The Jordan Canonical Forms of Complex s-orthogonal and s-skew symmetric Matrices

S.Krishnamoorthy¹, and K.Jaikumar²

¹Department of Mathematics, Government Arts College (Autonomous), Kumbakonam, Tamil nadu, India.
²Department of Mathematics, Dharmapuram Adhinam Arts College Dharmapuram, Mayiladuthurai, Tamil nadu, India.

Abstract

We study the Jordan Canonical Forms of complex s-orthogonal and s-symmetric matrices, and consider some related results.

© 2014 Elixir All rights reserved.

Keywords

Jordan Canonical forms,
Complex s-orthogonal matrix,
Complex s-skew symmetric matrix.

Introduction

The study of secondary symmetric and secondary orthogonal matrices was initiated by Anna Lee [1] and [2]. In this paper we present some extended results of [3] in the context of s-orthogonal and s-skew symmetric matrices. We denote the space of \(n \times n \) matrices and complex matrices by \(\mathbb{M}_n \) and \(\mathbb{C} \) respectively. The secondary transpose of \(A \) is defined by \(A^s = VA^TV \), where ‘V’ is the fixed disjoint permutation matrix with units in its secondary diagonal.

Definition 1.1 [4]. Let \(A \in \mathbb{C} \)

a) The matrix \(A \) is called \(s \)-symmetric, if \(A^t = A \). That is \(A^tV = VA \).

b) The matrix \(A \) is called \(s \)-skew symmetric, if \(A^t = -A \). That is \(A^tV = -VA \).

c) The matrix \(A \) is called \(s \)-orthogonal, if \(AA^t = A^tA = I \). That is \(A^tVA = V \).

Basic Results

Our main objective is to present a new approach to the following classical characterization of the Jordan Canonical Forms of Complex s-orthogonal and s-skew symmetric matrices.

Theorem 2.1. A \(n \times n \) complex matrix is similar to a complex s-orthogonal matrix if and only if its Jordan Canonical Form can be expressed as a direct sum of matrices of only the following five types

(a). \(J_k(\lambda) \oplus J_k(\lambda^{-1}) \) for \(\lambda \in \mathbb{C} \setminus \{-1, 0, 1\} \) and any k,

(b). \(J_k(1) \oplus J_k(1) \) for any even k,

(c). \(J_k(-1) \oplus J_k(-1) \) for any even k,

(d). \(J_k(1) \) for any odd k, and

(e). \(J_k(-1) \) for any odd k.

Theorem 2.2. A \(n \times n \) complex matrix is similar to a complex s-skew symmetric matrix if and only if its Jordan Canonical Form can be expressed as a direct sum of matrices of only the following five types

(a). \(J_k(\lambda) \oplus J_k(-\lambda) \) for \(\lambda \in \mathbb{C} \setminus \{0\} \) and any k,

(b). \(J_k(0) \oplus J_k(0) \) for any even k, and

(c). \(J_k(0) \) for any odd k.

The Complex s-orthogonal

Lemma 3.1. Let \(A \in \mathbb{M}_n \) be nonsingular. The following are equivalent

(a). \(A \) is similar to a complex s-orthogonal matrix

(b). \(A \) is similar to a complex s-orthogonal matrix via a complex s-symmetric similarity
(c) there exists a nonsingular complex s-symmetric S such that \(A' = SAS^{-1} \) and
(d) there exists a nonsingular complex s-symmetric S such that \(A'SA = S \).

Proof: Assuming (a), suppose that X is nonsingular and \(XAX^{-1} = L \) is complex s-orthogonal. The algebraic polar decomposition ensures that there is a nonsingular complex s-symmetric G and a complex s-orthogonal Q such that \(X = GQ \).

Then \(L = XAX^{-1} = GQG^{-1}Q' \). so \(GAG^{-1} = Q'LQ \) is a product of complex s-orthogonal matrices and hence is complex s-orthogonal.

Assuming (b), suppose that \(A = GQG^{-1} \) for some complex s-symmetric G and complex s-orthogonal Q. Then

\[
A^{-1} = GQ'G^{-1} \text{ and } A' = G^{-1}Q'G = G^{-2}A^{-1}G^2,
\]

which is (c) with \(S = G^{-2} \).

Now assume (c) and write \(S = Y^*Y \) for some \(Y \in M_n \) so \(A' = SA^{-1}S^{-1} = Y^*YA^{-1}Y^{-1} \).

or \((YAY^{-1})^r = Y^{-r}A^rY^{-1} = (YAY^{-1})^{-1} \): \(YAY^{-1} \) is therefore complex s-orthogonal and so (a) follows. The equivalence of (c) and (d) is clear.

Lemma 3.2. For any positive integer \(k \) and any \(\lambda \neq 0 \), \(J_k(\lambda) \oplus J_k(\lambda^{-1}) \) is similar to a complex s-orthogonal matrix.

Lemma 3.3. For any odd positive integer \(k \), each of \(J_k(1) \) and \(J_k(-1) \) is similar to a complex s-orthogonal matrix.

Lemma 3.4. Let \(r, k_1, \ldots, k_r \) be positive integers with \(k_i \) even, and suppose that \(k_1 > k_2 \geq \ldots \geq k_r \) if \(r > 1 \). Then neither \(J_{k_1}(1) \oplus \ldots \oplus J_{k_r}(1) \) nor \(J_{k_1}(-1) \oplus \ldots \oplus J_{k_r}(-1) \) is similar to a complex s-orthogonal matrix.

Theorem 3.5. Let \(r, k_1, \ldots, k_r \) and \(p, l_1, \ldots, l_p \) be positive integers with \(k_i \) and \(l_i \) even, suppose that \(k_1 > k_2 \geq \ldots \geq k_r \) if \(r > 1 \) and that \(l_1 > l_2 \geq \ldots \geq l_p \) if \(p > 1 \). Then \(J_{k_1}(1) \oplus \ldots \oplus J_{k_r}(1) \oplus J_{l_1}(-1) \oplus \ldots \oplus J_{l_p}(-1) \) is not similar to a complex s-orthogonal matrix.

Lemma 3.6. Let \(C \in M_{k_1} \) be similar to a complex s-orthogonal matrix. If \(B \oplus C \) is similar to a complex s-orthogonal matrix for some \(B \in M_n \), then \(B \) is similar to a complex s-orthogonal matrix.

Theorem 3.7. Let \(A \) be a complex s-orthogonal matrix. Then the even sized Jordan blocks of \(A \) corresponding to each of the Eigen values \(+1\) and \(-1\) are paired.

The s-skew symmetric

Lemma 4.1. A given \(A \in M_n \) is similar to a complex s-skew symmetric matrix if and only if there is a nonsingular s-symmetric \(S \) such that \(A' = -SAS^{-1} \).

Lemma 4.2. For any positive integer \(k \) and any \(\lambda \in \mathbb{C} \), \(J_k(\lambda) \oplus J_k(-\lambda) \) is similar to a s-skew symmetric matrix.

Lemma 4.3. For any odd positive integer \(k \), \(J_k(0) \) is similar to a s-skew symmetric matrix.

Lemma 4.4. Let \(r, k_1, \ldots, k_r \) be positive integers with \(k_i \) even, and suppose that \(k_1 > k_2 \geq \ldots \geq k_r \) if \(r > 1 \). Then neither \(J_{k_1}(0) \oplus \ldots \oplus J_{k_r}(0) \) is similar to a s-skew symmetric matrix.

Lemma 4.5. Let \(C \) be similar to a complex s-skew symmetric matrix. If \(B \oplus C \) is similar to a s-skew symmetric matrix, then \(B \) is also similar to a s-skew symmetric matrix.

Theorem 4.6. Let \(A \in M_n \) be s-skew symmetric. Then the even sized singular Jordan blocks of \(A \) are paired.

Reference: