Effects of α-tocopherol against monosodium glutamate induced hepatotoxicity
Samia Siddiqui1, Saba Ismaili Khawaja2, Sana Naz Arain3, Samia Khan4 and Haji Khan Koharo4,*
1Department of Physiology, Isra University, Hyderabad, Sindh, Pakistan.
2Department of Hematology, Isra University, Hyderabad, Sindh, Pakistan.
3Department of Anatomy, Isra University, Hyderabad, Sindh, Pakistan.
4Department of Medicine and Physiology, Faculty of Medicine & Allied Medical Sciences, Isra University Hyderabad.

ARTICLE INFO
Article history:
Received: 2 April 2014;
Received in revised form: 15 July 2014;
Accepted: 26 July 2014;

Keywords
Monosodium glutamate,
α-Tocoph Liverinjury.

ABSTRACT
To investigate the protective effect of α-Tocopherol (α-TP) in monosodium glutamate (MSG) induced liver injury in albino rat model. Experimental/Analytical study Place and Duration: Animal House, Isra University Hyderabad from February to September 2013.Subjects and Methods: Sixty albino rats were divided into three groups; Group 1. Controls received 0.9% isotonic saline, Group 2. received MSG orally (3mg/kg), and Group 3. received the MSG orally (3mg/kg) + α-TP (0.2 mg/kg). Blood samples were collected for liver biochemical assays. The animals were sacrificed, liver tissue, after fixation in 4% formaldehyde, was embedded in paraffin. Tissue sections of 5µ thickness were subjected to haematoxylin and eosin staining and were assessed by light microscopy. The data was analyzed on SPSS 21.0 using appropriate statistical tests. A p-value of ≤ 0.05 was taken statistically significant.Results: The liver biochemical and histological findings reveal statistically significant differences among the controls, MSG and MSG+ α-TP groups (p=0.0001). Liver enzymes and histology was deranged significantly in MSG group compared to controls and MSG+α-TP group (p=0.001). The MSG+α-TP group shows less elevation of liver enzymes and derangement in liver histology when compared to MSG group (p=0.001). The histological findings of congestion, inflammatory cell infiltrate, vacuolar degeneration and necrosis were found prominently in MSG group animal. The monosodium glutamate has deleterious effects on liver. It is important to reconsider the monosodium glutamate as a food flavor additive. α-tocopherol protects against monosodium glutamate induced liver injury.

© 2014 Elixir All rights reserved

Introduction
Monosodium glutamate (MSG) is commonly known as AJINOMOTO.3 MSG is the sodium salt of a naturally occurring amino acid; the glutamic acid. Biochemically MSG contains 78% glutamic acid and remaining 22% sodium.2 Glutamate is produced in body and plays role in human metabolism.3,4 MSG is commonly marketed as a flavour enhancer and is used as a food additive particularly in West African and Asian dishes.5,6 Generally, monosodium glutamate is accepted as a safe food additive that needs no specified average daily intake or an upper limit intake.4 However, inadvertent abuse of this food additive may occur because of its abundance, mostly without labeling, in many food ingredients.7 An experimental study8 demonstrated that both subcutaneous injection and oral administration of MSG to immature rats and mice resulted in neuronal losses in the hypothalamus. The ability of monosodium glutamate to damage nerve cells of the hypothalamus is a pointer to the fact that it may alter the neural control of reproductive hormone secretion via the hypothalamic-pituitary-gonadal regulatory axis. The effects of such toxicants on male reproduction may be anatomical or only functional, depending on whether they produce structural changes in the reproductive system, or merely affect the functions of the reproductive organs.9

The ingestion of MSG has been alleged to cause or exacerbate numerous conditions, including asthma, urticaria, atopic dermatitis, ventricular arrhythmia, neuropathy and abdominal discomfort.10 The α-tocopherol (α-TP) administration has been reported to be beneficial in preventing formaldehyde-induced tissue damage in rats.11 The preventive effect of α-tocopherol on cypermethrin or endotoxin-induced oxidative stress in rat tissues is suggestive of its antioxidant activity.12,13

The present study was designed to observe effects of MSG on liver and possible protective role of α-tocopherol in albino rat model at animal house of Isra University.

Materials and Methods
The present experimental study included sixty albino rats at animal house of Isra University from March to July 2013. Albino rats of 250-300 grams were included while female rats, and rats weighing <250 grams or >300 grams were excluded from the study. The Animals were housed in animal house at an optimal room temperature with 55-60% humidity and exposed to 12 hour light-dark cycles. The chaw like fresh alfalfa and clean water are provided freely.

The chemical used was monosodium glutamate (C5H9NO4-Na+). The MSG was purchased from the open market of Hyderabad under the license of Ajinomoto co.INC. Tokyo, Japan. A stock solution was prepared by dissolving 30 and 60 g of MSG crystals in 100 ml of distilled water. The dose schedule was so adjusted that the amount of MSG administration per animal was as per their respective weight.
The MSG doses were given for six weeks. The applied doses were selected according to as referenced. The rats were divided into four groups:

Group 1. Control Group (n=20) Rats received 0.9% isotonic saline orally on alternate day for three successive weeks and served as control group.

Group 2. (n=20) Rats were given 3 mg/kg of monosodium glutamate orally.

Group 3. (n=20) Rats were given 3 mg/kg of monosodium glutamate mixed with 0.2 mg/kg α-tocopherol (α-TP) orally.

The blood samples were collected from peripheral veins at twenty four hours of experimental period. Sera were separated by centrifugation at 3000xg for ten minutes. Serum samples were used to determine liver enzymes. Liver enzyme assays were determined for alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) using commercially available diagnostic kits.

After fixation in 4% formaldehyde, samples were embedded in paraffin. Sections of 5μ thickness were subjected to haematoxylin and eosin. Hepatic morphology was assessed by light microscopy. A total of five sections for each liver tissue sample were observed under light microscope. In H & E staining, damaged hepatocytes graded as 0= normal, + = mild damage (swollen and pale cytoplasm), ++ = moderate damage (vacuolated cytoplasm), +++ = severe damage and ++++= very severe damage (pyknotic nucleus and eosinophil cytoplasm).

The data was analyzed on SPSS version 21.0 (IBM corporation). The continuous variables were presented as mean±SD using one-way ANOVA and Tukey-Cramer test for multiple comparisons. Chi-square test was used for categorical variables. A p-value of ≤ 0.5 was taken statistically significant.

Table 1. Liver enzyme levels in controls, MSG and MSG+α-TP

<table>
<thead>
<tr>
<th>Groups</th>
<th>ALT (IU)</th>
<th>AST (IU)</th>
<th>LDH (IU)</th>
<th>ALP (IU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>48.9±3.19</td>
<td>91.2±16.81</td>
<td>711.5±51.7</td>
<td>93.6±8.91</td>
</tr>
<tr>
<td>Group 2</td>
<td>189.6±11.91</td>
<td>499.7±21.9</td>
<td>2778.8±139.6</td>
<td>167.1±8.02</td>
</tr>
<tr>
<td>Group 3</td>
<td>87.7±17.92</td>
<td>171.3±19.3</td>
<td>2138.6±153.3</td>
<td>136.7±18.14</td>
</tr>
</tbody>
</table>

Table 2. Histology of liver injury of controls, MSG and MSG+α-TP

<table>
<thead>
<tr>
<th>Groups</th>
<th>Inflammatory cell infiltrate</th>
<th>Congestion</th>
<th>Vascular degeneration</th>
<th>Necrosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Group 2</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>++++</td>
</tr>
<tr>
<td>Group 3</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
</tbody>
</table>

References

