ 25.95” E100° 58’ 38.36”</td>
</tr>
<tr>
<td>C</td>
<td>N05° 4’ 40.16” E100° 58’ 37.49”</td>
</tr>
<tr>
<td>D</td>
<td>N05° 4’ 16.33” E100° 58’ 18.16”</td>
</tr>
<tr>
<td>E</td>
<td>N05° 4’ 51.94” E100° 58’ 17.61”</td>
</tr>
<tr>
<td>F</td>
<td>N05° 5’ 9.89” E100° 58’ 17.07”</td>
</tr>
<tr>
<td>G</td>
<td>N05° 5’ 51.92” E100° 58’ 9.24”</td>
</tr>
<tr>
<td>H</td>
<td>N05° 5’ 1.29” E100° 58’ 11.09”</td>
</tr>
<tr>
<td>I</td>
<td>N05° 5’ 5.84” E100° 58’ 11.06”</td>
</tr>
<tr>
<td>J</td>
<td>N05° 5’ 6.35” E100° 57’ 53.99”</td>
</tr>
</tbody>
</table>

Table 2. Activity concentration of 226Ra, 228Ra and 40K in rock samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>Activity concentration of 226Ra (Bq/kg)</th>
<th>Activity concentration of 228Ra (Bq/kg)</th>
<th>Activity concentration of 40K (Bq/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>41.4 ± 2.2</td>
<td>2.4 ± 0.3</td>
<td>438.2 ± 74.6</td>
</tr>
<tr>
<td>B</td>
<td>42.3 ± 0.9</td>
<td>2.2 ± 0.2</td>
<td>274.3 ± 28.8</td>
</tr>
<tr>
<td>C</td>
<td>38.5 ± 2.6</td>
<td>3.1 ± 0.2</td>
<td>335.1 ± 8.1</td>
</tr>
<tr>
<td>D</td>
<td>29.2 ± 4.0</td>
<td>2.7 ± 0.7</td>
<td>378.2 ± 44.4</td>
</tr>
<tr>
<td>E</td>
<td>37.9 ± 3.0</td>
<td>1.2 ± 0.2</td>
<td>371.9 ± 11.4</td>
</tr>
<tr>
<td>F</td>
<td>40.2 ± 2.2</td>
<td>1.5 ± 0.2</td>
<td>409.5 ± 11.9</td>
</tr>
<tr>
<td>G</td>
<td>27.9 ± 3.1</td>
<td>3.5 ± 0.4</td>
<td>418.6 ± 37.5</td>
</tr>
<tr>
<td>H</td>
<td>34.9 ± 2.4</td>
<td>2.2 ± 0.2</td>
<td>437.2 ± 8.7</td>
</tr>
<tr>
<td>I</td>
<td>22.5 ± 1.6</td>
<td>2.6 ± 0.1</td>
<td>429.5 ± 12.2</td>
</tr>
<tr>
<td>J</td>
<td>38.1 ± 1.1</td>
<td>1.8 ± 0.5</td>
<td>339.2 ± 0.9</td>
</tr>
</tbody>
</table>

Table 3. Comparison of the activity concentration of 226Ra, 228Ra and 40K in rock samples

<table>
<thead>
<tr>
<th>Country - Sample</th>
<th>Activity concentrations of 226Ra (Bq/kg)</th>
<th>Activity concentrations of 228Ra (Bq/kg)</th>
<th>Activity concentrations of 40K (Bq/kg)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malaysia (Bukit Bunuh) Rock granite (quartz)</td>
<td>22.5 – 42.3</td>
<td>1.2 – 3.5</td>
<td>274.3 – 438.2</td>
<td>Present study</td>
</tr>
<tr>
<td>Egypt (Wadi Wizr) Rock</td>
<td>36 – 661</td>
<td>0.9 – 13.8</td>
<td>11.8 – 248</td>
<td>Nagdya</td>
</tr>
<tr>
<td>Egypt (Bir El-Sid) Rock granite</td>
<td>57.4</td>
<td>53.4</td>
<td>1041.4</td>
<td>Ahmed et al.</td>
</tr>
<tr>
<td>Egypt (Wadi El-Gemal) Rock granite</td>
<td>39</td>
<td>47.9</td>
<td>1031</td>
<td>Ahmed et al.</td>
</tr>
<tr>
<td>Germany Rock granite</td>
<td>76.1</td>
<td>70</td>
<td>1465.4</td>
<td>Ahmed et al.</td>
</tr>
<tr>
<td>Egypt (W. Allaqi) Rock granite</td>
<td>9 – 111</td>
<td>8 – 75</td>
<td>119 – 790</td>
<td>S. A. M. Issa et al.</td>
</tr>
<tr>
<td>India (Kaiga) Rock</td>
<td>1.2 – 14.2</td>
<td>0.5 – 11.5</td>
<td>14.8 – 866.2</td>
<td>Patra et al.</td>
</tr>
<tr>
<td>Turkey (Aliaga-Foça) Rock</td>
<td>12 – 96</td>
<td>11 – 123</td>
<td>264 – 1470</td>
<td>N. Füsun Çam et al.</td>
</tr>
<tr>
<td>Yemen (North Sana’a) Rock</td>
<td>21.79</td>
<td>19.15</td>
<td>399.3</td>
<td>Shaban Harb et al.</td>
</tr>
</tbody>
</table>
Table 4. Sample code as well as calculated external gamma dose rate, radium equivalent activity, representative level index and external hazard index

<table>
<thead>
<tr>
<th>Sample code</th>
<th>D (nGy/h)</th>
<th>Ra<sub>eq</sub> (Bq/kg)</th>
<th>I<sub>γ</sub></th>
<th>H<sub>ex</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>38.7</td>
<td>78.6</td>
<td>0.59</td>
<td>0.21</td>
</tr>
<tr>
<td>B</td>
<td>32.3</td>
<td>66.7</td>
<td>0.49</td>
<td>0.18</td>
</tr>
<tr>
<td>C</td>
<td>33.5</td>
<td>68.7</td>
<td>0.51</td>
<td>0.19</td>
</tr>
<tr>
<td>D</td>
<td>30.8</td>
<td>62.3</td>
<td>0.47</td>
<td>0.17</td>
</tr>
<tr>
<td>E</td>
<td>33.7</td>
<td>68.3</td>
<td>0.51</td>
<td>0.18</td>
</tr>
<tr>
<td>F</td>
<td>36.4</td>
<td>73.8</td>
<td>0.56</td>
<td>0.20</td>
</tr>
<tr>
<td>G</td>
<td>32.4</td>
<td>65.2</td>
<td>0.50</td>
<td>0.18</td>
</tr>
<tr>
<td>H</td>
<td>35.6</td>
<td>71.8</td>
<td>0.55</td>
<td>0.19</td>
</tr>
<tr>
<td>I</td>
<td>29.8</td>
<td>59.3</td>
<td>0.46</td>
<td>0.16</td>
</tr>
<tr>
<td>J</td>
<td>32.7</td>
<td>66.7</td>
<td>0.50</td>
<td>0.18</td>
</tr>
<tr>
<td>Mean Value</td>
<td>33.6</td>
<td>68.1</td>
<td>0.50</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Table 5. Annual effective dose and in-situ measurement dose (surface and 1 m above the ground dose)

<table>
<thead>
<tr>
<th>Sample code</th>
<th>Annual effective dose (mSv/yr)</th>
<th>In-situ surface dose</th>
<th>In-situ 1 m above the ground dose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in µSv/h</td>
<td>in mSv/yr</td>
<td>in µSv/h</td>
</tr>
<tr>
<td>A</td>
<td>0.048</td>
<td>0.36</td>
<td>3.16</td>
</tr>
<tr>
<td>B</td>
<td>0.039</td>
<td>0.47</td>
<td>4.12</td>
</tr>
<tr>
<td>C</td>
<td>0.041</td>
<td>0.27</td>
<td>2.36</td>
</tr>
<tr>
<td>D</td>
<td>0.038</td>
<td>0.25</td>
<td>2.19</td>
</tr>
<tr>
<td>E</td>
<td>0.041</td>
<td>0.25</td>
<td>2.19</td>
</tr>
<tr>
<td>F</td>
<td>0.045</td>
<td>0.19</td>
<td>1.67</td>
</tr>
<tr>
<td>G</td>
<td>0.040</td>
<td>0.32</td>
<td>2.81</td>
</tr>
<tr>
<td>H</td>
<td>0.044</td>
<td>0.41</td>
<td>3.59</td>
</tr>
<tr>
<td>I</td>
<td>0.037</td>
<td>0.41</td>
<td>3.59</td>
</tr>
<tr>
<td>J</td>
<td>0.040</td>
<td>0.34</td>
<td>2.98</td>
</tr>
<tr>
<td>Mean value</td>
<td>0.041</td>
<td>0.33</td>
<td>2.87</td>
</tr>
</tbody>
</table>

Table 6. Comparison the external gamma dose rate, radium equivalent, representative level index, external hazard index and annual effective dose for rock samples from the present study with other studies

<table>
<thead>
<tr>
<th>Country</th>
<th>Sample</th>
<th>D (nGy/h)</th>
<th>Ra<sub>eq</sub> (Bq/kg)</th>
<th>I<sub>γ</sub></th>
<th>H<sub>ex</sub></th>
<th>AED (mSv/year)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malaysia (Bukit Bunuh)</td>
<td>Rock granite (quartz)</td>
<td>29.8 – 38.7</td>
<td>59.3 – 78.6</td>
<td>0.46 – 0.59</td>
<td>0.17 – 0.21</td>
<td>0.037 – 0.048</td>
<td>Present study</td>
</tr>
<tr>
<td>Egypt (Wadi Wizr)</td>
<td>Rock</td>
<td>13 – 209</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Nagdia</td>
</tr>
<tr>
<td>Egypt (Bir El-Sid)</td>
<td>Rock granite</td>
<td>3.4</td>
<td>7.3</td>
<td>0.05</td>
<td>-</td>
<td>-</td>
<td>Ahmed et al.</td>
</tr>
<tr>
<td>Egypt (Wadi El-Gemal)</td>
<td>Rock granite</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Ahmed et al.</td>
</tr>
<tr>
<td>Germany</td>
<td>Rock granite</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Ahmed et al.</td>
</tr>
<tr>
<td>Egypt (W. Allaqi)</td>
<td>Rock granite</td>
<td>24.8 – 89.2</td>
<td>49 – 183.2</td>
<td>-</td>
<td>0.1 – 0.5</td>
<td>0.030 – 0.108</td>
<td>S. A. M. Issa et al.</td>
</tr>
<tr>
<td>Egypt (Abu Ziran)</td>
<td>Rock granite</td>
<td>27 – 33.4</td>
<td>53.8 – 68.4</td>
<td>-</td>
<td>0.2</td>
<td>0.033 – 0.041</td>
<td>S. A. M. Issa et al.</td>
</tr>
<tr>
<td>India (Kaiga)</td>
<td>Rock</td>
<td>1.8 – 38.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0073 – 0.0744</td>
<td>Patra et al.</td>
</tr>
<tr>
<td>Egypt (Eastern Desert)</td>
<td>Rock granite</td>
<td>24.24 – 58.05</td>
<td>49.05 – 113.39</td>
<td>0.53 – 1.14</td>
<td>0.16 – 0.35</td>
<td>0.12 – 0.28</td>
<td>Shaban Harb et al.</td>
</tr>
<tr>
<td>Turkey (Aliağa-Foça)</td>
<td>Rock</td>
<td>36 – 179</td>
<td>76 – 382</td>
<td>-</td>
<td>0.21 – 1.08</td>
<td>0.044 – 0.220</td>
<td>N. Füsun ÜEÜ at al.</td>
</tr>
<tr>
<td>Yemen (North Sana’a)</td>
<td>Rock</td>
<td>38.39</td>
<td>82.2</td>
<td>0.3</td>
<td>0.21</td>
<td>-</td>
<td>Shaban Harb et al.</td>
</tr>
<tr>
<td>World</td>
<td>-</td>
<td>55</td>
<td>370</td>
<td>1</td>
<td>1</td>
<td>0.3 – 0.6</td>
<td>UNSCEAR (2000)</td>
</tr>
</tbody>
</table>
Ahmed et al. (2006) doing a comparative study of the natural radioactivity of some selected rocks from Egypt (Bir El-Sid and Wadi El-Gemal) and Germany [11]. The activity concentration for \(226^{\text{Ra}}\) are 57.4, 39 and 76.1 Bq/kg, respectively. For \(228^{\text{Ra}}\) and \(40^{\text{K}}\), the activity concentration are 53.4, 47.9, 70 and 1041.4, 1031, 1465.4 Bq/kg, respectively. S. A. M. Issa et al. (2011) determined the natural radionuclide concentrations in granite rocks in W. Allaqi and Abu Ziran, Egypt [12]. The rock activity ranged from 9 to 11 and 19 to 34 Bq/kg; from 8 to 75 and 11 to 15 Bq/kg; from 119 to 790 and 216 to 274 Bq/kg for \(226^{\text{Ra}}\), \(228^{\text{Ra}}\) and \(40^{\text{K}}\), respectively. Similar investigations in other countries are also compared with the present study such as Patra et al. [13], Shaban Harb et al. [14] and N. Füsün Cam et al. [6].

Table 4 shows the external gamma dose rate, radium equivalent activity, representative level index and external hazard index for Bukit Bunuh area. The mean external gamma dose rate for Bukit Bunuh area is 33.6 nGy/h. This calculated values were lower than the estimate of average global terrestrial radiation of 55 nGy/h [15]. Radium equivalent activity is used to estimate the hazard posed by the different concentrations of radionuclides in materials. The mean Raeq for Bukit Bunuh area is 68.1 Bq/kg. The mean \(\text{Ra}_{eq}\) value is lower than the internationally accepted value 370 Bq/kg [8]. The mean value of representative level index for the studied samples is 0.50. The \(I_r\) values are below the internationally accepted value 1. The mean external hazard index for Bukit Bunuh area is 0.20 which is less than 1. The external hazard index estimated for this rock samples were less than the safety limit.

Table 5 shows the corresponding annual effective dose and in-situ measurement dose for Bukit Bunuh area. The annual effective dose is calculated based on the external gamma dose rate (absorbed dose). The mean value for the annual effective dose for Bukit Bunuh area is 0.037 mSv/year. The world average range is between 0.3 – 0.6 mSv/year and the limit is 1 mSv/year [7]. A dose rate measurements were taken 1 m from the ground and surface using a RAM DA3-2000 Survey Meter with unit μSv/h for natural background radiation. A correlation study between annual effective doses with in-situ dose rate was carried out as shown in Figure 2. From the figure above, there is no strong correlation between annual effective dose with in-situ dose rate measurement as the points are scattered around and no trends are obtained from the graph. This shows that the measured surface doses and annual effective doses are not correlated. It is also shown that not only these three radionuclides that contribute to the radiation in the area but the other radionuclides that is also exists and contribute to the surface dose rate.

Table 6 shows the comparison of external gamma dose rate, radium equivalent \(\text{Ra}_{eq}\), representative level index \(I_r\), external hazard index \(H_{ex}\) and annual effective dose for rocks from Bukit Bunuh with the results in other countries (Nagdia [10], Ahmed et al. [11], S. A. M. Issa et al. [12], Patra et al. [13], Shaban Harb et al. [14,16] and N. Füsün Cam et al. [6]). It can be seen that values of external gamma dose rate for rocks obtained does not exceed from the international recommended value except in the case of Wadi Wizr, Egypt and Aliâğa-Foça, Turkey. The representative level index, radium equivalent activity, external hazard index and annual effective dose from the other studies shows the values that had been estimated not exceeded the value that had been recommended.

Figure 2. Correlation between annual effective dose and in-situ dose measurement

Conclusion

Selected rock samples from Bukit Bunuh were measured for their radioactivity content. The activity concentration of \(226^{\text{Ra}}\) (uranium series), \(228^{\text{Ra}}\) (thorium series) and \(40^{\text{K}}\) were measured using a NaI(Tl) spectrometer. The result shows that the activity concentration of \(226^{\text{Ra}}\) range from 22.5 – 42.3 Bq/kg for uranium series. The activity concentration of \(228^{\text{Ra}}\) range from 1.2 – 3.5 Bq/kg for thorium series. The activity concentration for \(40^{\text{K}}\) range from 274.3 – 438.2 Bq/kg. These results are comparable with the literature. The mean values and ranges of the external gamma dose rate \(D\), radium equivalent activity \(\text{Raeq}\), representative level index \(I_r\) and external hazard index \(H_{ex}\) for rock samples were 33.6 (29.8 – 38.7) nGy/h, 68.1 (59.3 – 78.6) Bq/kg, 0.50 (0.46 – 0.59) and 0.20 (0.17 – 0.21), respectively. The results show that the dose rate in all rock samples does not exceed from what had been recommended by UNSCEAR which is 55 nGy/h [7]. It is understood that from the USEM Geophysics’ group, the Bukit Bunuh area had been reliable is one of the meteorite impact areas. This study will help us to see any significant health hazard to humans in long terms especially for those that lives and work in there.

Acknowledgement

Authors acknowledge the financial support for this research from the Department of Higher Education, Ministry of Education, Malaysia through Fundamental Research Grant Scheme (FRGS – 6711307) and Universiti Sains Malaysia, providing the Short Term Grant (6312104). Special thanks to the Ministry of Education for the MyBrain15 scholarships given to me.

References